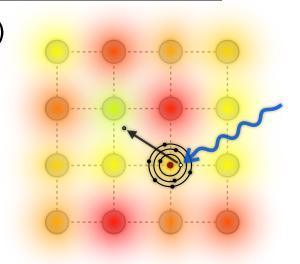
Quantum-mechanical calculation of ionization potential lowering in dense plasmas

Sang-Kil Son

Center for Free-Electron Laser Science, DESY, Hamburg, Germany

Radiative Properties of Hot Dense Matter (RPHDM) Vienna, Austria / September 29–October 3, 2014



Center for Free-Electron Laser Science

CFEL is a scientific cooperation of the three organizations: DESY – Max Planck Society – University of Hamburg

Collaboration

Robert Thiele

Zoltan Jurek

Beata Ziaja

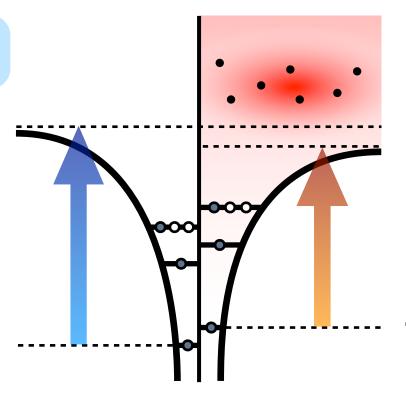
Robin Santra

CFEL Theory Division

Ionization Potential Depression (IPD)

isolated atom

- Coulomb potential by the nucleus
- screening by bound electrons



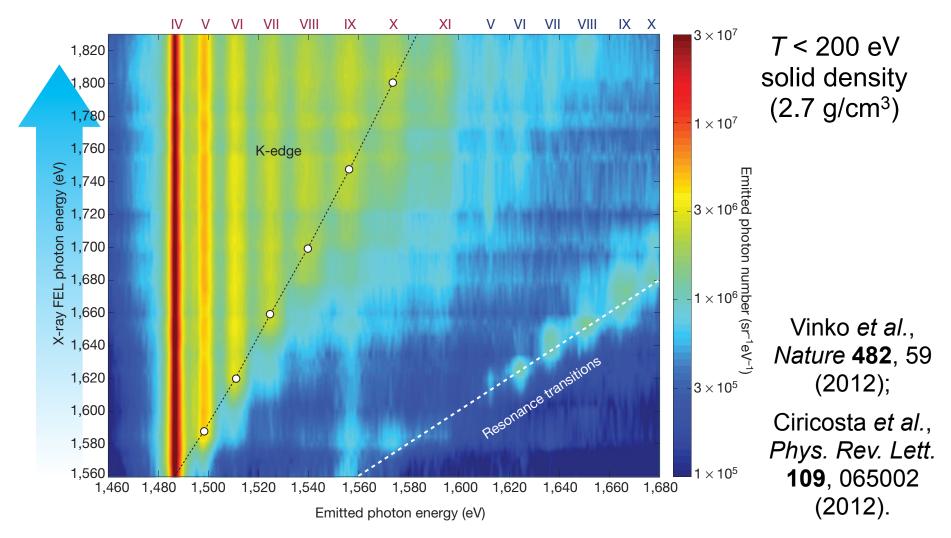
solid / plasma

Dense environment

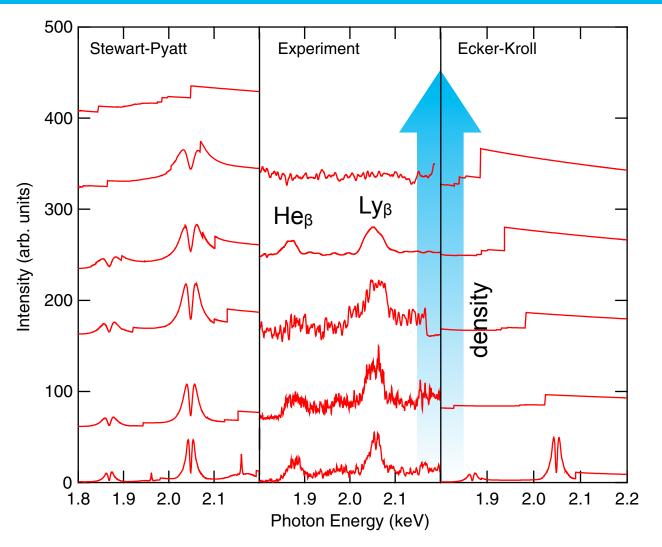
- + screening by free electrons
- + pressure ionization
- → IP lowering

