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Emergence of pseudoresonance in high-intensity resonant inelastic x-ray scattering

Sang-Kil Son (���) ,1,*,† Thomas M. Baumann ,2,*,‡ Jacob Pedersen ,3,4 Laura Budewig,1,5 Kai Li,6,7 Hans Ågren ,8

Olle Björneholm ,8 Rebecca Boll ,2 John Bozek ,9 Carl Caleman ,1,8 Sebastian Cardoch ,8 Lucas M. Cornetta ,10

Alberto De Fanis ,2 Emiliano De Santis ,11,8 Simon Dold ,2 Gilles Doumy ,7 Ulrich Eichmann ,12 Xiaochun Gong ,13

Johan Gråsjö ,14,8 Alice E. Green ,15,16,2 Iyas Ismail ,17 Ludvig Kjellsson ,18 Eva Lindroth ,19 Tommaso Mazza ,2

Jacobo Montaño,2 Terry Mullins ,1 Christian Ott ,20 Yevheniy Ovcharenko ,2 Thomas Pfeifer ,20

Maria Novella Piancastelli ,17 Ralph Püttner ,21 Nils Rennhack ,2 Nina Rohringer ,1,5 Cecilia Sánchez-Hanke ,22

Conny Såthe ,18 Philipp Schmidt ,2 Björn Senfftleben ,2 Marc Simon ,17 Nicuşor Tîmneanu ,8 Moto Togawa ,2
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We report resonant inelastic x-ray scattering (RIXS) spectra of neon atoms interacting with intense x-ray
pulses generated using an x-ray free-electron laser (XFEL). We find that an unexpected peak emerges near the
Kα line of Ne, which does not coincide with any physical resonances of neon ions. We perform theoretical
calculations based on a quantum-state-resolved rate-equation approach with x-ray-induced processes including
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possible resonant excitations. Our dynamics simulations demonstrate that a sequence of multiple resonant
photoabsorption events are involved and the interplay of those multiple resonances in combination with the
relatively large spectral bandwidth of XFEL radiation leads to the emergent resonance-like structure at a position
where no resonances exist. Our finding offers critical guidance for future applications of high-intensity RIXS at
XFEL facilities.

DOI: 10.1103/drmh-vmgk

X-ray multiphoton physics [1], which occurs when mat-
ter interacts with an intense x-ray pulse, has been studied
mainly by measuring yields of ion charge states long after
the x-ray pulse is over [2–13]. In addition to electron spectra
[2,4,14–17], photon spectra can provide information on tran-
sient intermediate states formed during the interaction with
the x-ray pulse [7,18–21]. In principle, x-ray emission spectra
can also provide electronic-quantum-state specific informa-
tion on ionization dynamics, which is not directly available via
charge-state measurements. However, this has been limited so
far because of a lack of high-resolution spectrometers at x-ray
free-electron laser (XFEL) facilities.

Resonant inelastic x-ray scattering (RIXS) [22] is a major
method for investigating electronic structure and dynamics,
with applications ranging from basic atomic physics to ma-
terials science. The remarkable properties of XFEL beams,
namely, the extremely high peak intensity and the ultrafast
pulse duration [23,24], have broadened the scope of RIXS
toward time-resolved RIXS [25] and nonlinear RIXS [26] in-
cluding stimulated x-ray Raman scattering [27–30] and x-ray
four-wave mixing [31,32]. Because of the small yield of the
RIXS signal, it is also desirable to utilize higher x-ray fluences
available from XFELs [33–38].

When pursuing high-intensity RIXS, however, multiple
resonances are hit one after the other and then the ion-
ization dynamics are dramatically altered in the course of
x-ray multiphoton absorption. One prominent example is
resonance-enabled (or -enhanced) x-ray multiple ionization
[7,10,39–41]. When multiple resonances are involved in the
RIXS process, the Kramers-Heisenberg formula (to leading
order in perturbation theory, only one photon is absorbed and
only one photon is emitted) is no longer applicable. Instead, it
is inevitable to consider multi-photon-in and multi-photon-out
or, at least, multi-photon-in and one-photon-out processes,
which we refer to as multi-RIXS [42]. In the multi-photon-in
picture, the last excitation step in the multi-RIXS process
happens not from the ground state, but from an excited state
resulting from previous resonant excitations.

