Electronic response to X-ray free-electron laser pulses

Sang-Kil Son

Center for Free-Electron Laser Science, DESY, Hamburg, Germany

POSTECH & MPC-AS, Pohang, Korea / November 23, 2012

Overview

- > Introduction to XFEL
- > Theory / XATOM toolkit
- > Applications to XFEL experiments
- > Conclusion

Acknowledgment

CFEL Theory
Division

Robin Santra

Max-Planck ASG at CFEL

Daniel Rolles

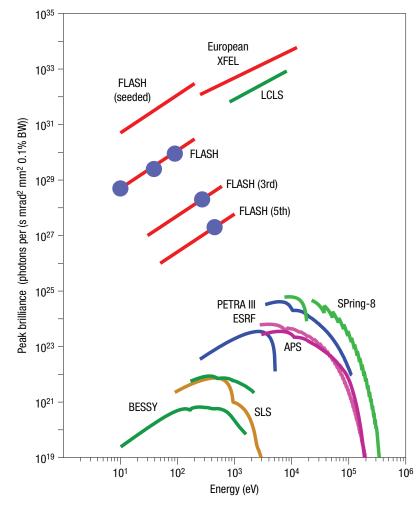
Tohoku Univ.

Kiyoshi Ueda

Argonne National Lab.

Linda Young

CFEL Coherent Imaging Division


Henry Chapman

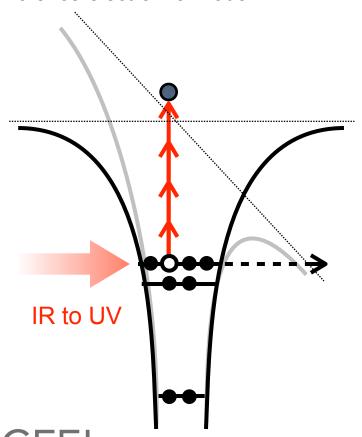
What is XFEL?

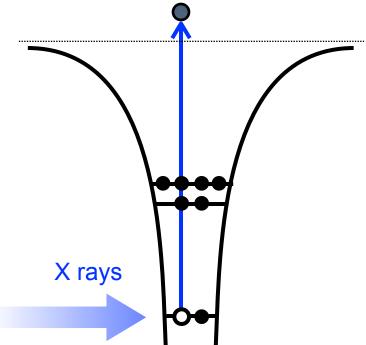
- > XFEL: X-ray Free-Electron Laser
- Ultraintense
 - synchrotron: at most one photon absorbed per pulse
 - XFEL: many photons absorbed per pulse
 - fluence: ~10¹³ photons per μm² per pulse
 - peak intensity: ~10¹⁸ W/cm²
- > Ultrafast
 - pulse duration: femtoseconds or sub-fs
- Characteristics of X rays
 - large penetration depth: small absorption probability
 - element specific: inner-shell electrons
 - A wavelength: imaging with atomic resolution

Ackermann et al., Nature Photon. 1, 336 (2007).

Where are XFELs?

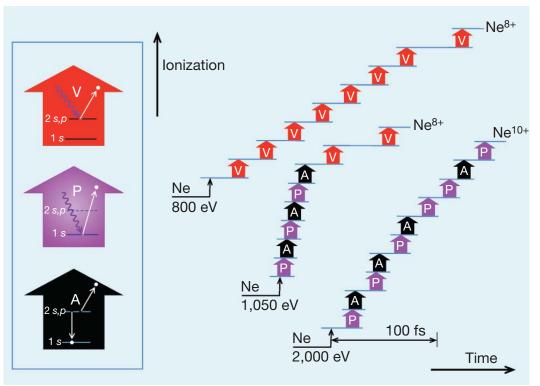
- > FLASH at DESY, Germany (2004)
- > LCLS at SLAC, USA (2009)
- SACLA at RIKEN Harima, Japan (2011)
- > PAL XFEL at Pohang, Korea (2015)
- > European XFEL, Germany (2015)

