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Overview

= Introduction to XFEL—matter interaction
-~ XATOM and x-ray multiphoton multiple ionization dynamics of Xe
= XMOLECULE and x-ray-induced ultrafast explosion dynamics of CHal

> Summary
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XFEL: X-ray free-electron laser

> Ultraintense: ~1013 photons 10
] European
> Ultrafast: ~femtoseconds oo e y
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Schneider, Rev. Accl. Sci. Tech. 3, 13 (2010). Ackermann et al., Nature Photon. 1, 336 (2007).
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Why ultraintense and ultrafast?

> Structural determination of
biomolecules with x-rays i
-> X-ray crystallography P

Pulse monitor

> Growing high-quality crystals
is one of major bottlenecks

> Enough signals obtained from
even single molecules by
using ultraintense pulses

Diffraction pattern
recorded on a
pixellated detector

> Signals obtained before
radiation damage by using

ultrafast pulses Gaffney & Chapman, Science 316, 1444 (2007).

How does matter interact with ultraintense and ultrafast pulses?
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What high x-ray intensity means?

> Fluence (photons/unit area) to saturate one-photon absorption

L —

) " Carbon @ 8 keV
g Gabs = 0.084 kbarns
§ 10 ! ) 2
% o | prob. = Gabs x F~ 1
3| '
S 10°F Feat = 1.2x101 ph/um?

10_‘:011' '1'0'12' ' '1'0'13' ' '1'0'14' ' '1'0'15' ' '1'0'16' 107 Son, Young & Santra,

Fluence (photons/um?) Phys. Rev. A 83, 033402 (2011).

> High x-ray intensity beyond one-photon absorption saturation

= synchrotron: at most one photon absorbed = linear phenomena
= XFEL: at least one photon absorbed = nonlinear phenomena
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Fundamental x-ray—matter interaction

single X-ray

W foe oo

Photoionization: C — C** + e- Auger decay: C** — C* + e-

synchrotron: one-photon absorption = PA = C2*
XFEL: many-photon absorption > PAPAPA - C6+
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Sequential multiphoton multiple ionization
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Young et al., Nature 466, 56 (2010).

> First LCLS experiment: fundamental atomic physics in XFEL
> Lots of x-ray photons: repeated K-shell ionization (P) followed by Auger (A)
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Challenges for x-ray multiphoton ionization

> No standard quantum chemistry code available

> Theoretical challenges

= tremendously many hole states by x-ray multiphoton absorption

= highly excited system far from the ground state

= electronic continuum states for ionization

= complex inner-shell ionization dynamics, especially for heavy atoms
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> XATOM: describes
dynamical behaviors of @
atoms interacting with

XFEL pulses p)
> X-ray-induced atomic s
processes for any given
element and configuration o, Y I

> Sequential ionization
model has been tested by
a series of atomic XFEL

experiments: Ne, Ar, K,
Xe, ... Son, Young & Santra, Phys. Rev. A 83, 033402 (2011).
Jurek, Son, Ziaja & Santra, J. Appl. Cryst. 49, 1048 (20106).
Download executables: http://www.desy.de/~xraypac
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http://www.desy.de/~xraypac

XATOM: Electronic structure

> Efficient electronic structure calculation required

> Hartree-Fock-Slater method

v -2 [ o) {3,0(1’)}1/3] b(r) = eu(r)

> Bound states = generalized pseudospectral method on nonuniform grid

> Continuum states: calculated with the same potential as used in bound
states = 4th-order Runge-Kutta method on uniform grid

Son, Young & Santra, Phys. Rev. A 83, 033402 (2011).
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XATOM: Cross sections and rates

> Calculate all cross sections and rates of x-ray-induced processes
based on the perturbation theory

FF] — 27‘(‘5 (EF — E]) |<F|ﬁmt|l>

> Photoionization cross section

| 2

-t ()l (r) |

> Fluorescence rate

4 NEN.
Te(i,j) = (I, — ;)22 —L . = - _—
F(%,7) 5 ( i) 0,42 2,1 | (U, (7) |71, ()

’ 2

> Auger rate - L+l 1
NHN., T d
T YL YL DL DS+ D)IMLs(. 4 i)
! L=|l;—1./|S=0 1
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XATOM: Coupled rate equations