One of the most fundamental physics for atomic processes in a dense plasma

Warm dense Al plasma (LCLS experiment)



Hot dense Al plasma (Orion experiment)



 $T \sim 700 \text{ eV}$ 0.5~4×solid density

Hoarty *et al.*, *PRL* **110**, 265003 (2013).

IPD models

- > EK model: Ecker & Kröll, *Phys. Fluids* **6**, 62 (1963)
- SP model: Stewart & Pyatt, Astrophys. J. 144, 1203 (1966)
 - both provide a simple analytic formula for IPD
 - valid only for valence ionization
- > LCLS experiment (2012): modified EK

> Orion experiment (2013):

Strong need for a rigorous and consistent theoretical approach to IPD

Two-step model: overview

- > Two-step model based on
 - Quantum-mechanical calculation: Hartree-Fock-Slater method
 - muffin-tin approximation
 - pseudocontinuum calculation

First step

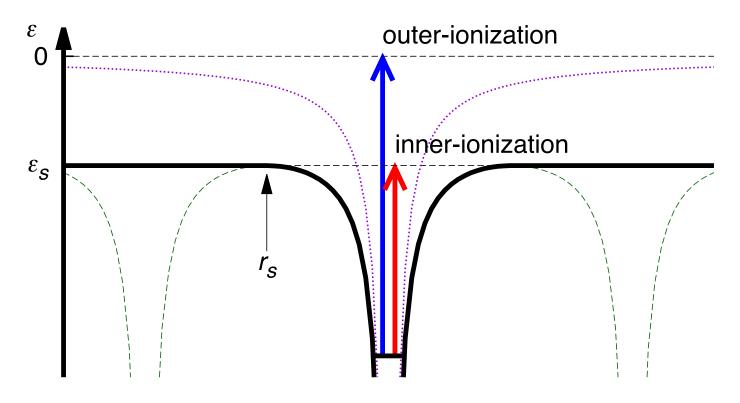
Average-atom calculation

Second step

fixed-configuration calculation

Son, Thiele, Jurek, Ziaja & Santra, Phys. Rev. X 4, 031004 (2014).

Atom in a solid or a plasma



Wigner-Seitz radius:
$$r_s = \left(\frac{3}{4\pi n_i}\right)^{1/3}$$

Inner-ionization potential:

$$E_j = \varepsilon_s - \varepsilon_j$$

Hartree-Fock-Slater method

Solve the Schrödinger equation (SE)

$$\hat{H} = -\frac{1}{2}\nabla^2 + V(\mathbf{r})$$
$$\hat{H}\psi(\mathbf{r}) = \varepsilon\psi(\mathbf{r})$$

HFS potential inside the WS radius / muffin-tin flat potential outside

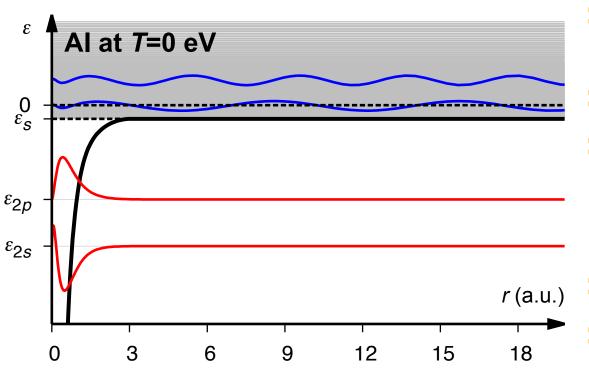
$$V(\mathbf{r}) = \begin{cases} -\frac{Z}{r} + \int_{r' \le r_s} d^3 r' \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} + V_{\mathbf{x}}[\rho(\mathbf{r})] & \text{for } r \le r_s, \\ V(r_s) & \text{for } r > r_s, \end{cases}$$