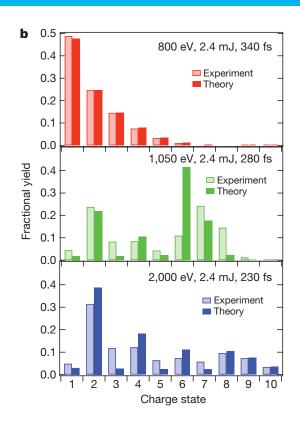




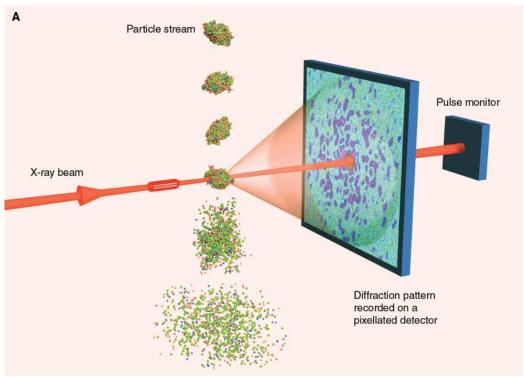
What differences from optical strong-field?

- Optical strong-field regime
 - tunneling or multiphoton processes
 - valence-electron ionization




- Intense X-ray regime
 - mainly one-photon processes
 - core-electron ionization and relaxation
 - multiphoton multiple ionization via a sequence of one-photon processes

Multiphoton Multiple Ionization


Young et al., Nature 466, 56 (2010).

- First LCLS experiment: fundamental atomic physics in XFEL
- Lots of x-ray photons: repeated K-shell ionization (P) followed by Auger relaxation (A)
- Good agreement between experiment and theory (Nina Rohringer and Robin Santra)

Ultrafast X-ray scattering

Nature **470**, 73 (2011).

Nature **470**, 78 (2011).

Nature Photon. **6**, 35 (2012).

Science 337, 362 (2012).

Nature Meth. 9, 259 (2012).

Nature Meth. 9, 263 (2012).

:

Gaffney & Chapman, Science 316, 1444 (2007).

- Single-shot imaging of individual macromolecules or nano-sized crystals
- Ultrafast (femtosecond) pulse: diffraction before Coulomb explosion
- Electronic radiation damage is unavoidable.

X-ray-induced atomic processes

- Based on nonrelativistic QED and perturbation theory
- Hamiltonian

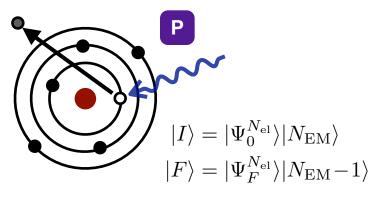
$$\begin{split} \hat{H} &= \hat{H}_{\text{mol}} + \hat{H}_{\text{EM}} + \hat{H}_{\text{int}} \\ \hat{H}_{\text{EM}} &= \sum_{\mathbf{k},\lambda} \omega_{\mathbf{k}} \hat{a}_{\mathbf{k},\lambda}^{\dagger} \hat{a}_{\mathbf{k},\lambda}, \quad \omega_{\mathbf{k}} = |\mathbf{k}|/\alpha \\ \hat{H}_{\text{int}} &= \alpha \int d^3x \, \hat{\psi}^{\dagger}(\mathbf{x}) \left[\hat{\mathbf{A}}(\mathbf{x}) \cdot \frac{\mathbf{\nabla}}{i} \right] \hat{\psi}(\mathbf{x}) + \frac{\alpha^2}{2} \int d^3x \, \hat{\psi}^{\dagger}(\mathbf{x}) \hat{A}^2(\mathbf{x}) \hat{\psi}(\mathbf{x}) \end{split}$$

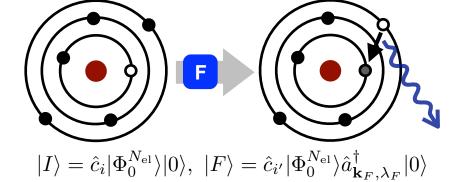
Perturbation theory

$$\hat{H} = \hat{H}_0 + \hat{H}_{int}$$

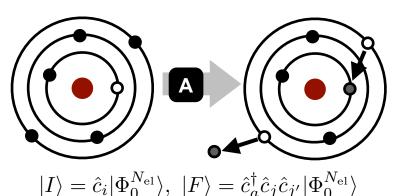
 $|I\rangle$: initial state, $|F\rangle$: final state