> Electronic structure: calculated for every single configuration
> Cross sections and rates: calculated for every single configuration

> Solve coupled rate equations to simulate ionization dynamics

all config.
d
apj(t) — Z [FI/_>]P[/ (t) — FI—>I’PI(t)]
I'#£1

> Tremendously large coupled rate equations (~millions configurations)
-> solved by Monte Carlo approach

Son & Santra, Phys. Rev. A
85, 063415 (2012).
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Complex inner-shell decay cascade

o—O 1s K
Multiphoton absorption after/during decay cascade

= More than 20 million multiple-hole configurations
= More than 2 billion x-ray-induced processes
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X-ray multiphoton ionization dynamics
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Son & Santra, Phys. Rev. A 85, 063415 (2012).
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X-ray multiphoton ionization dynamics
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Son & Santra, Phys. Rev. A 85, 063415 (2012).
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X-ray multiphoton ionization dynamics

Xe@4.5 keV

Charge state

Photoionization

Auger —

Fluorescence
|

l l
100 200 300 400
Time (fs)
Son & Santra, Phys. Rev. A 85, 063415 (2012).
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lonization mechanism described by theory

= To reach Xe?4*: 5 photons absorbed, 24 electrons ejected

14 T T T T
= Photoionization 41 fs
12 - s Auger/Coster-Kronig =
Fluorescence 1.3 fs
10 B — —
o 3.6 fs
< 8r —
> 5.3fs |
5 6 1.7 fs 4 ' |
c ! !
L
4 - -
2 -
Xe@5.5 keV
O ———{ 1 1 1
0 5 10 15 20 25

Charge states
Fukuzawa et al., Phys. Rev. Lett. 110, 173005 (2013).
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Charge-state distributions of Xe

Xe@4.5 keV
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Son & Santra, Phys. Rev. A 85, 063415 (2012).
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Comparison with LCLS experiment

@ 1.5 keV (experiment) —e— 1.5 keV (theory)
O 2 keV (experiment) —e— 2 keV (theory)

lon yield (a.u.)

36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2
Xe charge state
LCLS experiment
= Xe M-shell ionization

= 2 keV: excellent agreement between
theory and experiment
= 1.5 keV: further ionization via resonance

Daniel Rolles Artem Rudenko Benedikt Rudek
at KSU at KSU 2t PTB Rudek et al., Nature Photon. 6, 858 (2012).
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Ultra-efficient ionization by XFEL

> REXMI: Resonance-Enabled X-ray Multiple lonization

> Broad bandwidth (~15 eV): resonances for many charge states
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Rudek et al., Nature Photon. 6, 858 (2012).
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Comparison with SACLA experiment

10’ SACLA experiment
. .

2 1 geo8e, Xe@55 keV
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= ¢ *e%,

o 3 ® ,

o 10 ‘n. e W

ot o, ¢ Kiyoshi Ueda

< 10" .. * at Tohoku Univ.
= 107 ® Experiment . Hironobu Fukuzawa
S ¢ Theory Koji Motomura

e

|
(@)}

e
)

U LA B DL LA B B B BN BNLAN BELE B L Fukuzawa et al.,
2 4 6 8 10 12 14 16 18 20 22 24 26 Phys. Rev. Lett.

Charge state 110, 173005 (2013).

= Xe L-shell ionization: good agreement
= underestimation in theory: lack of relativity, shake-off, and resonance
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Improving theory

> One resonance channel: Ne@1050 eV

= Xiang et al., Phys. Rev. A 86, 061401 (2012).

> Multiple resonance channels: Xe@1.5 keV

* Ho et al., Phys. Rev. Lett. 113, 253001 (2014).
= Ho, Kanter, and Young, Phys. Rev. A 92, 063430 (2015).

> What about both resonance effect and relativistic effects?