Slater exchange potential

$$V_{\mathbf{x}}[\rho(\mathbf{r})] = -\frac{3}{2} \left[\frac{3}{\pi} \rho(\mathbf{r}) \right]^{1/3}$$

Continuum-state calculation

Radial SE:
$$\left[-\frac{1}{2}\frac{d^2}{dr^2} + \frac{l(l+1)}{2r^2} + V(r)\right]u_{nl}(r) = \varepsilon_{nl}u_{nl}(r)$$



- > non-uniform radial grids: $N_r = 200, 0 \le r \le 100 \text{ a.u.}$
- > partial waves: 0 ≤ *l* ≤ 30
- > 6200 radial eigenstates
 - $\varepsilon < \varepsilon_s$: bound
 - $\varepsilon \ge \varepsilon_s$: pseudocontinuum
- > no boundary condition at r_s
- widely used in strong-field atomic physics calculations

First step: average-atom

> Grand-canonical ensemble at a finite temperature T

$$\hat{H} = -\frac{1}{2}\nabla^2 + V\left[\rho(\mathbf{r}, T)\right]$$

Electronic density (bound & continuum states)

$$\rho(\mathbf{r},T) = \sum_{p} |\psi_{p}(\mathbf{r})|^{2} \bar{n}_{p}(\mu,T)$$

> Fermi-Dirac distribution

$$\bar{n}_p(\mu, T) = \frac{1}{e^{(\varepsilon_p - \mu)/T} + 1}$$

Chemical potential

$$Z - \sum_{p} \left(\int_{r \le r_s} d^3 r |\psi_p(\mathbf{r})|^2 \right) \bar{n}_p(\mu, T) = 0$$

Average-atom variants

- > quantum-mechanical (HFS or LDA) vs. semiclassical (Thomas-Fermi)
- configuration vs. superconfiguration vs. screened hydrogenic model
- muffin-tin approximation vs. extended model
 - Cauble et al., Phys. Rev. A 29, 3280 (1984).
- QM with configuration
 - Liberman, Phys. Rev. B 20, 4981 (1979).
 - Blenski & Ishikawa, *Phys. Rev. E* **51**, 4869 (1995).
 - Sahoo et al., Phys. Rev. E 77, 046402 (2008).
 - Johnson, Nilsen & Cheng, Phys. Rev. E 86, 036410 (2012).
- > QM with superconfiguration
 - Pain, Dejonghe & Blenski, JQSRT 99, 451 (2006); J. Phys. A 39, 4659 (2006).

First step: average-atom calculation

- Assumption: thermalized hot electrons; cold ions
- > Input parameter: element (Z), temperature (T), and solid density (via r_s)
- Self-consistently determined: orbitals, orbital energies, electron density, muffin-tin flat potential, and chemical potential

Al	T	$ar{Q}$	$arepsilon_{1s}$	• • •	$arepsilon_s$	μ
solid	10	+3.01	-1541.14		-11.03	-12.57
density	30	+3.95	-1579.28		-12.46	-58.67
	40	+4.83	-1606.37		-13.19	-85.66
	60	+5.67	-1657.70		-14.33	-145.43
	80	+6.87	-1702.23		-15.15	-211.69

