High-intensity phasing
with x-ray free-electron lasers

Abstract

X-ray free-electron lasers (XFELs) show promise for revealing
molecular structure using serial femtosecond

crystallography (SFX), but the associated phase problem remains
largely unsolved. Many of the ab initio methods that are used for
phasing diffraction data collected with synchrotron radiation employ
anomalous scattering from heavy atoms, for example,
multiwavelength anomalous diffraction (MAD). Because of the
extremely high intensity of XFELs, samples experience severe and
unavoidable electronic radiation damage, especially to heavy atoms.
The scattering factors of heavy atoms are dramatically changed due
to ionization during an intense x-ray pulse, which hinders direct
implementation of those phasing techniques with XFELs. A
generalized version of MAD at high x-ray intensity has been
proposed previously, suggesting that element-specific and fluence-
dependent electronic damage could be used to determine phases.
Here, we show two recent results towards a new high-

intensity phasing (HIP). We demonstrate that simulated SFX data
of Cathepsin B can be phased by the different ionization degree of S
atoms between two datasets at low and high x-ray fluences, similar

Introduction

Femtosecond x-ray nanocrystallography

> One bottleneck of x-ray crystallography is the need for large-scale
high-quality crystals, which are very difficult to be grown or are simply
not available in many cases of interest.

> The unprecedented high x-ray fluence from XFELs provides a

sufficiently large number of photons to enable structure determination
from diffraction measurements of streams of single molecules and

nanocrystals.

> Due to an extremely high fluence that is ~100 times larger than the

conventional damage limit, samples are subject to severe damage.

> The ultrashort x-ray pulses generated by XFELs enable us to carry

out “diffraction-before-destruction” within femtosecond timescales to
suppress nuclear motion.

> Electronic radiation damage is unavoidable, which is characterized

by multiphoton multiple ionization via a sequence of one-photon inner-
shell ionizations and relaxations.

> Another bottleneck of x-ray crystallography, the phase problem,
remains largely unsolved for femtosecond x-ray nanocrystallography.

Electronic damage to heavy atoms High-intensity phasing (HIP)
The ground-state configuration for neutral Fe,

Fe: 1522522p%3523p63004 s2

> Multiwavelength anomalous diffraction (MAD): well-established
phasing method with synchrotron radiation, employing the dispersion

_ _ correction of x-ray scattering from heavy atoms
For electronic damage dynamics of a Fe atom, 27,783 coupled

rate equations are solved. > Karle—Hendrickson equation: the key formula in MAD

> Generalized Karle—Hendrickson equation: the key formula in MAD at

to the technique of radiation induced phasing. We present

an experimental evidence of the different ionization degree of Gd
atoms between two datasets obtained from a Gd derivative

of lysozyme microcrystals, which is used to identify the positions of
the Gd atoms. New opportunities and challenges of high-intensity
phasing methods with XFELs will be discussed.
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> Bleaching effect by high x-ray intensity: new path to phasing = HIP

XATOM toolkit

Theory

We implement an integrated toolkit, XATOM, to treat x-ray-induced
processes based on nonrelativistic quantum electrodynamics and
perturbation theory within the Hartree—Fock—Slater model.

Physical processes
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