= resonance effect: Xe M-shell ionization at 1.5 keV
= relativistic effects: Xe L-shell ionization at 5.5 keV

= interplay between resonant excitations and relativistic corrections
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Inclusion of relativistic effects

> Relativistic energy correction within first-order perturbation theory

A A a? , a?dVd  a?1dV. Toyota, Son & Santra,

H=Hy— —p" ~ + -2
0T RP 4 dr dr 2 rdr Phys. Rev. A 95,
Darwi 043412 (2017).
Entj = en1 + AP 4+ AeDAWIn 4 Ao (2017)
> Open new Coster-Kronig decay > Close photoionization earlier due
channels due to spin-orbit splitting to relativistic energy corrections
45 ! ! ! ! !
group non-rel (a.u.) rel McGuire [37] ‘ | | | |
Mo-X 2.20 x 1074 1.60 x 1074
1.61 x 1074 -
Ms-X 1.75 x 10~* 1.37 x 104 E
My-XY 1.97 x 102 92.97 x 1072 8
2.09 x 1072 &
Ms-XY 2.06 x 1072 2.13 x 1072 5
Mo-M3X forbidden 5.38 x 1073 5.50 x 1073 S
Mo-Mys X 1.54 x 1071 1.50 x 107!
2.05 x 1071 :
M3-My5X 1.88 x 107! 1.80 x 107* 20 ! | | | |
0 5 10 15 20 25 30
Charge state

> Closer to photon energy due to energy corrections: higher cross sections
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Relativistic heavy atom

> Number of all possible electronic configurations

non-relativistic

Xe: 152 252 2pb 3s2 3pb 3d10 452 4pb 4d10 5s2 5p6
M-shell: 1,120,581
L-shell: 23,532,201

relativistic
Xe: 1542 25,2 2p+,2 2p+,* 35,2 3p+,2 3P4 3d:,4 3d,6
4s1,2 4py;2 4Pyt 4dy* 4d5.° 51,2 Spy;2 Spyt
M-shell: 111,628,125
[-shell: 5,023,265,625
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Binding energy (eV)

Inclusion of resonant excitations

> Resonant photoexcitation cross section

4

2
. lz S .z'
or (i, f,win) = §7r2awinl>NiNf{ i1 gf } [(n 1, (7) |7 |Un 1, (r))|?

Xé(E - Enflfjm + Eniliji)

8s-20s
——
— — - I= =

o~ 7spdf
"' 6s,p,d,f

- = > Number of possible electron

5s,p,d,f

. configurations explodes
1 “eges depending on Nmax (=15~20)
: and Imax (=6~7)
Toyota, Son & Santra,
' Phys. Rev. A 95,
043412 (2017).
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en e state
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Interplay between resonance and relativity

> Xe@1.5 eV (M-shell) > Xe@5.5 keV (L-shell)

= strong REXMI expected = strong relativistic effect expected
= no relativistic effect expected = no REXMI expected
10° T T T T T T T3 10° F T T T T -
' ] AL N
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2L 3
ke ] =° ]
] (]
> 107 F 1 20k ]
o 3 o 4
L 4 10 F —
10 | —®@— non-relativistic, no resonances = [ —@— non-relativistic, no resonances
F - non-relativistic, resonances 10 E —#— non-relativistic, resonances
[ —B— relativistic, no resonances | —HB— relativistic, no resonances
104 1 1 1 1 1 1 108 1 1 1 1
0 5 10 15 20 25 30 35 0 5 10 15 20 25
10° g T T T T T T T 10° T T T T T
1 107"
100 F L
e} e} 10-2 :_
2 102 | ......... ®e 2 102
c C
kel ° S .
- 107 F
102 | —®@— non-relativistic, no resonances .. | —®&— non-relativistic, no resonances
FE —©— relativistic, resonances 10 F —©— relativistic, resonances
. L e ?axperimentI | | | ’ ] | e expelriment | | |
10° 10°
0 5 10 15 20 25 30 35 0 5 10 15 20 25
Charge state Charge state

Toyota, Son & Santra, Phys. Rev. A 95, 043412 (2017).
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Xe atom at higher x-ray intensity

> New experimental setup: LCLS
LCLS CXI using nano-focus experiment
- new realm of intensity approaching ~1020 \W/cm2

> Various photon energies: 5.5 keV ~ 8.3 keV Benedikt Rudek

at PTB
= Trend of REXMI examined
= Peak structure in the REXMI region
= L-shell initiated ionization = large relativistic

effects XCALIB development

g

\::ir.!l -

Koudai Toyota Zoltan Jurek
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> Improved experimental analysis and
improved calibration procedure with Ar data
XCALIB: developed by Zoltan Jurek and

Koudai Toyota




New data for Xe at 5.5 keV

Cross section / Mb

107

10

10° |

- -— - Nonrelativictic, resonances
Relativictic, no resonances
Relativictic, resonances
—s=— Experiment

5 10 15 20 25

45

Preliminary results

3 Rudek, Toyota, et al., (in preparation).
>10? =

S '

2 \ > ~40x higher fluence than before
© ]

E’ - - - Nonrelativictic, no resonances \\ !