ensemble-averaged charge and orbital energies

First step: more than average

Q	Configuration	Probability	
+5	$\frac{1s^22s^12p^43s^03p^1}{1s^22s^22p^33s^03p^1}$	0.0193 0.0187	
	$1s^2 2s^2 2p^4 3s^0 3p^0$ $1s^2 2s^2 2p^4 3s^0 3p^0$	0.0174	
+6	$1s^{2}2s^{1}2p^{3}3s^{0}3p^{1}$ $1s^{2}2s^{1}2p^{4}3s^{0}3p^{0}$	0.0376 0.0349	
	$1s^{2}2s^{2}2p^{3}3s^{0}3p^{0}$ $1s^{2}2s^{2}2p^{2}3s^{0}3p^{1}$	0.0339 0.0205	
	$1s^2 2s^1 2p^3 3s^1 3p^0$ $1s^2 2s^1 2p^3 3s^1 3p^0$	0.0139	
+7	$1s^{2}2s^{1}2p^{3}3s^{0}3p^{0}$ $1s^{2}2s^{1}2p^{2}3s^{0}3p^{1}$	0.0681 0.0413	
	$1s^{2}2s^{2}2p^{2}3s^{0}3p^{0}$ $1s^{2}2s^{0}2p^{3}3s^{0}3p^{1}$	0.0371 0.0189	
	$1s^{2}2s^{0}2p^{4}3s^{0}3p^{0}$ $1s^{2}2s^{1}2p^{2}3s^{1}3p^{0}$	0.0175 0.0153	
	$1s^2 2s^2 2p^1 3s^0 3p^1$	0.0120	
+8	$ 1s^2 2s^1 2p^2 3s^0 3p^0 1s^2 2s^0 2p^3 3s^0 3p^0 $	0.0747 0.0342	
	$ \begin{array}{c} 1s^2 2s^1 2p^1 3s^0 3p^1 \\ 1s^2 2s^2 2p^1 3s^0 3p^0 \\ 1s^2 2s^0 2p^2 3s^0 3p^1 \end{array} $	0.0241 0.0217 0.0207	
+9	$1s^{2}2s^{1}2p^{1}3s^{0}3p^{0} 1s^{2}2s^{0}2p^{2}3s^{0}3p^{0}$	0.0437 0.0375	
+10	$1s^{2}2s^{0}2p^{1}3s^{0}3p^{1}$ $1s^{2}2s^{0}2p^{1}3s^{0}3p^{0}$	0.0121 0.0219	
	$1s^2 2s^1 2p^0 3s^0 3p^0$	0.0106	

Al at *T*=80 eV

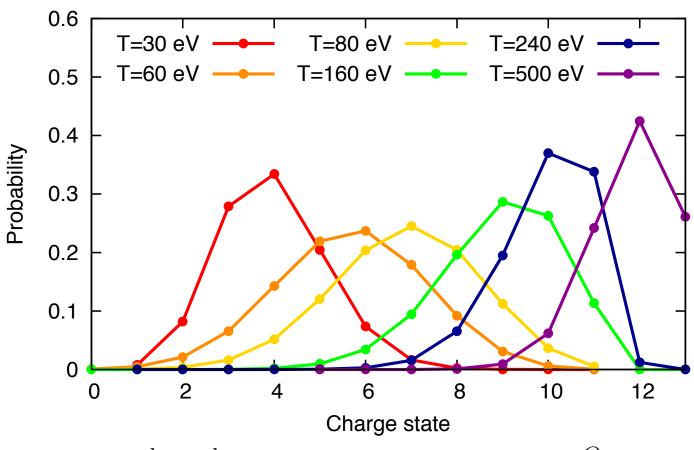
From the grand-canonical ensemble, probability distributions calculated for given bound-state configurations

$$P_{[n_b]} = \sum_{\{n_p\} = \{n_b; n_{p'}\}} P_{\{n_p\}}$$

$$= \prod_{b \text{ ound } 1 + e^{-(\varepsilon_b - \mu)/T}} \frac{e^{-(\varepsilon_b - \mu)/T}}{1 + e^{-(\varepsilon_b - \mu)/T}}$$

