Relativistic effects in x-ray multiphoton ionization dynamics

Sang-Kil Son

Center for Free-Electron Laser Science, DESY, Hamburg, Germany

13th International Conference on Relativistic Effects in Heavy-Element Chemistry and Physics September 29, 2022

Acknowledgment

CFEL-DESY Theory Division

Ludger Inhester

Robin Santra

Koudai Toyota

Yajiang Hao

Kota Hanasaki

Benoît Richard

Experiment collaboration

Benedikt Rudek at PTB

Daniel Rolles at KSU

Artem Rudenko at KSU

Rebecca Boll at EuXFEL

Sang-Kil Son | Relativistic effects in x-ray multiphoton ionization dynamics | September 29, 2022 | 2 / 19

XFEL: X-ray Free-Electron Laser

- > Ultraintense: ~10¹³ photons
- > Ultrafast: ~femtoseconds

Schneider, Rev. Accl. Sci. Tech. 3, 13 (2010).

Aerial view of the European XFEL

Why ultraintense and ultrafast?

- > Structural determination of biomolecules with x-rays
 → X-ray crystallography
- Growing high-quality crystals is one of major bottlenecks
- Enough signals obtained from even single molecules by using *ultraintense* pulses
- Signals obtained before radiation damage by using ultrafast pulses

Gaffney & Chapman, Science 316, 1444 (2007).

How does matter interact with ultraintense and ultrafast pulses?

Why heavy atom?

SCIENCE

Serial femtosecond crystallography at XFELs: beyond proof-of-principle

Chapman, *Annu. Rev. Biochem.* **88**, 35 (2019). Barends *et al.*, *Nat. Rev. Methods Primers* **2**, 59 (2022).

- > Anomalous scattering of heavy atoms: marker for phasing
- > Severe ionization on heavy atoms \rightarrow novel phasing at high x-ray intensity

Son, Chapman & Santra, *Phys. Rev. Lett.* **107**, 218102 (2011). Galli *et al.*, *IUCrJ* **2**, 627 (2015).

Fundamental x-ray-matter interaction

X-ray multiphoton ionization

Fukuzawa et al., Phys. Rev. Lett. 110, 173005 (2013).

- Sequence of one-photon ionizations and relaxations
- > 5 photons absorbed sequentially, 24 electrons ejected within 30 fs

Challenges for x-ray multiphoton ionization

- > Theoretical challenges
 - tremendously many hole states
 by x-ray multiphoton absorption
 - highly excited system far from the ground state
 - electronic continuum states for ionization
 - complex inner-shell ionization dynamics, especially for heavy atoms
- No standard quantum chemistry code available

Multiphoton absorption after/during decay cascade creates:

- More than 20*M* multiple-hole config.
- More than 2B x-ray-induced processes

XATOM: all about x-ray atomic physics

- Hartree-Fock-Slater method for any given element and configuration
- X-ray-induced atomic processes based on perturbation theory
- Numerical grid method for bound and continuum states
- Solve coupled rate equations to simulate ionization dynamics (Monte Carlo on the fly)

Son, Young & Santra, *Phys. Rev. A* **83**, 033402 (2011). Jurek, Son, Ziaja & Santra, *J. Appl. Cryst.* **49**, 1048 (2016). Download executables: <u>http://www.desy.de/~xraypac</u>

Relativistic effects in x-ray processes

Relativistic E correction within first-order perturbation theory

 $\hat{H} = \hat{H}_0 - \frac{\alpha^2}{8}\hat{p}^4 - \frac{\alpha^2}{4}\frac{dV}{dr}\frac{d}{dr} + \frac{\alpha^2}{2}\frac{1}{r}\frac{dV}{dr}\hat{l}\cdot\hat{s}$ $E_{nlj} = \varepsilon_{nl} + \Delta\varepsilon_{nl}^{\text{mass}} + \Delta\varepsilon_{nl}^{\text{Darwin}} + \Delta\varepsilon_{nlj}^{\text{so}}$

Koudai Toyota

> Open new Coster-Kronig decay channels due to spin-orbit splitting

Rel

 8.03×10^{-3}

 5.63×10^{-2}

 6.76×10^{-2}

 1.32×10^{-2}

 8.70×10^{-2}

 2.01×10^{-2}

 1.08×10^{-2}

 9.28×10^{-2}

Nonrel

 6.33×10^{-3}

 6.07×10^{-2}

 8.19×10^{-2}

 1.04×10^{-2}

 9.38×10^{-2}

Forbidden

 $(=L_2 - X)$

 $(=L_2 - XY)$

Xe *L*-shell single vacancy

Group

 $L_1 - X$

 $L_2 - X$

 $L_2 - XY$

 $L_2 - L_3 X$

 $L_3 - X$

 $L_3 - XY$

 $L_1 - XY$

 $L_1 - L_{23}X$

>	Close	photoio	nization	at lower
	charge	s due t	o energy	/ shifts

Toyota, Son & Santra, Phys. Rev. A 95, 043412 (2017).

Sang-Kil Son | Relativistic effects in x-ray multiphoton ionization dynamics | September 29, 2022 | 10 / 19

X-ray multiphoton ionization of Xe

Xe@5.5 keV

LCLS experiment led by Benedikt Rudek, Artem Rudenko, Daniel Rolles

Rudek *et al.*, *Nat. Commun.* **9**, 4200 (2018).