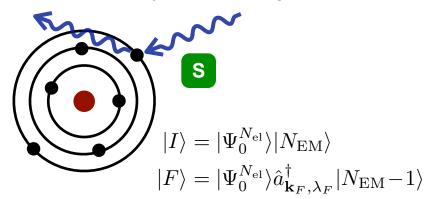
$$\Gamma_{FI} = 2\pi\delta(E_F - E_I) \left| \langle F|\hat{H}_{\rm int}|I\rangle + \sum_{M} \frac{\langle F|\hat{H}_{\rm int}|M\rangle\langle M|\hat{H}_{\rm int}|I\rangle}{E_I - E_M + i\epsilon} + \cdots \right|^2$$


Santra, J. Phys. B 42, 023001 (2009).



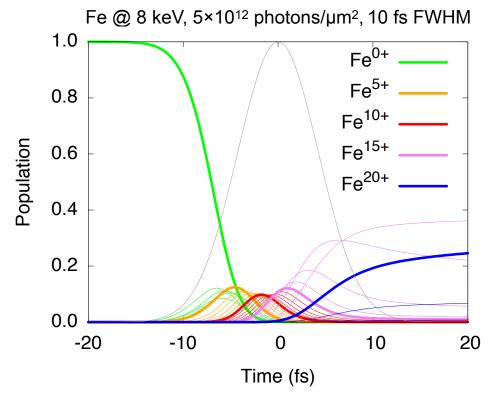
X-ray-induced atomic processes (cont.)


> Photoabsorption


> Fluorescence

> Auger and Coster–Kronig decay

Elastic X-ray scattering



Electronic damage dynamics by XFEL

Coupled rate equation

$$\frac{d}{dt}P_I(t) = \sum_{I' \neq I}^{\text{all config.}} \left[\Gamma_{I' \to I} P_{I'}(t) - \Gamma_{I \to I'} P_I(t) \right]$$

- Numerical procedure
 - construct all possible n-hole configurations for +n charge state for all possible n
 - optimize orbital structures for each configuration
 - calculate cross sections and rates for each configuration
 - solve a set of rate equations with all parameters

XATOM: toolkit for X-ray atomic physics

What XATOM can do:

- Hartree–Fock–Slater method, bound and continuum states
- photoionization / photoabsorption cross sections
- Auger and Coster–Kronig rates, and fluorescence rates
- elastic x-ray scattering form factors including dispersion corrections
- shake-off branching ratios
- two-photon ionization / resonant excitation included
- plasma screening effect included
- large-scale coupled rate equations: direct solution or Monte–Carlo solution

> Features:

- versatile and simple
- captures all relevant basic processes
- useful for atoms, molecules and clusters
- becomes an essential tool for XFEL simulations

Applications to XFEL science

Multiphoton multiple ionization

Ionization dynamics of heavy atoms

Son & Santra, *Phys. Rev. A* **85**, 063415 (2012).

Xe at LCLS: ultra-efficient ionization

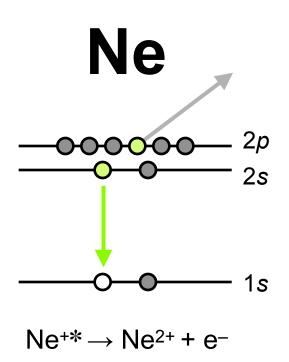
Rudek, Son et al., Nature Photon. (DOI: 10.1038/nphoton.2012.261).

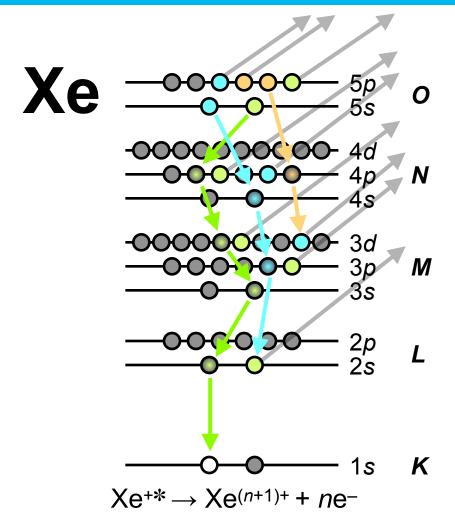
Xe at SACLA: deep inner-shell ionization

Fukuzawa, Son et al., submitted.