> REXMI region: accurate
electronic structure of bound and
Rydberg states

> Only relativistic, resonance
calculation reproduces well the
peak structure of experiment.

> Importance of interplay between
resonance and relativistic effects
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Challenges for molecular dynamics at XFEL

> No ab initio theoretical tools available for high x-ray intensity
= coupled ionization and nuclear dynamics in the same time scales

= formidable task: e.g. CHsl ~ 200 trillion rate egs at single geometry
= highly excited molecular electronic structure

XMOLECULE

= quantum electrons, classical nuclei

= efficient electronic structure calculation: core-hole
adapted basis functions calculated by XATOM

= Monte Carlo on the fly

Hao, Inhester, Hanasaki, Son & Santra, Struc. Dyn. 2, 041707 (2015).
Inhester, Hanasaki, Hao, Son & Santra, PRA 94, 023422 (2016).
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XMOLECULE: Electronic structure

> Efficient electronic structure calculation required
> Hartree-Fock-Slater method
> Bound states: LCAO-MO

Gi®) = 3 Cid(r)

= Core-hole-adapted NAO :

= Matrix eigenvalue problem of Npasis*Nbasis
HC = SCE N*:1s12s22p3 N2+ 1502s522p3

H,, = / d*r ¢, (r) [—%VQ +Veff(r>] G (r),  Suw = / d*r ¢, (), (r)

> Cross sections and rates calculated on the fly for given elec. structure

> Gradients calculated on the fly for given electronic structure
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XMOLECULE: Core-hole-adapted NAOs

| 12 T 12 T
10° 2 2 2
(@) | ugg(r) 7 1.0 (b) [ upg(r) | 10 | (c) [ ugp(r) |
\
| \
107 | 0.8 ‘ 08 |
10—8 : 0-6 :.' 0-6 I~
[ 04 i 04
1072 F  N:1s®2s? 2p3 N ‘ i
I N1+:1s12522p3 ------- - 0.2 b« f A 0.2 - N
I i N2*: 150 252 2p3 - 3 RN ; > -
' 0.0 EERALEFA T 0.0 IRt R
0 1 1 0 1
r(A) r(A) r(A)

> NAO: numerical atomic orbitals calculated by XATOM
$ilr) = 3 Cuidu(r) Suim(r) = 22
7

> Molecular core-hole states with corresponding atomic core-hole states

> Good treatment for molecular core-hole states with a minimal basis set
Hao, Inhester, Hanasaki, Son & Santra, Struc. Dyn. 2, 041707 (2015).
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Molecular cross sections and rates

> Molecular continuum approximated by atomic continuum: . — ¢a.

> Photoionization cross section

on atom A

Y Cuilduldldac)

"

op o< |(Wi|d|ve)|F =Y

A

> Fluorescence rate g o |(¢iyd|¢j)\2 evaluated by multicenter integration

> Auger rate: one-center approximation
1

(35'lie) = /d37“1/d37“2 ¥; (T1)¢j'(rz)m¢i(r1)¢a(r2)
on atom A
(75'lie) =~ Z C;Cuir Cxi{pv|Ae) intra-atomic process included

Vs A
Inhester, Hanasaki, Hao, Son & Santra, Phys. Rev. A 94, 023422 (2016).
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Various multiple-hole states of CO
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Son & Santra, Struc. Dyn.
2, 041707 (2015).
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All possible multiple-hole configurations (N=2187)
formed by x-ray multiphoton ionization (at single molecular geometry)
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Molecules at low x-ray intensity

1 04-E B Krypton Charge |4
@ 3 I CH_SeH Charge | ]
= ] I Heavy lon Charge |
>
> 10’4
o ]
E
g 4
o 10%-
2 3
o~ ]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Charge

Total charge: CH3SeH vs. Kr
Erk et al., PRL 110, 053003 (2013).

