A two-step model for studying ionization potential depression in dense plasmas

Sang-Kil Son

Center for Free-Electron Laser Science, DESY, Hamburg, Germany

Average Atom Models for Warm Dense Matter Berkeley, United States (online) / June 28–29, 2021

Center for Free-Electron Laser Science

CFEL is a scientific cooperation of the three organizations: DESY – Max Planck Society – University of Hamburg

Collaboration

CFEL-DESY Theory Division

Robert Thiele

Zoltan Jurek

Beata Ziaja

Malik M. Abdullah

Rui Jin

John Bekx

Robin Santra

Ionization Potential Depression (IPD)

One of the most fundamental physics for atomic processes in a dense plasma

IPD: $\Delta E_i = IP_i^{iso} - IP_i^{pla}$

Warm dense Al plasma (XFEL experiment)

Two-step model: overview

- > Two-step model based on
 - Quantum-mechanical calculation: Hartree-Fock-Slater method
 - muffin-tin approximation
 - pseudocontinuum calculation

First step Average-atom calculation

Second step fixed-configuration calculation

Son, Thiele, Jurek, Ziaja & Santra, Phys. Rev. X 4, 031004 (2014).

Hartree-Fock-Slater / muffin-tin potential

> Solve the Schrödinger equation (SE) $\hat{H} = -\frac{1}{2}\nabla^2 + V(\mathbf{r})$ $\hat{H}\psi(\mathbf{r}) = \varepsilon\psi(\mathbf{r})$

> HFS potential inside the WS radius / muffin-tin flat potential outside

$$V(\mathbf{r}) = \begin{cases} -\frac{Z}{r} + \int_{r' \le r_s} d^3 r' \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} + V_{\mathbf{x}}[\rho(\mathbf{r})] & \text{for } r \le r_s \\ V(r_s) \ (=\varepsilon_s) & \text{for } r > r_s \end{cases}$$

> Slater exchange potential: $V_{\rm x}[\rho({\bf r})] = -\frac{3}{2} \left[\frac{3}{\pi}\rho({\bf r})\right]^{1/3}$

Spherical averaging:

$$\left[-\frac{1}{2}\frac{d^2}{dr^2} + \frac{l(l+1)}{2r^2} + V(r)\right]u_{nl}(r) = \varepsilon_{nl}u_{nl}(r)$$

Continuum-state calculation

> non-uniform radial grid: $N_r=200$, $0 \le l \le 30 \rightarrow 6200$ (*n*,*l*)-eigenstates

- > no boundary condition at all at r_s
- > no distinction b/w bound and continuum states

cf) Gérard Massacrier's talk and *PRR* **3**, 023026 (2021).

> pseudocontinuum approach: widely used in strong-field atomic physics

Finite-temperature calculation

- Grand-canonical ensemble at a finite temperature T
- > Solve SE with $\hat{H} = -\frac{1}{2}\nabla^2 + V\left[\rho(\mathbf{r},T)\right]$
- > Electronic density (bound & continuum) $\rho(\mathbf{r},T) = \sum |\psi_p(\mathbf{r})|^2 \bar{n}_p(\mu,T)$
- > Fermi-Dirac distribution $\bar{n}_p(\mu, T) = \frac{1}{e^{(\varepsilon_p \mu)/T} + 1}^p$
- > Chemical potential $Z \sum_{p} \left(\int_{r \leq r_s} d^3 r |\psi_p(\mathbf{r})|^2 \right) \bar{n}_p(\mu, T) = 0$
- > Assumption: thermalized hot electrons; cold ions
- > Input parameters: element (Z), temperature (T), and ion density (via r_s)

This AA model has been implemented within XATOM

Son *et al.*, *Phys. Rev. A* **83**, 033402 (2011); Jurek *et al.*, *J. Appl. Cryst.* **49**, 1048 (2016); <u>http://www.desy.de/~xraypac</u>

Benchmark calculations of XATOM-AA

> For AI at T=0 eV, avg. Q is +3 and Fermi E is 8.0 eV (EXP: 11.7 eV).

> For Fe at T=0 eV, avg. Q is +8 and Fermi E is 7.9 eV (EXP: 11.1 eV).

> For AI at low temperatures,

	T=10 eV, solid density		$T=5 \text{ eV}, 0.1 \times \text{solid density}$		
Level	Present	Sahoo(2008)	Present (HFS)	Present (LDA)	Johnson(2006)
1s	-1530.1	-1495.0	-1547.3	-1501.8	-1501.8
2s	-102.5	-101.2	-119.6	-108.2	-108.3
2р	-64.9	-63.9	-82.0	-70.9	-71.0
3s		-6.3	-8.6	-7.0	-7.0
Зр			-2.5	-1.4	-1.5
μ	-1.5		-11.1	-10.3	-10.4
avg. Q	+3.01	+2.38	+1.34	+1.45	+1.49

Sahoo et al., Phys. Rev. E 77, 046402 (2008); Johnson et al., JQSRT 99, 327 (2006).