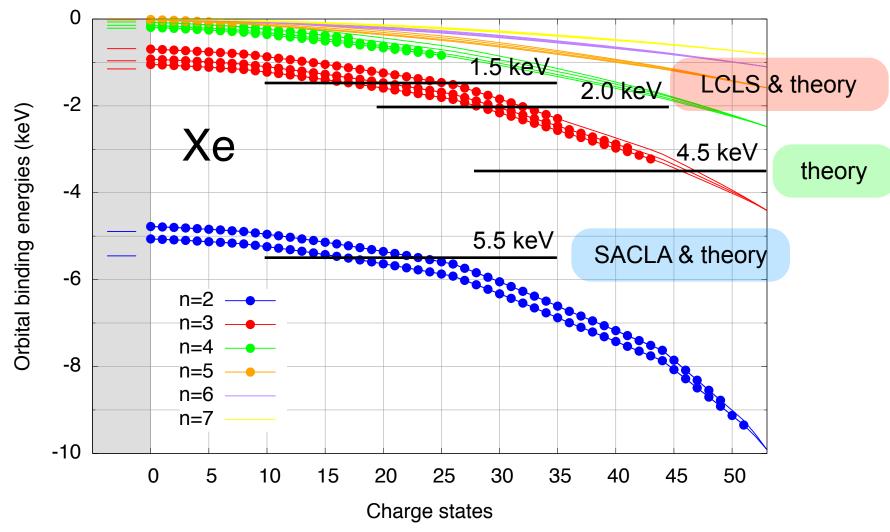
Ultrafast X-ray scattering

C: scattering vs. absorption

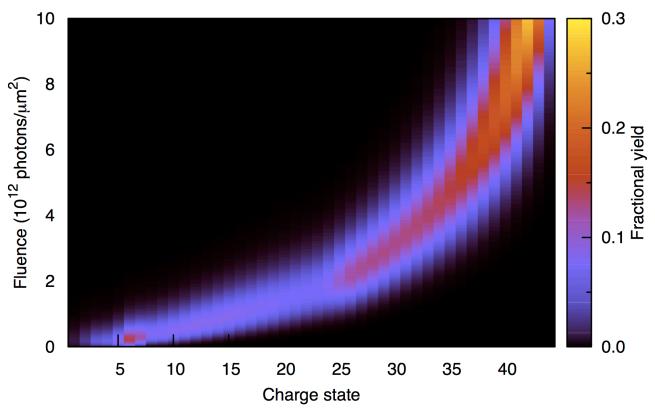

Son, Young & Santra, *Phys. Rev. A* **83**, 033402 (2011).