CHzal: charge rearrangement as a
function of bond distance

Erk et al., Science 345, 288 (2014).

Total charge of molecule is similar to atomic charge.
Heavy atom charges are reduced after charge rearrangement.

4
Still valid for high x-ray intensity?
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lodomethane at higher x-ray intensity

> New experimental setup: LCLS
LCLS CXI using nano-focus experiment
- new realm of intensity
approaching ~1020 WW/cm?

Daniel Rolles  Artem Rudenko

> Selective ionization on heavy atom at KSU at KSU

CHsl @ 8.3 keV \\\‘ﬂ

> X-ray multiphoton ionization occurs at high intensity

a(1)~50 kbarn
o(C)~80 barn
o(H)~8 mbarn

> Charge imbalance induces charge rearrangement

> Coulomb explosion after/during ionization & charge rearrangement
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Coulomb explosion of iodomethane

CH;sl
(t=0fs)




Coulomb explosion of iodomethane

CHasl 34+
(t = 45.12 fs)
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What happened?

(%)
CHsl 54+

> Unprecedentedly intense x-ray: approaching 1020 W/crﬁ‘%
> Dramatic change: >50 electrons ejected after >20 x-rays ébsorbed

> Ultrafast dynamics: femtosecond time scale @
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Comparison of CSD and KER

CSD of | and CHsl

B lodine fragment charge (experiment)

KER of | fragment
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& 10733 3 i{{
kel E 20 - -
] 1 7. ;iiig
0- ‘to!z! -
104 T T T T T T T UL
5 10 15 20 25 30 35 40 45
Charge state Charge state

> Capturing ultrafast ionization and fragmentation dynamics
= CSD (charge-state distribution): direct outcome of ionization dynamics

= KER (kinetic energy release): molecular information when it breaks
apart, influenced by detailed dynamical behaviors

Rudenko et al., Nature 546, 129 (2017).
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Molecular ionization enhancement
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Rudenko et al., Nature 546, 129 (2017).
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lonization enhanced by charge rearrangement

low x-ray fluence high x-ray fluence
(single-photon dominant) (multiphoton dominant)

> Electrons from light atoms become available for further ionization on
heavy atoms after charge rearrangement.

> CREXIM: Charge-Rearrangement-Enhanced X-ray lonization of Molecules

> Impact on molecular imaging: not reducing partial charges of heavy atoms
due to charge rearrangement, but inducing more ionization overall
Rudenko et al., Nature 546, 129 (2017).

g F_El_ Sang-Kil Son | What happens to atoms and molecules during XFEL pulses? | June 22,2017 | 39 /42
SCIENCE



The bigger molecule, the larger effect
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> Coincidence measurement at intermediate intensity: higher iodine
charge always along with highest carbon charge

> Estimated molecular charge: Xe48*, CH3l54*, and CeHsl>%4*
Rudenko et al., Nature 546, 129 (2017).
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Molecular black hole /

DESY news:
http://www.desy.de/news/news search/

index_eng.html?openDirectAnchor=1232

The extremely intense X-ray flash knocks
so many electrons out of the iodine atom
(right) such that it pulls in the electrons of
the methyl group (left) like an
electromagnetic version of a black hole,
before finally spitting them out.

“Femtosecond response of polyatomic
molecules to ultra-intense hard X-rays,”

Rudenko et al., Nature 546, 129 (2017).

Credit: DESY/Science Communication Lab
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http://www.desy.de/news/news_search/index_eng.html?openDirectAnchor=1232
http://www.desy.de/news/news_search/index_eng.html?openDirectAnchor=1232

XATOM XMOLECULE XMDYN
(Talk by Zoltan last week)

> Enabling tools to investigate x-ray multiphoton physics of atoms,
molecules, and clusters exposed to high intensity x-ray pulses

> X-ray multiphoton ionization dynamics of Xe
= interplay between resonance and relativistic effects

> X-ray-induced ultrafast explosion dynamics of CHal
= first quantitative comparison for molecules under XFEL irradiation
= molecular ionization enhancement via CREXIM
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Collaboration of CHsl LCLS experiment
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