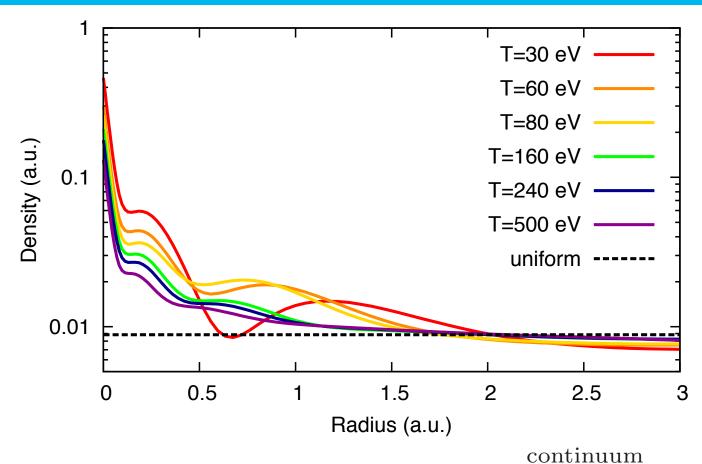
Pei & Chang, JQSRT 64, 15 (2000).

First step: charge-state distribution



$$P_{[n_b]} = \prod_{b}^{\text{bound}} \frac{e^{-(\varepsilon_b - \mu)n_b/T}}{1 + e^{-(\varepsilon_b - \mu)/T}} \Rightarrow P_Q = \sum_{[n_b]}^Q P_{[n_b]}$$

First step: free-electron density



c.f. Vinko's talk and *Nat. Commun.* **5**, 3533 (2014).

After averaging all possible free-electron configurations

$$\rho_f(\mathbf{r}, T) = \sum_{p}^{\text{continuum}} |\psi_p(\mathbf{r})|^2 \, \bar{n}_p(\mu, T)$$

Second step: fixed-config. calculation

- Connection between first step and second step
 - picking up one bound-electron configuration: most probable one
 - constructing a free-electron density
- Performing a HFS calculation

$$\hat{H} = -\frac{1}{2}\nabla^2 + V\left[\rho(\mathbf{r};T)\right]$$

$$\rho(\mathbf{r};T) = \sum_b^{\mathrm{bound}} |\psi_b(\mathbf{r})|^2 \, n_b + \sum_p^{\mathrm{continuum}} |\psi_p(\mathbf{r})|^2 \, \bar{n}_p(\mu,T)$$
 self-consistently updated