Fe: MAD at high X-ray intensity

Decay cascade for heavy atoms

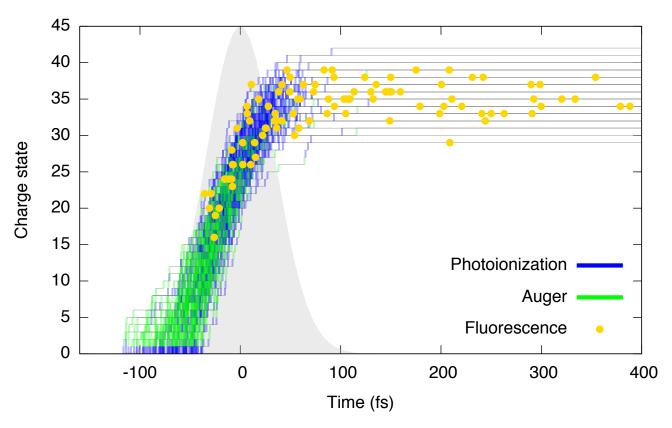


Xenon atom interacting with hard X rays



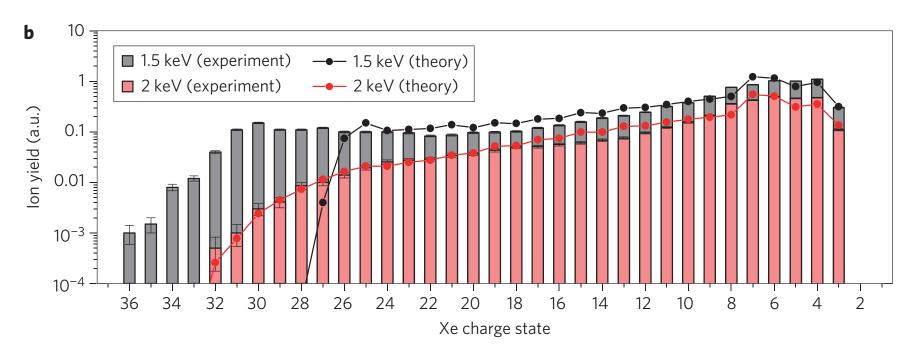
Ionization dynamics of heavy atoms

- Calculation of charge state distributions as a function of fluence
- > At 4.5 keV: potentially strip off all 44 electrons (in *M*-, *N*-, and *O*-shell)



Son & Santra, Phys. Rev. A 85, 063415 (2012).

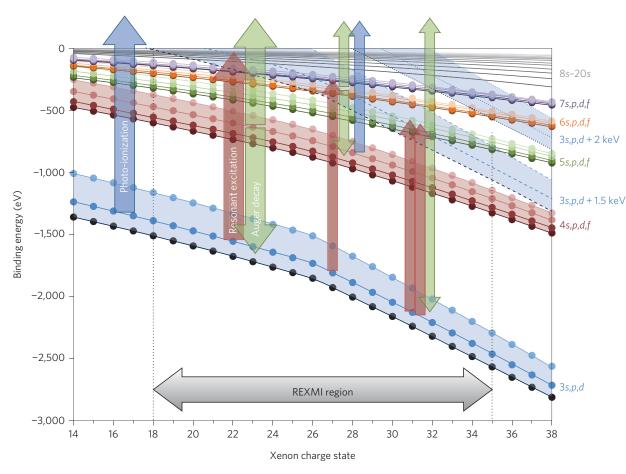
Ionization dynamics of heavy atoms (cont.)



- \rightarrow Xe: $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10} 5s^2 5p^6$
- Computational challenge: # of coupled rate eqs. ~1M → Monte-Carlo Son & Santra, Phys. Rev. A 85, 063415 (2012).

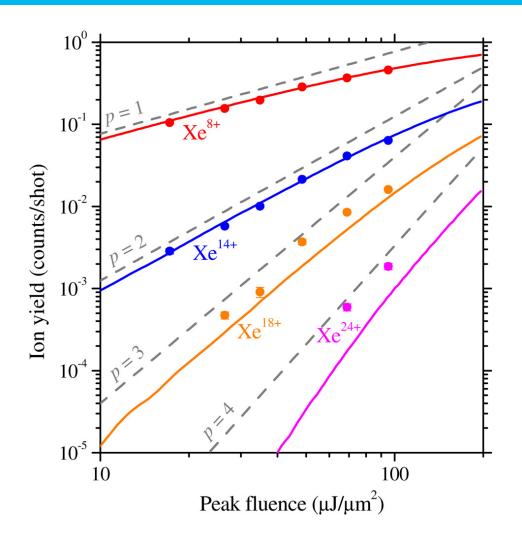
Ultra-efficient ionization by XFEL

- Charge state distribution of Xe measured at LCLS
- At 2 keV: good agreement between experiment and theory
- > At 1.5 keV: unprecedented high charge states (up to Xe³⁶⁺) in experiment


Rudek, Son et al., Nature Photon. (DOI: 10.1038/nphoton.2012.261).

Ultra-efficient ionization by XFEL (cont.)

- Transient resonant excitation from 3p even after 3p ionization is closed (Xe²⁶⁺), bringing up to Xe³⁶⁺
 - → *REXMI* mechanism
- Electron shuffling: more than one electron resonantly excited
- Densely-spaced Rydberg states and large bandwidth of Xrays

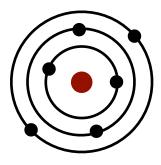


Rudek, Son et al., Nature Photon. (DOI: 10.1038/nphoton.2012.261).

Deep inner-shell ionization by XFEL

- Charge state distribution of Xe measured at SACLA
- > At 5.5 keV, *L*-shell ionization can be initiated:
 - ~27M coupled rate eqs.
 - → Monte-Carlo on the fly
- > 4-photon absorption induces 26-electron ejection (Xe²⁶⁺) via intraatomic electronelectron interaction.