Another aspect in RIXS with XFELs is the relatively
large spectral bandwidth of XFEL radiation due to the self-
amplified spontaneous emission (SASE) process [23], which
spectrally covers about 1% of the photon energy. A typical
way to achieve better spectral resolution is to reduce the
bandwidth by using a monochromator [37,43], but this leads
to a considerable reduction of the x-ray fluence by more than
two orders of magnitude [44], thereby sacrificing the potential
advantage, in terms of RIXS signal strength, that using the full
XFEL fluence might offer.

Here, we present a joint experimental and theoretical
study of multi-RIXS spectroscopy of neon atoms with ul-
traintense x-ray pulses generated by the European XFEL
[45]. We demonstrate how the interplay of multiple resonant

photoabsorption events in combination with the relatively
large spectral bandwidth of nonmonochromatized XFEL ra-
diation may lead to the emergence of pseudoresonance
structures, at spectral positions at which no actual resonances
exist. This indicates that XFEL-based x-ray absorption spec-
troscopy in combination with x-ray emission spectroscopy
requires careful interpretation.

We measured multi-RIXS spectra by using the one-
dimensional (1D) imaging soft x-ray spectrometer [46]
installed at the Small Quantum Systems (SQS) scientific in-
strument [47] of the European XFEL. The neon target was
prepared in a gas cell at an estimated pressure of 0.14 bar. The
incoming XFEL photon energy was varied from 852 eV to
881 eV, facilitated by the variable-gap undulators available at
the European XFEL. The XFEL photon energy was calibrated
with an estimated accuracy of ±1.2 eV and the spectral band-
width was estimated to be 1.2% full width at half maximum
(FWHM) using known transitions of neutral Ne atom (see
Sec. A and Fig. S1 in the Supplemental Material [48] for the
detailed calibration procedure). The outgoing x-ray photons
were detected with a spectrometer resolution of around 0.3 eV
in the energy range of 844−860 eV, which covers the Kα

fluorescence energies of neon charge states up to +2.
Figure 1 shows a two-dimensional color map of measured

multi-RIXS spectra of neon. On the one hand, the x-ray emis-
sion energy (fluorescence energy, EF, on the x axis) carries
information on the core-excited states that the fluorescence
comes from. The strong vertical line at EF = 849 eV is as-
signed to the Kα line of Ne+1s−1. The weaker peak around
EF = 855 eV corresponds to the ion-core charge (Qic) of +2,
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FIG. 1. Measured multi-RIXS spectra of neon as a function of
the x-ray emission energy and of the incident XFEL photon energy.
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TABLE I. Transition energies (in eV) involved in the present
work. A longer version, which includes more transitions and also
shows oscillator strengths, can be found in Table S1 in the Supple-
mental Material [48]. The electron configurations (� = s or p) are
given for lower and upper states, and [Ne] indicates the neutral neon.
Q and Qic are the atomic charge and the ion-core charge of the lower
state, respectively.

Trans. Q Qic Lower Upper Etrans

1s-2p +0 +1 2p−13p 1s−13p 848a

+1 +1 2p−1 1s−1 849b

+1 +2 2p−12�−13p 1s−12�−13p 852–856a

+2 +2 2p−12�−1 1s−12�−1 851–856b

+3 +3 2p−12�−2 1s−12�−2 861–862c

1s-3p +0 +0 [Ne] 1s−13p 867d

aPresent calculations.
bReference [49].
cReference [20].
dReferences [50,51].

where Qic is defined by the nuclear charge minus the total
number of electrons in the initially occupied subshells (1s, 2s,
and 2p). For analyzing fluorescence spectra, Qic is more useful
than Q, because EF is mainly dependent on Qic, as shown in
Table I. On the other hand, the incident XFEL photon energy
(excitation energy, Ex, on the y axis) provides information
on how the fluorescing atomic states are generated. For the
standard Kα line, the core-hole state 1s−1 is created by 1s pho-
toionization when Ex is higher than the 1s ionization threshold
(∼870 eV). This is not a resonance feature, thus giving rise
to an extended vertical structure for Ex > 870 eV. At lower
Ex, resonant 1s → np excitation (n � 3) happens, resulting
in core-excited 1s−1np states, which yield slightly lower EF

than 1s−1 [52]. Those resonances may be expected to lead to a
series of peaks at the associated resonance energies. However,
the signals of 1s−1 and 1s−1np form a quasicontinuum starting
at ∼860 eV in Fig. 1 because of the relatively large XFEL
bandwidth (∼10 eV).

