Von Quanten, Quarks und Higgs

Peter Schleper Universität Hamburg 25.3.2013, MNU – Hamburg

Deutsche Forschungsgemeinschaft

DFG

SPONSORED BY THE

Federal Ministry of Education and Research

Quantenphysik: kleinste Bausteine der Natur

Teilchen und Kräfte im Standard - Modell

Materie und Antimaterie

Albert Einstein 1905:

Spezielle Relativitätstheorie

- Lichtgeschwindigkeit ist universell
 c = 30 cm / nano-Sekunde
- Energie kann in Masse übergehen
- \rightarrow Erzeugung neuer Teilchen

Paul Dirac 1928 :

Entdeckung 1933

Relativistische Quantenphysik

- Vorhersage der Antimaterie
- Elektron: Ladung = -1
- Positron: Ladung = +1

Mathematik \rightarrow Vorhersage der Eigenschaften der Natur

Masse der bekannten Teilchen

Masse W,Z, Photon, Gluon, Elektron, Quarks, ...

= 0 vorhergesagt aufgrund Symmetrie

→ Symmetrie-Brechung

Masse des Higgs

- **Theoretische Vermutung:**
- Standard-Modell: < 1 TeV
- Supersymmetrie: < 135 GeV

→ Beschleuniger

LHC: Large Hadron Collider

CERN: Europäisches Zentrum für Teilchenphysik in Genf LHC: Proton-Proton Kollisionen bei 8.000.000.000.000 eV Faktor 1000 mehr Kollisionen als bisher

Der Large Hadron Collider am CERN

Das CMS-Experiment Compact Muon Solenoid – 100m unter der Erde

CMS Experiment: Compact Muon Solenoid

39 Länder 184 Institute 2700 Physiker & Ing. http://cms.web.cern.ch Deutsche Gruppen: RWTH Aachen Uni. Hamburg KIT Karlsruhe DESY

Detektoren

600 Millionen el. Kanäle Kollisionen alle 25 ns Daten werden weltweit analysiert

Beispiel: Silizium - Detektor

Detektoren

CMS Detektor

Videos - I

LHC & Atlas: Z – Zerfall http://cdsweb.cern.ch/record/1309873 lokal

CMS: Higgs Kandidaten

H-> 4 Muonen lokalhttp://cdsweb.cern.ch/record/1406329H-> Photonen lokalhttp://cdsweb.cern.ch/record/1406328H-> 4 Elektron lokalhttp://cdsweb.cern.ch/record/1406325

CMS: Proton-Proton Kollisionen

Symmetrien

Symmetrien in der Quantenmechanik

- Beschreiben Eigenschaften der Teilchen Wellen
 - → Vorhersage der Kräfte !!
- Analogie: Drehung eines Balls \rightarrow Phase einer Welle

Vorhersagen, Entdeckungen

& Nobelpreise

- Starke und Schwache Kraft
- 3. Neutrino, Quarks: charm, top
- W, Z, Gluon
- Erfolgreich für alle Experimente
- Higgs ??

Problem:

- Unterschiede zwischen Teilchen
- Massen sind verboten !!

Symmetrie – Brechung

"*Symmetrie ist die Kunst der Phantasielosen"* (unbekannt)

Symmetrie - Brechung

-U(4)-4FmF ~

Postulat von Peter Higgs und anderen (1964):

- Neues Feld, das selbst im Vakuum nicht Null ist
- Teilchen reagieren mit diesem Feld und werden dadurch abgebremst
 - → Bewegung der Teilchen so, als hätten sie Masse
 - \rightarrow Masse erklärt als Kraftkonstante λ

 $m = \lambda * v_{Higgs}$ (v = Higgs – Feld im Vakuum)

- Nachweis: Anregung des Higgs Feldes (Teilchen)
- Analogie: Bewegung durch Wasser

Nachweis des Higgs - Teilchens

Erzeugung von Higgs – Teilchen

- Benötige Teichen mit hoher Masse ~ Kraftkonstante
 - → mehrstufiger Prozess
 - → kleine Rate

Nachweis durch Zerfälle

- $p p \rightarrow H \rightarrow Z Z \rightarrow e^+e^-e^+e^-$
- $p p \rightarrow H \rightarrow Z Z \rightarrow e^+e^-\mu^+\mu^-$, ...
- $p p \rightarrow H \rightarrow W W \rightarrow Photonen$

 H^0

Konkurrierende Prozesse ohne Higgs

- Viel häufiger
- \rightarrow Finde mehrere Ereignisse mit gleicher Masse
- \rightarrow Berechne Wahrscheinlichkeit, dass Higgs gefunden wurde

Videos - I

LHC & Atlas: Z – Zerfall http://cdsweb.cern.ch/record/1309873 lokal

CMS: Higgs Kandidaten

H-> Photonen lokalhttp://cdsweb.cern.ch/record/1406328H-> 4 Elektron lokalhttp://cdsweb.cern.ch/record/1406325H-> 4 Muonen lokalhttp://cdsweb.cern.ch/record/1406329

Kandidaten: Higgs → Photonen

Kandidat: Higgs → Photonen

Kandidaten: Higgs \rightarrow Z Z \rightarrow e⁺e⁻e⁺e⁻

Kandidat: Higgs \rightarrow Z Z \rightarrow e⁺e⁻ μ ⁺ μ ⁻

Higgs Resultate: 2 Photonen

Berechne M_{vv} und vergleiche mit Erwartung mit/ohne Higgs

• Beoachtet: Ereignisse bei M_{yy}=125 GeV in CMS & ATLAS

Higgs Resultate: 4 Leptons

• Beobachtet: Ereignisse mit M₄₁=125 GeV in CMS & ATLAS

Higgs Resultate

Signal in verschiedenen Zerfällen → Test des Higgs- Modells

- Vorhersage ~ Masse²
- Fehler noch groß→ benötigt viel mehr Daten
- Spin des Higgs = 0 (?)
- Ein Higgs entdeckt (nicht notwendigerweise das einzige)

Kritik des Standard – Modells

Erfolge:

• Wenige Grundprinzipien: Relativität + Quantenphysik

Symmetrie + Symmetriebrechung

- Vorhersage neuer Quanten in der Natur
- Vorhersage aller bisherigen Labor Resultate (+ Higgs ?)
- Erstmalig komplette Beschreibung der Naturgesetze der Physik ?

Probleme:

- 17 Teilchen, 26 Naturkonstanten für 5 % der Energie
- Beitrag zur dunklen Energie ?
- Beitrag zur dunklen Materie ?
- 22 der Konstanten durch Higgs !?
- Keine Erklärungen ?
- Quantenkorrekturen zum Higgs
- Bessere Prinzipien ?
- Supersymmetrie ? Substrukturen ?

Zusammenfassung

Teilchenphysik:

- Elektronen, ..., Quarks und Kräfte
- LHC Beschleuniger und Experimente

Higgs:

- Postuliert Higgs Feld
- Erklärt Masse als Wechselwirkung

Standard – Modell: der einfachste Fall:

- Vorhersagekraft: Antimaterie, top- Quarks, W, Z
- Eigenschaften des Higgs vorausgesagt
- Ein Higgs Masse gefunden bei M = 125 GeV Masse

Offene Fragen:

- Keine Erklärung warum die Natur so ist wie sie ist ?
- Asymmetrie Materie Antimaterie, Gravitation, Dunkle Materie / Energie
- Viele Alternativen zum Standard Modell: Supersymmetrie, Compositeness, Technicolour