Average-atom results for Al plasma

> Self-consistently determined: orbitals, orbital energies, electron density, muffin-tin flat potential ε_s , and chemical potential μ

ΑΙ	T	$ar{Q}$	$arepsilon_{1s}$	• • •	$arepsilon_s$	μ
solid density	10	+3.01	-1541.14		-11.03	-12.57
Z=13	30	+3.95	-1579.28		-12.46	-58.67
$n_{\rm i}$ =2.7 g/cm ³	40	+4.83	-1606.37		-13.19	-85.66
C	60	+5.67	-1657.70		-14.33	-145.43
	80	+6.87	-1702.23		-15.15	-211.69

ensemble-averaged charge and orbital energies

Ionization potential calculation:

$$IP = \begin{cases} \varepsilon_s - \varepsilon_{1s} & (\mu \le \varepsilon_s) \\ \mu - \varepsilon_{1s} & (\mu > \varepsilon_s) \end{cases}$$

cf) Suxing Hu's talk and *PRL* **119**, 065001 (2017).

Ionization potential with AA only

Problem with ensemble-averaged charges? No such things in experiment!

AA as first step: more than average

	Q	Configuration	Probability	
	+5	$1s^22s^12p^43s^03p^1$	0.0193	
0		$1s^2 2s^2 2p^3 3s^0 3p^1$	0.0187	
ō		$1s^2 2s^2 2p^4 3s^0 3p^0$	0.0174	
õ	+6	$1s^22s^12p^33s^03p^1$	0.0376	
Ľ		$1s^2 2s^1 2p^4 3s^0 3p^0$	0.0349	
		$1s^22s^22p^33s^03p^0$	0.0339	
at		$1s^22s^22p^23s^03p^1$	0.0205	
		$1s^22s^12p^33s^13p^0$	0.0139	
4	+7	$1s^2 2s^1 2p^3 3s^0 3p^0$	0.0681	
		$1s^22s^12p^23s^03p^1$	0.0413	
		$1s^2 2s^2 2p^2 3s^0 3p^0$	0.0371	
		$1s^2 2s^0 2p^3 3s^0 3p^1$	0.0189	
		$1s^2 2s^0 2p^4 3s^0 3p^0$	0.0175	
		$1s^22s^12p^23s^13p^0$	0.0153	
		$1s^2 2s^2 2p^1 3s^0 3p^1$	0.0120	
	+8	$1s^22s^12p^23s^03p^0$	0.0747	
		$1s^2 2s^0 2p^3 3s^0 3p^0$	0.0342	
		$1s^2 2s^1 2p^1 3s^0 3p^1$	0.0241	
		$1s^2 2s^2 2p^1 3s^0 3p^0$	0.0217	
		$1s^2 2s^0 2p^2 3s^0 3p^1$	0.0207	
	+9	$1s^2 2s^1 2p^1 3s^0 3p^0$	0.0437	
		$1s^2 2s^0 2p^2 3s^0 3p^0$	0.0375	
		$1s^2 2s^0 2p^1 3s^0 3p^1$	0.0121	
	+10	$1s^2 2s^0 2p^1 3s^0 3p^0$	0.0219	
		$1s^2 2s^1 2p^0 3s^0 3p^0$	0.0106	

From the grand-canonical ensemble, probability distributions calculated for given bound-state configurations

$$P_{[n_b]} = \sum_{\{n_p\} = \{n_b; n_{p'}\}} P_{\{n_p\}}$$
$$= \prod_{b}^{\text{bound}} \frac{e^{-(\varepsilon_b - \mu)n_b/T}}{1 + e^{-(\varepsilon_b - \mu)/T}}$$

Pei & Chang, JQSRT 64, 15 (2000).

AA as first step: charge-state distribution

AA as first step: free-electron density

Second step: fixed-config. calculation

Connection between first step and second step

- picking up one bound-electron configuration: most probable one
- constructing a free-electron density

