Ultrafast ionization and fragmentation dynamics of molecules at high x-ray intensity

Sang-Kil Son

Center for Free-Electron Laser Science, DESY, Hamburg, Germany

Satellite Meeting of European XFEL & DESY Photon Science Users' Meeting *Light-Matter Interaction: Recent Advances in Theory* CFEL, Hamburg, Germany, January 25, 2018

Center for Free-Electron Laser Science

CFEL is a scientific cooperation of the three organizations: DESY – Max Planck Society – University of Hamburg

XFEL: X-ray free-electron laser

Interacting with *ultraintense* x-ray pulses

Young et al., Nature 466, 56 (2010).

> First LCLS experiment: fundamental atomic physics in XFEL

Lots of x-ray photons: repeated K-shell ionization (P) followed by Auger (A)

X-ray multiphoton ionization dynamics

- Sequential multiphoton multiple ionization at high x-ray intensity
- Complicated ionization dynamics
- Highly excited electronic structure
- No standard code available

XATOM

- Efficient electronic structure calculation for every single electronic configuration
- Calculate all cross sections and rates
- Solve rate eqs for ionization dynamics

Son, Young & Santra, *Phys. Rev. A* **83**, 033402 (2011). Jurek, Son, Ziaja & Santra, *J. Appl. Cryst.* **49**, 1048 (2016).

Quantitative comparison of ion yields

Rudek *et al.*, *Nature Photon.* **6**, 858 (2012).

- Xe⁶⁺
 Xe¹⁰⁺
 Xe¹⁵⁺
 Xe²⁰⁺
 Xe²⁵⁺
 Xe²⁶⁺
 Xe²⁸⁺
- Nonlinear behavior
- Highly charged ions generated
- Good agreement with theory

Challenges for molecular dynamics at XFEL

XMOLECULE: Numerical details

> Hartree-Fock-Slater method

Bound states: LCAO-MO with core-hole-adapted numerical atomic orbitals calculated by XATOM

Yajiang Hao Now at USTB (Beijing)

Now at Tohoku Univ.

Ludger Inhester

- Continuum states: approximated by atomic continuum calculated by XATOM
- Cross sections, rates, and gradients calculated on the fly for given electronic and nuclear configuration

Hao *et al.*, *Struct. Dyn.* **2**, 041707 (2015). Inhester *et al.*, *Phys. Rev. A* **94**, 023422 (2016).

Ionization steps in a water molecule

- *N* of electronic configurations for $H_2O \rightarrow 3^5 = 243$
- *N* of electronic configurations for $CH_3I \rightarrow 2 \times 10^{14}$

Iodomethane in *ultraintense* x-ray pulses

 New experimental setup: LCLS CXI using nano-focus
 → new realm of intensity approaching ~2×10¹⁹ W/cm²

Daniel Rolles at KSU

Artem Rudenko at KSU

Benjamin Erk at DESY

Measurement of ion ToF and hit position

Rudenko et al., Nature 546, 129 (2017).

Selective ionization on heavy atom

Capturing ultrafast explosion dynamics

Rudenko et al., Nature 546, 129 (2017).

Sang-Kil Son | Ultrafast explosion dynamics of molecules at high x-ray intensity | January 25, 2018 | 10 / 18

Comparison between theory & experiment

- > CSD (charge-state distribution) and KER (Kinetic energy releases): sensitive to detailed ionization and fragmentation dynamics
- Capturing the essence of ionization and fragmentation dynamics of molecules at high x-ray intensity

Rudenko et al., Nature 546, 129 (2017).

Sang-Kil Son | Ultrafast explosion dynamics of molecules at high x-ray intensity | January 25, 2018 | 11 / 18

Ionization enhanced by charge rearrangement

Back to the atom: resonance and relativity

XATOM extended to resonance & relativity

Relativistic energy correction within first-order perturbation theory

$$\hat{H} = \hat{H}_0 - \frac{\alpha^2}{8}\hat{p}^4 - \frac{\alpha^2}{4}\frac{dV}{dr}\frac{d}{dr} + \frac{\alpha^2}{2}\frac{1}{r}\frac{dV}{dr}\hat{l}\cdot\hat{s}$$

- open new Coster-Kronig decay channels
- close photoionization channels earlier
- the closer to photon energy, the higher cross sections
- > Resonant photoexcitation cross section (REXMI)

$$\sigma_{\mathrm{R}}(i, f, \omega_{\mathrm{in}}) = \frac{4}{3} \pi^2 \alpha \omega_{\mathrm{in}} l_> N_i N_f^H \left\{ \begin{array}{ccc} l_i & s & j_i \\ j_f & 1 & l_f \end{array} \right\}^2 |\langle u_{n_f l_f}(r) | r | u_{n_i l_i}(r) \rangle|^2 \\ \times \delta(E - E_{n_f l_f j_m} + E_{n_i l_i j_i})$$

- > Numerical complexity for Xe with n_{max} =30 and I_{max} =7
 - \rightarrow 10⁶⁸ electronic configurations to be considered!

Toyota, Son & Santra, Phys. Rev. A 95, 043412 (2017).

XATOM development

Koudai Toyota

Comparison between theory & experiment

~40× higher fluence than the previous experiment

- REXMI shows characteristic three peak structure
- Importance of interplay between resonance and relativistic effects

Rudek, Toyota, et al., (in preparation).

Predictive power of the ionization degree

Towards complex systems: XMDYN

Zoltan Jurek

SCIENCE

Malik M. Abdullah

- > XMDYN: X-ray molecular dynamics
 - Classical dynamics for ions and free electrons
 - Quantum treatment for bound electrons
 → combined with XATOM
- First validation with LCLS (C₆₀) and SACLA (Ar/Xe clusters) experiments
 - Murphy *et al.*, *Nature Commun.* 5, 4281 (2014).
 - Tachibana *et al.*, *Sci. Rep.* **5**, 10977 (2015).
- Start-to-end simulation for singleparticle imaging at European XFEL
 - Yoon et al., Sci. Rep. 6, 24791 (2016).
 - Fortmann-Grote *et al.*, *IUCrJ* **4**, 560 (2017).

Conclusion

- Enabling tools to investigate x-ray multiphoton physics of atoms and molecules exposed to intense XFEL pulses
- Nonlinear behavior of atomic and molecular responses to intense x-rays
- Molecular ionization enhancement (CREXIM) for CH₃I: First quantitative comparison for molecules under XFEL irradiation
- Interplay of resonance and relativistic effects for Xe: First quantitative comparison for REXMI in atoms under XFEL irradiation
- New phenomena to be taken into account for future XFEL applications

Collaboration of CH₃I and Xe projects

Experiment team

- Kansas State University S. J. Robatjazi, X. Li, D. Rolles, A. Rudenko
- DESY, Hamburg R. Boll, C. Bomme, B. Erk, E. Savelyev
- PTB, Braunschweig B. Rudek
- MPI for Medical Research, Heidelberg L. Foucar
- Argonne National Lab. Ch. Bostedt, M. Bucher, B. Kraessig, C. S. Lehmann,
 - S. Southworth, L. Young
- UPMC, Paris T. Marchenko, M. Simon
- Tohoku University, Sendai K. Ueda
- LCLS, SLAC National Accelerator Laboratory R. Alonso-Mori, S. Boutet, S. Carron, K. R. Ferguson, T. Gorkhover, J. E. Koglin, G. Williams

Theory team

CFEL-DESY Theory Division K. Hanasaki, Y. Hao, L. Inhester, Z. Jurek, S.-K. Son, K. Toyota, O. Vendrell, R. Santra

XATOM and XMDYN are available