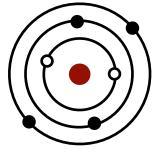
Fukuzawa, Son et al., (submitted).



Scattering from hollow atoms

Elastic X-ray scattering form factor

$$f^0(\mathbf{Q}) = \int d^3r \ \rho(\mathbf{r}) \ e^{i\mathbf{Q}\cdot\mathbf{r}}$$


Scattering affected by hollow-atom formation For C @12 keV and resolution=1.7 Å

neutral

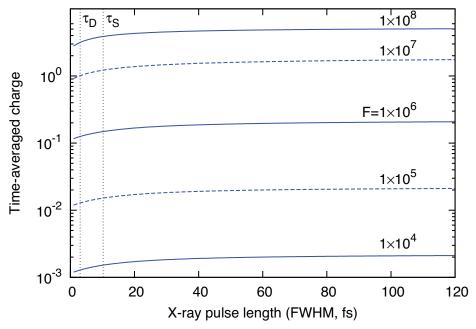
single-core-hole

double-core-hole

$$\sigma_{\rm sc}/\sigma_{\rm abs} = 0.057$$

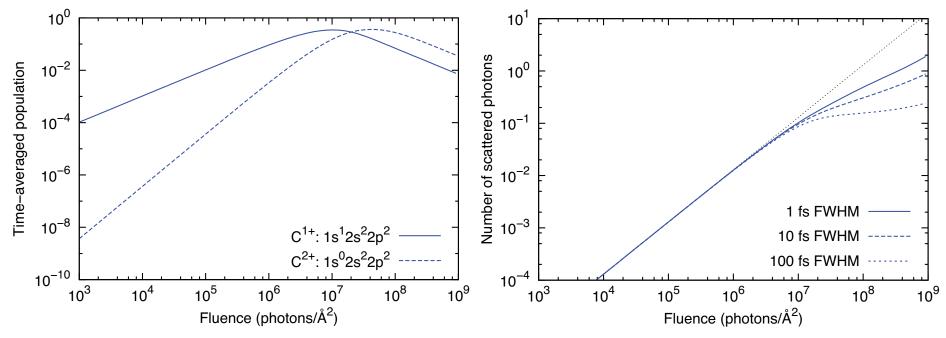
0.075

0.305


intensity-induced X-ray transparency for Ne: Young et al., Nature 466, 56 (2010). frustrated absorption for N₂: Hoener et al., Phys. Rev. Lett. 104, 253002 (2010).

Scattering from hollow atoms (cont.)

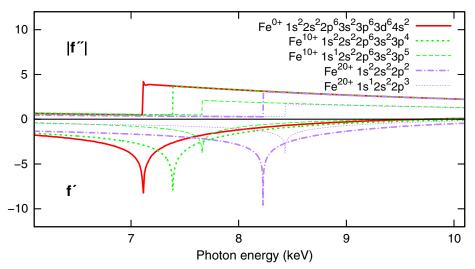
- Carbon: time-averaged charge as a function of the pulse duration
- Less time-averaged charge when the pulse duration is short enough to compete with core-hole lifetimes (Auger lifetime).
- Higher intensity of XFEL pulses induces less ionization due to hollowatom formation.



Son, Young & Santra, *Phys. Rev. A* **83**, 033402 (2011).

Scattering from hollow atoms (cont.)

- > Hollow-atom formation saturates around 10¹⁵ photons/µm².
- Nonlinear effect on scattering intensity after this saturation
- Theoretical results suggest a shorter pulse (i.e., attosecond XFEL) would be ideal for single-shot imaging.


Son, Young & Santra, Phys. Rev. A 83, 033402 (2011).

MAD at high X-ray intensity

- > Phase problem: $F(\mathbf{Q}) = \int d^3r \ \rho(\mathbf{r}) \ e^{i\mathbf{Q}\cdot\mathbf{r}} = |F(\mathbf{Q})| \ e^{i\phi(\mathbf{Q})}$
- > MAD: Multiwavelength Anomalous Diffraction
- > With dispersion correction: $f(\mathbf{Q}, \omega) = f^0(\mathbf{Q}) + f'(\omega) + if''(\omega)$
- > Phase obtained from interferences b/w normal and anomalous terms
- > Remarkable changes of f' and f" for different configurations and charges