Performing a new SCF calculation with the fixed free-electron density

$$\hat{H} = -\frac{1}{2}\nabla^2 + V\left[\rho(\mathbf{r};T)\right]$$

2nd step: K-shell ionization & transition E

	Q	Configuration	Probability	E_K	$E_{K\alpha}$
> U <	+5	$\frac{1s^22s^12p^43s^03p^1}{1s^22s^22p^33s^03p^1}\\1s^22s^22p^43s^03p^0$	0.0193 0.0187 0.0174	1618.3 1623.1 1578.7	1497.7 1500.3 1486.7
1 ar / -01	+6	$\frac{1s^22s^12p^33s^03p^1}{1s^22s^12p^43s^03p^0}\\ \frac{1s^22s^22p^33s^03p^0}{1s^22s^22p^23s^03p^1}\\ \frac{1s^22s^22p^23s^03p^1}{1s^22s^12p^33s^13p^0}$	0.0376 0.0349 0.0339 0.0205 0.0139	1658.1 1618.3 1623.1 1663.5 1656.0	1511.6 1497.7 1500.3 1514.5 1511.3
t	+7	$\frac{1s^22s^12p^33s^03p^0}{1s^22s^12p^23s^03p^1}\\\frac{1s^22s^22p^23s^03p^1}{1s^22s^02p^33s^03p^1}\\\frac{1s^22s^02p^33s^03p^1}{1s^22s^12p^23s^13p^0}\\\frac{1s^22s^12p^23s^13p^0}{1s^22s^22p^13s^03p^1}$	0.0681 0.0413 0.0371 0.0189 0.0175 0.0153 0.0120	1666.3 1705.4 1671.9 1699.3 1660.9 1705.4 1711.7	1512.8 1527.8 1515.8 1524.5 1509.9 1527.9 1531.2
	+8	$\frac{1s^{2}2s^{2}p^{2}3s^{0}3p^{0}}{1s^{2}2s^{0}2p^{3}3s^{0}3p^{0}}\\\frac{1s^{2}2s^{0}2p^{3}3s^{0}3p^{0}}{1s^{2}2s^{2}2p^{1}3s^{0}3p^{1}}\\\frac{1s^{2}2s^{2}2p^{1}3s^{0}3p^{0}}{1s^{2}2s^{0}2p^{2}3s^{0}3p^{1}}$	0.0747 0.0342 0.0241 0.0217 0.0207	1718.7 1712.3 1758.5 1725.1 1751.6	1530.0 1526.7 1546.5 1533.4 1542.9
	+9	$\frac{1s^22s^12p^13s^03p^0}{1s^22s^02p^23s^03p^0}\\ \frac{1s^22s^02p^23s^03p^0}{1s^22s^02p^13s^03p^1}$	0.0437 0.0375 0.0121	1775.1 1768.0 1808.2	1549.6 1545.9 1564.1
	+10	$1s^22s^02p^13s^03p^0$ $1s^22s^12p^03s^03p^0$	0.0219 0.0106	1827.4 1835.2	1568.1 1572.1

- SCF calculation for each config.
- individual configurations:
 different IPs and Kα lines
- ground-state configuration ≠
 the most probable configuration
- M-shell electrons do not alter the Kα lines that much
 → KⁿL^m labeling makes sense

cf) Iglesias, *HEDP* **12**, 5 (2014).

Т	$ar{Q}$	$Q_{ m mp}$	$C_{ m mp}$
10	+3.01	+3	$1s^2 2s^2 2p^6$
30	+3.95	+4	$1s^2 2s^2 2p^5$
40	+4.83	+5	$1s^2 2s^2 2p^4$
60	+5.67	+6	$1s^2 2s^2 2p^3$
80	+6.87	+7	$1s^22s^12p^3$

Ionization potential with two-step model

Son, Thiele, Jurek, Ziaja & Santra, Phys. Rev. X 4, 031004 (2014).

How to define atomic charges in AA

Sang-Kil Son | Two-step model for studying IPD in dense plasmas | June 28, 2021 | 18 / 17

SCIENCE

Ionization potential with AA (new charges)

AA is applicable to predict IP values for different atomic charges

XCRYSTAL: finite-temperature HFS with the Bloch-wave approach within a periodic atomic lattice

- hybrid basis: localized core orbitals + plane wave
- > no pseudopotential required

Charge State

Bekx et al., Phys. Rev. Res. 2, 033061 (2020).

Time-resolved IP:

Comparison for time-integrated IP 1800 1900 (ď 1850 +9experimental data +8 1750 two-step HFS +7 lonization potential (eV) 1200 1200 1200 1200 1200 unscreened IP +6 +81800 +5 present work +4 1750 Energy (eV) I 1700 AI IX 1650 AI VIII +5 AI VII 1600 +4A VI 1500 1550 A^tv AHv 1450 L 1500 20 40 60 80 100 120 140 160 3 4 5 6 7 8 Abundance (arb. units) Time (fs) Charge state

Jin et al., Phys. Rev. E 103, 023203 (2021).

Beyond average picture: XMDYN + XPOT

- > XMDYN: guantum for bound electrons, classical for free electrons and ions \rightarrow Monte-Carlo Molecular Dynamics (MCMD)
- **XPOT**: enables quantum calculation with a plasma environment at any given time $t \rightarrow NLTE$ approach for IPD

Al interacting with 80-fs XFEL pulse

science

Conclusion

- > Two-step model: first-principles calculation combining average-atom model and fixed-configuration model
- > Accurately and efficiently describes atomic properties within plasmas
- Focused on IPD effects of AI plasmas: good agreement with XFEL exp.
- New implementation for AA model within XATOM: simple and robust
- > AA model: good description for IP & population analysis (e.g. CSD)
- > Beyond AA model: finite-temperature crystalline calculation and nonthermal equilibrium simulation for studying transient IPD

hank you for your attention!

Sang-Kil Son | Two-step model for studying IPD in dense plasmas | June 28, 2021 | 22 / 17