Let us examine the fluorescence signal for Qic = +2,
which shows a resonance feature at Ex ∼ 862 eV and EF ∼
855 eV. To this end, we list in Table I 1s-2p and 1s-3p
transition energies relevant to the present work. These are
either taken from the literature [20,49–51] or calculated using
multistate restricted active space second-order perturbation
theory (MS-RASPT2) [53–56] with OPENMOLCAS [57] (see
Sec. B in the Supplemental Material [48]). As is evident from
Table I, the upper states that give rise to x-ray emission near
855 eV have the ion-core configuration 1s−12�−1 (� = s or
p), with or without an np spectator. However, which of the
transitions could potentially explain the resonance seen in
Fig. 1, with respect to the XFEL photon energy? None of
those for Q � +2 that lie close to the resonance peak position
of 861.8 ± 1.2 eV happen to actually coincide with that peak
position: They all are below (�855 eV) or above (867 eV) by
several eV. (The uncertainty in the peak position reflects the
accuracy of the XFEL photon-energy calibration).

An exception is the 1s-2p transition for Q = +3, but
this charge state would have to be converted back into Q =
+2 before x-ray emission takes place. In this scenario, the

short-lived Ne3+1s−12�−2, produced via resonant excitation
of Ne3+2p−12�−2 near 862 eV, would have to recombine
with a free electron to form Ne2+1s−12�−1 to produce x-ray
emission near 855 eV. This pathway is strongly suppressed
because the time scale for recombination is much longer than
the lifetime of core-excited Ne3+ (∼3 fs). Moreover, the flu-
orescence signal from core-excited Ne3+ itself (i.e., before
any potential electron recombination with Ne3+ ) is about
1.7 times weaker than that for Qic = +2 in our measurement.
Therefore, under the experimental conditions underlying the
present work, it is very unlikely that electron recombination
into the L shell of core-excited Ne3+ provided a significant
pathway to Qic = +2 fluorescence.

So far we have been considering one-photon-one-electron-
type transitions, as listed in Table I. Another potential
candidate for resonant photoabsorption near 862 eV is one-
photon double excitation, for instance, 2s−1 → 1s−12p−13�

(� = s or d), which also gives rise to x-ray emission near
855 eV. Our MS-RASPT2 calculations, however, indicate
that the associated oscillator strength is about two orders of
magnitude smaller than that for a typical one-photon 1s-2p
single excitation (see Table S2 in the Supplemental Material
[48]). Therefore, we rule out one-photon double excitation
as a potential explanation of the resonance feature. Hence,
the question still remains: Which transitions can eventually
form the ion-core configuration 1s−12�−1 (Qic = +2), and
how come we observe resonantly enhanced fluorescence from
Qic = +2 at an XFEL photon energy that does not match any
resonances for Q � +2?

To resolve this mystery, we performed dynamics sim-
ulations on neon using XATOM [58], which has been
extended to handle quantum-state-resolved ionization and
resonance dynamics [59,60] via a Monte Carlo on-the-fly rate-
equation approach [8]. State-to-state cross sections and rates
of photoionization, resonant excitation, Auger-Meitner decay,
and spontaneous emission were calculated and included in the
rate-equation matrix. In addition, shakeoff processes [61,62]
were taken into account in an ad hoc manner (see Sec. C
in the Supplemental Material [48]). For transition energies
involved in the standard Kα line, we employed experimental
data [49,51]. All other transition energies were calculated us-
ing XATOM, which were found comparable with MS-RASPT2
results (see Table S1 in the Supplemental Material [48]).