- Deep inner-shell (L-shell) ionization dynamics of Xe
- REXMI (<u>Resonance-Enabled or -enhanced X</u>-ray <u>Multiple</u> <u>Ionization</u>)

Rudek *et al.*, *Nat. Photon.* **6**, 858 (2012).

> Highlighting the interplay between resonance and relativistic effects

Ultrafast dynamics of iodomethane

LCLS experiment: Artem Rudenko, Daniel Rolles

- σ(I) ~ 50,000 barn >>
 σ(C) ~ 80 barn at 8.3 keV
- severe ionization on iodine
 - → charge imbalance
 - → charge rearrangement
 - → fragmentation
- benchmark for heavy-atomcontaining bio-molecule

XMOLECULE

 Quantum electrons, classical nuclei

Ludger Inhester

- Efficient electronic structure
 calculation: core-hole adapted
 atomic basis functions obtained
 from XATOM
- Monte Carlo on the fly
- No relativistic effects implemented

Hao *et al.*, *Struct. Dyn.* **2**, 041707 (2015). Inhester *et al.*, *Phys. Rev. A* **94**, 023422 (2016). Rudenko *et al.*, *Nature* **546**, 129 (2017).

Comparison with experimental data

- CSD (charge-state distribution) & KER (kinetic energy release): Capturing detailed ionization and fragmentation dynamics
- First quantitative comparison for the behaviors of polyatomic molecules (including heavy element) under XFEL irradiation

Rudenko et al., Nature 546, 129 (2017).

Molecular ionization enhancement

Coulomb explosion of iodopyridine

- σ(C,N,H) < σ(I) at 2.0 keV
- ionization and intramolecular electron arrangement together
- rapid and complete
 Coulomb explosion

XMDYN

 Monte-Carlo Molecular Dynamics (MCMD)

Zoltan Jurek

- Quantum treatment for bound electrons of individual atoms
 → combined with XATOM
- Classical dynamics for ions and free elec.
- Charge transfer model based on the over-the-barrier model
- No first-principles treatment for chemical bonding and molecular Auger
- No relativistic effects implemented

Murphy *et al.*, *Nature Commun.* **5**, 4281 (2014). Jurek *et al.*, *J. Appl. Cryst.* **49**, 1048 (2016).

Comparison with experimental data

iodopyridine@2.0 keV

European XFEL experiment led by Rebecca Boll and Till Jahnke

- Multi-coincident momentum imaging, including H
- > Highest-quality Coulomb explosion imaging with highrepetition rate of EuXFEL
- Quantitative comparison between theory and experiment

Boll et al., Nat. Phys. 18, 423 (2022).

diamonds: instantaneous model

Conclusion

- Enabling tools to investigate x-ray multiphoton physics of atoms, molecules, and complex systems exposed to high-intensity x-ray pulses
- > XFEL—matter interaction: sequential multiphoton multiple ionization
 - Xe: ionization enhanced via resonances and modulated by relativity
 - iodomethane: ultrafast ionization & fragmentation of small molecules
 - iodopyridine: Coulomb explosion imaging of complex systems
- Relativistic effects are important for XFEL-induced dynamics of heavyatom-containing systems

Collaborations

Experiment team (Xe, CH₃I, and C₅H₄NI)

- Kansas State University S. J. Robatjazi, X. Li, D. Rolles, A. Rudenko
- DESY, Hamburg B. Erk, C. Bomme, E. Savelyev, J. Correa, C. Passow, N. Rennhack
- PTB, Braunschweig B. Rudek
- **European XFEL** R. Boll, T. M. Baumann, A. De Fanis, P. Grychtol, M. Ilchen, K. Kubicek, T. Mazza, J. Montano, V. Music, Y. Ovcharenko, D. E. Rivas, P. Schmidt, R. Wagner, P. Ziolkowski, M. Meyer, T. Jahnke
- MPI for Medical Res., Heidelberg L. Foucar, I. Schlichting
- Argonne National Lab. Ch. Bostedt, S. Southworth, C. S. Lehmann, B. Krässig, L. Young

UPMC, Paris T. Marchenko, M. Simon

Tohoku University, Sendai K. Ueda

- LCLS, SLAC National Accelerator Laboratory K. R. Ferguson, M. Bucher, T. Gorkhover, S. Carron, R. Alonso-Mori, J. E. Koglin, G. J. Williams, S. Boutet, P. Walter
- Goethe-Uni., Frankfurt K. Fehre, G. Kastirke, M. S. Schöffler, N. Anders, S. Eckart, R. Dörner, S. Grundmann, A. Hartung, M. Hofmann, C. Janke, M. Kircher, M. Kunitski, N. Melzer, G. Nalin, A. Pier, J. Rist, L. Ph. H. Schmidt, J. Siebert, N. Strenger, D. Trabert, F. Trinter, I. Vera-Ferez, M. Weller

MPI for Nuclear Physics, Heidelberg S. Meister

Theory team

CFEL, DESY M. M. Abdullah (now DESY), K. Hanasaki (now UC Riverside), Y. Hao (now USTB Beijing), R. Jin (now MPIK), J. Schäfer (now Heliatek), K. Toyota (now Amada), O. Vendrell (now Uni. Heidelberg), B. Richard, L. Inhester, Z. Jurek, S.-K. Son, R. Santra

Conclusion with QR codes

(Thank you for your attention!