Al at *T*=80 eV

Two-step: K-shell ionization & transition E

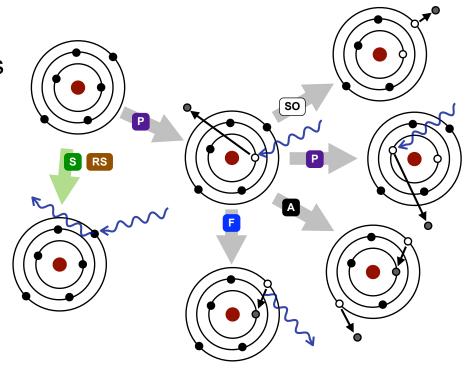
Q	Configuration	Probability	E_K	$E_{K\alpha}$
+5	$\begin{array}{c} 1s^22s^12p^43s^03p^1 \\ 1s^22s^22p^33s^03p^1 \\ 1s^22s^22p^43s^03p^0 \end{array}$	0.0193 0.0187 0.0174	1618.3 1623.1 1578.7	1497.7 1500.3 1486.7
+6	$1s^{2}2s^{1}2p^{3}3s^{0}3p^{1}$ $1s^{2}2s^{1}2p^{4}3s^{0}3p^{0}$ $1s^{2}2s^{2}2p^{3}3s^{0}3p^{0}$ $1s^{2}2s^{2}2p^{2}3s^{0}3p^{1}$ $1s^{2}2s^{1}2p^{3}3s^{1}3p^{0}$	0.0376 0.0349 0.0339 0.0205 0.0139	1658.1 1618.3 1623.1 1663.5 1656.0	1511.6 1497.7 1500.3 1514.5 1511.3
+7	$1s^2 2s^1 2p^3 3s^0 3p^0$ $1s^2 2s^1 2p^2 3s^0 3p^1$ $1s^2 2s^2 2p^2 3s^0 3p^0$ $1s^2 2s^0 2p^3 3s^0 3p^1$ $1s^2 2s^0 2p^4 3s^0 3p^0$ $1s^2 2s^1 2p^2 3s^1 3p^0$ $1s^2 2s^2 2p^1 3s^0 3p^1$	0.0681 0.0413 0.0371 0.0189 0.0175 0.0153 0.0120	1666.3 1705.4 1671.9 1699.3 1660.9 1705.4	1512.8 1527.8 1515.8 1524.5 1509.9 1527.9 1531.2
+8	$1s^{2}2s^{1}2p^{2}3s^{0}3p^{0}$ $1s^{2}2s^{0}2p^{3}3s^{0}3p^{0}$ $1s^{2}2s^{1}2p^{1}3s^{0}3p^{1}$ $1s^{2}2s^{2}2p^{1}3s^{0}3p^{0}$ $1s^{2}2s^{2}2p^{2}3s^{0}3p^{1}$ $1s^{2}2s^{0}2p^{2}3s^{0}3p^{1}$	0.0747 0.0342 0.0241 0.0217 0.0207	1711.7 1718.7 1712.3 1758.5 1725.1 1751.6	1531.2 1530.0 1526.7 1546.5 1533.4 1542.9
+9	$1s^{2}2s^{1}2p^{1}3s^{0}3p^{0} 1s^{2}2s^{0}2p^{2}3s^{0}3p^{0} 1s^{2}2s^{0}2p^{1}3s^{0}3p^{1}$	0.0437 0.0375 0.0121	1775.1 1768.0 1808.2	1549.6 1545.9 1564.1
+10	$\frac{1s^22s^02p^13s^03p^0}{1s^22s^12p^03s^03p^0}$	0.0219 0.0106	1827.4 1835.2	1568.1 1572.1

- SCF calculation for each config.
- individual configurations:
 different IPs and Kα lines
- ground-state configuration ≠
 the most probable configuration
- M-shells (3s and 3p) are bound
- *M*-shell electrons do not alter the $K\alpha$ lines $\rightarrow K^nL^m$ labeling

c.f. Iglesias's talk and *HEDP* **12**, 5 (2014).

XATOM: all about x-ray atomic physics

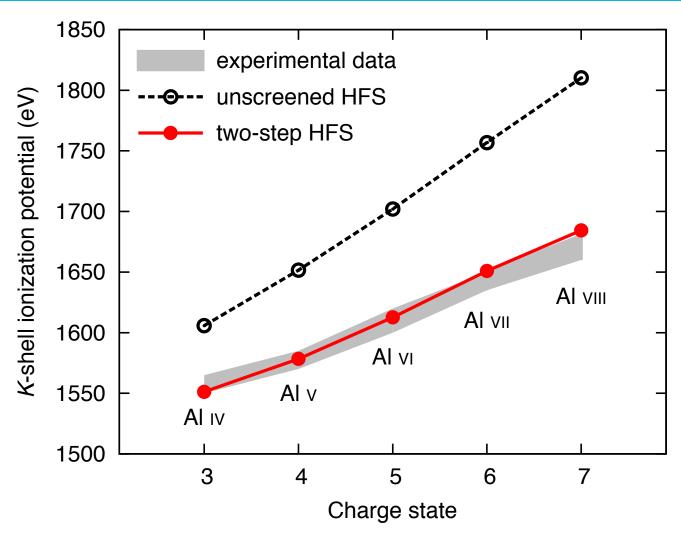
- Computer program suite to describe dynamical behaviors of atoms interacting with XFEL pulses
- Calculate all cross sections and rates of x-ray-induced processes for any given element
- Solve coupled rate equations: direct propagation or Monte-Carlo
- Well-tested for XFEL—atom experiments
- Extended to XFEL—plasma applications



Son, Young & Santra, *Phys. Rev. A* **83**, 033402 (2011).