Regarding XFEL pulse parameters in the calculations,
the pulse duration was fixed at 10 fs FWHM. Eleven dif-
ferent fluence points from 1 × 109 photons/µm2 to 1 ×
1012 photons/µm2 were considered and then the theoretical
results were volume-integrated [63,64]. We employed a peak
fluence of 1 × 1011 photons/µm2 , according to the best fit
of the quasicontinuum shape of the measured Kα line (see
Sec. A in the Supplemental Material [48] for details). For each
x-ray parameter set, we calculated more than 200 000 Monte
Carlo trajectories through the space of quantum states of neon
charge states up to +3, including all possible excitations into
(n, �) subshells with n � 7 and � = s, p, and d .

In Fig. 2, we compare our calculated x-ray absorption
spectra with experimental results obtained from Fig. 1. The
experiment plot in Fig. 2(a) shows fluorescence counts af-
ter integrating signals for Qic = +1 (EF < 850 eV) and +2
(850 eV � EF � 858 eV), respectively. After integration, the
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FIG. 2. (a) Experimental and (b) theoretical fluorescence counts for the ion-core charges of +1 and +2. The known resonances are located
at Ex = 851–856 eV (1s → 2p excitation at Qic = +2) and Ex = 867 eV (1s → 3p excitation at Qic = +0).

height of Qic = +2 is almost half of that of Qic = +1. The
peak position of +2 is located at Ex ∼ 862 eV and, as men-
tioned earlier, does not coincide with any of the resonances in
Table I; neither in the range 851–856 eV nor at 867 eV can any
peaks be discerned, within the accuracy of the XFEL photon-
energy calibration. The linewidth is 7.5 eV FWHM, which
is narrower than the estimated XFEL bandwidth (∼10 eV
FWHM). The theory data in Fig. 2(b) are in good agree-
ment with the experimental data: They clearly demonstrate
the existence of a resonance-like feature where none would be
expected (recall that our calculations employed the transition
energies listed in Table I).

To identify the mechanisms giving rise to fluorescence at
Qic = +2, we analyze the Monte Carlo trajectories that pass
through the corresponding core-excited states in the left panel
of Fig. 3. In fact, there are many different ionization and
resonance pathways to reach the ion-core charge of +2, as
sketched in the right panel of Fig. 3. For example, when the
XFEL photon energy is higher than the ionization threshold of

neutral Ne, the dominant mechanism leading to fluorescence
at +2 is one core photoionization (P) and subsequently one
valence photoionization (V), plotted in dark green. At lower
photon energies, one valence photoionization accompanied by
shakeoff (SO) generates Ne2+2p−2, which undergoes resonant
1s → 2p excitation (R2p) and produces fluorescence (F). This
pathway is shown in light blue. However, in the vicinity of
the Qic = +2 peak, the dominant pathway, Rnp−A−R2p−F
(orange), involves two resonant photoabsorption events, 1s →
np and 1s → 2p, and an intermediate Auger-Meitner decay
(A). The last two steps in this pathway, R2p−F, represent res-
onant x-ray emission of Ne+2p−2np (mainly, n = 3), which
gives an elastic contribution at Ex = EF ∼ 855 eV. The first
two steps, Rnp−A, represent the resonant Auger-Meitner pro-
cess of neutral Ne, with resonant 1s → np excitation at Ex =
867 eV or higher.

In our calculations, each resonance is described by
a Gaussian spectral profile [60], resulting from convolv-
ing the resonant-excitation cross section with a Gaussian
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FIG. 3. Ionization and resonance mechanisms leading to fluorescence at the ion-core charge of +2. Left panel: Decomposition of the
resonance-like feature. The dark blue line indicates the total counts for Qic = +2. Contributions to the total are plotted with different colors
(orange, dark green, light blue, and gray). Right panel: Pathways for producing fluorescence up to Ne2+. Individual ion-core charges are aligned
in different columns. The white boxes refer to neutral Ne, the light gray ones to Ne+, and the dark gray ones to Ne2+ . Configurations with 2s−1

are not included for brevity. P: core photoionization; V: valence photoionization; Rnp: resonant 1s → np photoexcitation; A: Auger-Meitner
decay; F: fluorescence; and SO: shakeoff.
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approximating the experimental XFEL spectral distribution
obtained after averaging over many XFEL pulses. The result
of the convolution may be approximated by a pure Gaussian
because the natural linewidth of a core-excited state of neon
(typically ∼0.3 eV) is much narrower than the XFEL band-
width (∼10 eV FWHM).