Anomalous scattering of Fe near *K* edge

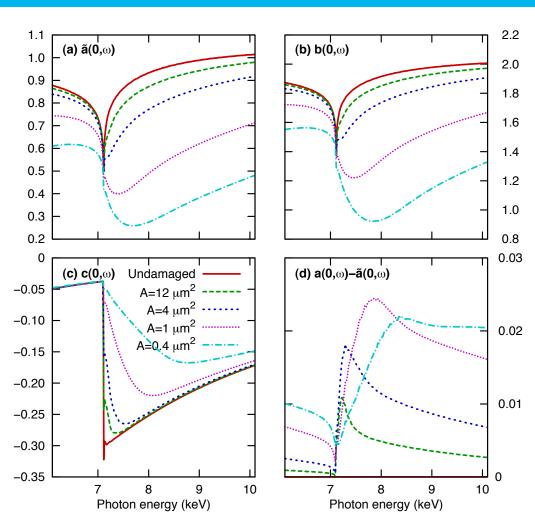
MAD at high X-ray intensity (cont.)

Generalized Karle—Hendrickson equation at high x-ray intensity

$$\frac{dI(\omega)}{d\Omega} = \mathcal{F}C(\Omega) \left[\left| F_P^0 \right|^2 + \left| F_H^0 \right|^2 \tilde{a}(\omega) + \left| F_P^0 \right| \left| F_H^0 \right| b(\omega) \cos \Delta \phi^0 + \left| F_P^0 \right| \left| F_H^0 \right| c(\omega) \sin \Delta \phi^0 + \left| F_H^0 \right| \left| F_H^0 \right|^2 \left\{ a(\omega) - \tilde{a}(\omega) \right\} \right]$$

3 unknowns at every single **Q**: $\left|F_P^0\right|, \; \left|F_H^0\right|, \Delta\phi^0 (=\phi_P^0-\phi_H^0)$

$$a(\omega) = \frac{1}{\{f_H^0\}^2} \sum_{I_H} \bar{P}_{I_H} |f_{I_H}(\omega)|^2 \qquad \tilde{a}(\omega) = \frac{1}{\{f_H^0\}^2} \int_{-\infty}^{\infty} dt \, g(t) \left| \tilde{f}_H(\omega, t) \right|^2$$


$$b(\omega) = \frac{2}{f_H^0} \sum_{I_H} \bar{P}_{I_H} \left\{ f_{I_H}^0 + f_{I_H}'(\omega) \right\} \qquad c(\omega) = \frac{2}{f_H^0} \sum_{I_H} \bar{P}_{I_H} f_{I_H}''(\omega)$$

MAD at high X-ray intensity (cont.)

- MAD coefficients calculated by XATOM
- First demonstration of MAD phasing method in extreme conditions of ionizing radiations
- Bleaching effect becomes beneficial to phasing.
- Theoretical study opens up a new potential for ab initio structural determination in femtosecond x-ray nanocrystallography.

Conclusion

- Recent advent of XFEL opens up many unique opportunities in physics, chemistry, biology, and material science.
- > It is crucial to understand interaction of ultraintense and ultrafast X-ray pulses with atoms and molecules.
- > XATOM is an integrated toolkit to investigate X-ray—induced atomic processes and to simulate electronic damage dynamics.
- We explore ultra-efficient multiple ionization and deep inner-shell ionization of heavy atoms, scattering from hollow atoms, and novel diffraction method with heavy atoms.
- Theoretical studies with XATOM explain recent LCLS and SACLA experiments and lead to new XFEL experiments.
- XATOM becomes an essential tool for XFEL simulations.

Acknowledgment: CFEL Theory Division

Ab Initio X-ray Physics

Prof. Dr. Robin Santra

Dr. Gopal Dixit

Dr. Sang-Kil Son

Dr. Arina Sytcheva

Yi-Jen Chen

Antonia Karamatskou

Stefan Pabst

Jan Malte Slowik

Chemical Dynamics

Dr. Oriol Vendrell

Dr. Mohamed El-Amine Madjet

Zheng Li

Pankaj Kumar Mishra

Modeling of Complex Systems

Prof. Dr. Beata Ziaja-Motyka

Dr. Zoltan Jurek

Dr. Nikita Medvedev

Dr. Robert Thiele

Thank you for your attention!