Son & Santra, Phys. Rev. A **85**, 063415 (2012).

Comparison with LCLS experiment

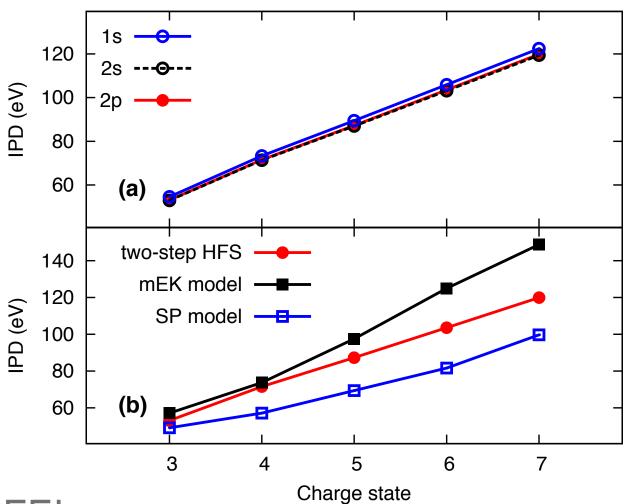


Al at T=10~80 eV $\rho=2.7 \text{ g/cm}^3$

Son *et al.*, *Phys. Rev. X* **4**, 031004 (2014).

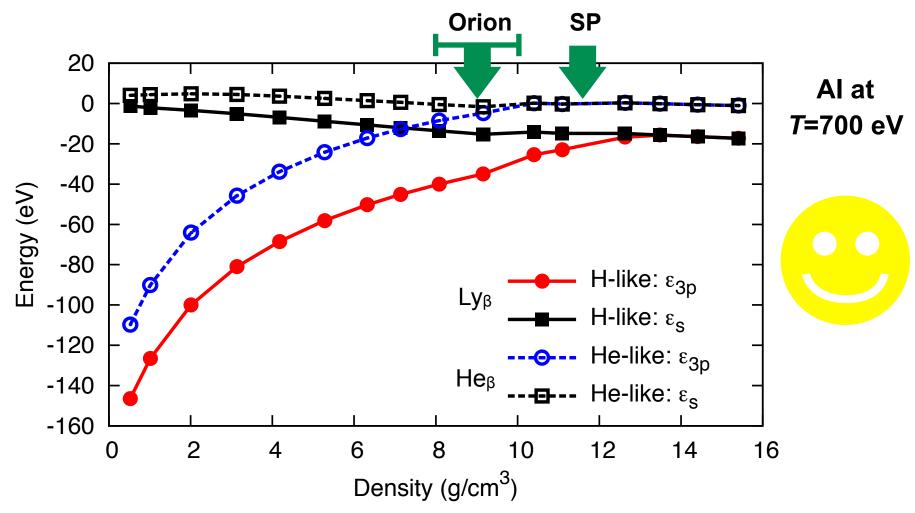
Comparison with IPD models

consistent treatment: $IPD(HFS) = IP_{atom}(HFS) - IP_{plasma}(HFS)$



Son *et al.*, *Phys. Rev. X* **4**, 031004 (2014).

Comparison with Orion experiment





Conclusion

- Two-step model: first-principle calculation combining average-atom model and fixed-configuration model
- Accurately and efficiently describes atomic properties within plasmas, covering both strongly and weakly coupled plasma regimes
- Focused on IPD description of Al plasmas
- Good agreement with both LCLS and Orion experiments
- Calculated IPDs lie between SP and EK models
- Our model can be a useful tool for calculating atomic properties within dense plasmas with potentially wide-ranging applications.