For the dominant Rnp−A−R2p−F pathway, this has the
following important consequence. The R2p−F process, with a
Gaussian absorption profile centered at Ex ∼ 855 eV, is con-
ditioned on the Rnp−A process, with a Gaussian absorption
profile centered at Ex ∼ 867 eV (for n = 3), taking place first.
Hence, the fluorescence probability for this pathway depends
on the product of the Rnp−A probability and the probability
for the R2p−F process in the states populated via Rnp−A. In
other words, the dependence of the fluorescence yield on the
XFEL photon energy is given by the product of the Gaussian
profiles of the Rnp and R2p transitions.

This is the key to understanding why in Fig. 1 there is
a resonance-like feature at a position where no resonant
transitions exist: The product of two Gaussians is a single
Gaussian, centered at the midpoint between the two original
Gaussians, if their widths are identical (see Sec. D in the
Supplemental Material [48]). Therefore, the individual
Rnp and R2p resonances are not visible, but instead a new
resonance-like structure, which we call a pseudoresonance,
emerges. Given the energies of the Rnp and R2p transitions, the
pseudoresonance would be expected to be centered at around
861 eV or higher. The linewidth of the pseudoresonance
is given by the given Gaussian width times 1/

√
2. Both

position and linewidth coincide with what are observed
experimentally.

Although the overall pseudoresonance structure observed
in experiment is well reproduced by theory in Fig. 2, there are
quantitative discrepancies. The height of the theoretical +2
peak, relative to the +1 counts, is lower than in experiment,
while the peak position is shifted to higher photon energy by
∼1 eV, which, however, we consider negligible to within the
accuracy of the experimental peak position. Also the FWHM
in theory (8.0 eV) is somewhat larger than in experiment
(7.5 eV). These discrepancies are, at least in part, due to the
incomplete characterization of the XFEL beam, which would
affect the relative contributions of individual pathways. We
numerically found that a higher fluence nonlinearly boosts
the whole +2 yields, because they are produced mainly by
two-photon absorption. We also found that a longer pulse
duration produces a higher peak height, because it facilitates
the A process in Rnp−A–R2p–F, similar to the frustrated ab-
sorption phenomenon [2,3]. (Further discussion of the impact
of the XFEL beam parameters may be found in Sec. E in the
Supplemental Material [48].)

Moreover, we considered the possibility that the target gas
contained, in addition to neutral Ne atoms, Ne+ ions gen-
erated in earlier XFEL pulses. The presence of Ne+ would
have contributed to more +2 signal via one resonance only,
at ∼855 eV. We numerically found that, when the ioniza-
tion dynamics start from Ne+, both +1 and +2 signals are
strongly enhanced at lower XFEL photon energy, which does
not match the experimental results in Fig. 2(a) (see Sec. F in
the Supplemental Material [48]).

Since, at the peak fluence applied here, we expect partial
saturation of Rnp (see Sec. A in the Supplemental Mate-

rial [48]), R2p should be even more strongly saturated. This
would cause the effective linewidth for R2p to be larger than
that for Rnp. With such unequal linewidths, the resulting
pseudoresonance is then shifted toward Rnp, depending on the
fluence (see Sec. D in the Supplemental Material [48]). This
could be the reason why both experimental and theoretical
peak positions are a bit higher than the midpoint between R2p

and Rnp. Note, however, that we calibrated the XFEL photon
energy and fluence distribution hand in hand. Therefore, to
convincingly demonstrate the impact of saturation on the ex-
perimental peak position of the pseudoresonance, one would
have to characterize photon energy and fluence distribution
independently from one another. Particularly, one would have
to decrease the uncertainty of the XFEL photon energy to less
than 1 eV.

In addition, there is room for improvement in the theoret-
ical model. Regarding the lasing effect in a dense medium
[27,65], which is not considered in our calculations, ampli-
fied Kα light can induce more valence ionization, thereby
reducing the uplift of the +2 peak because increased valence
ionization enhances the P–V–F and V–SO–R2p−F pathways,
but suppresses the Rnp−A−R2p−F process, where A com-
petes with V in Ne 1s−1np. Furthermore, the ions produced
by linearly polarized x rays are, to some degree, aligned along
the x-ray polarization axis. The resulting anisotropy in the
angular distribution of x-ray emission [66] was neglected in
our calculations, which may be another source of the discrep-
ancy with experiment. Shakeoff processes are not accurately
treated in our model. Moveover, shakeup processes after va-
lence photoionization [67,68] can potentially contribute to
a higher population of Ne+2p−12�−1np without a precur-
sor 1s → np excitation, thus providing more +2 signal at
lower photon energy. We also note the limitations of the rate-
equation approach that we employed. For a better description
of resonant x-ray multiphoton physics, one would have to
solve density-matrix equations of motion [4,69–71], which
capture coherence effects among the pathways leading to the
same fluorescing states. Then, we would also expect to see
an influence of the pulse-to-pulse fluctuations characteristic
of SASE-FEL radiation [72].

Finally, we demonstrate explicitly the role played by
the XFEL spectral bandwidth in the pseudoresonance phe-
nomenon. Theoretical data plotted in Fig. 4 illustrate how the
fluorescence signals for the ion-core charges of +1 and +2 are
affected when decreasing the bandwidth from 1.5% to 0.1%
FWHM. Figure 4(a) demonstrates that the pseudoresonance
peak gradually disappears as the bandwidth is reduced. At the
smallest bandwidth employed in our calculations (0.1%), one
can see a weak 1s → 2p transition located at Ex ∼ 855 eV,
which is dominated by the V–SO–R2p−F pathway. This is not
a pseudoresonance, but fully reflects the resonant absorption
by Ne2+ via the R2p process. Since in a sample of neutral neon
atoms, this resonance can only emerge after Ne2+ produc-
tion via an XFEL-induced double-valence-ionization process,
such as V–SO, the resonance feature at ∼855 eV in Fig. 4(a)
represents a “hidden resonance.” This is an analog of the pre-
viously uncovered hidden resonance in the Qic = +1 channel
at Ex = 849 eV [4]. In the current study, the latter emerges at
spectral bandwidths below 1%, as may be seen in the inset in
Fig. 4(b).
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FIG. 4. Theoretical prediction of the XFEL bandwidth dependence of the fluorescence counts for (a) the ion-core charge of +2 and (b) the
ion-core charge of +1. The bandwidth (bw) is given in FWHM. Note that the range of XFEL photon energies is extended to a lower energy
than shown in Fig. 2 to include the hidden resonance [4] around 849 eV.

In this Letter, we presented a study of multi-RIXS spec-
troscopy of neon with ultraintense x-ray pulses generated by
the European XFEL. We observed an emergent peak that
does not match any known resonance position. Through de-
tailed atomic structure and quantum-state-resolved dynamics
calculations, we identified the mechanism giving rise to this
pseudoresonance. We expect that the pseudoresonance phe-
nomenon uncovered in this work is a general feature, not only
for atomic systems but also for complex materials such as
molecules, clusters, or solids, whenever two or more sequen-
tial resonant photoabsorption events are needed to produce
the signal observed and Gaussian broadening dominates the
spectral profiles of the resonances involved. As a consequence
of the relatively large spectral bandwidth of nonmonochrom-
atized XFEL radiation, resonance-like peaks in XFEL-based
absorption spectra do not always represent actual resonances.
Our results also demonstrate that this pseudoresonance fea-
ture can be controlled by tuning the XFEL bandwidth. Thus,
this work provides critical guidance for interpreting data ob-
tained in high-intensity RIXS experiments in which little or
no monochromatization is employed to fully exploit the full
x-ray fluence provided by XFELs.
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