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Abstract

We present a new grid-based time-dependent method to investigate multiphoton ionization (MPI) of polyatomic molecules in
intense ultrashort laser fields. The electronic structure of polyatomic molecules is treated by the density-functional theory (DFT)
with proper long-range potential and the Kohn–Sham equation is accurately solved by means of the Voronoi-cell finite difference
method on non-uniform and highly adaptive molecular grids utilizing geometrical flexibility of the Voronoi diagram. This method
is generalized to the time-dependent problems with the split-operator time-propagation technique in the energy representation,
allowing accurate and efficient non-perturbative treatment of attosecond electronic dynamics in strong fields. The new procedure is
applied to the study of MPI of N2 and H2O molecules in intense linearly-polarized and ultrashort laser fields with arbitrary field–
molecule orientation. Our results demonstrate that the orientation dependence of MPI is determined not just by the highest-occupied
molecular orbital (HOMO) but also by the symmetries and dynamics of other contributing molecular orbitals. In particular, the inner
orbitals can show dominant contributions to the ionization processes when the molecule is aligned in some specific directions with
respect to the field polarization. This feature suggests a new way to selectively probe individual orbitals in strong-field electronic
dynamics.

Key words: Voronoi-cell finite difference method, multiphoton ionization, orientation dependence, polyatomic molecules,
strong-field dynamics, attosecond, time-dependent density-functional theory, nitrogen, water, VFD, TDVFD, MPI, TDDFT, N2,
H2O
PACS: 33.80.Rv, 31.15.A-, 31.15.E-

1. Introduction

The study of attosecond physics and chemistry in intense ul-
trashort laser fields is a subject of much current significance in
science and technology [1, 2]. Attosecond pulses can be pro-
duced by means of high harmonic generation (HHG) of atoms
in intense laser fields [3, 4] and the time profile of the attosec-
ond pulses can be controlled by tuning the carrier envelope
phase [5, 6]. Recent progress of attosecond physics includes
control of electron wave packets [7], probing of nuclear dynam-
ics [8] and electronic dynamics [9], attosecond time-resolved
spectroscopy [10], and tomographic imaging of molecular or-
bitals [11], etc. One of the most novel features in an attosecond
time scale is the direct observation of the motion of electrons in
atoms and molecules [12]. And the exploration of the attosec-
ond electronic dynamics in the strong-field regime has attracted
much interest theoretically and experimentally.

The multiphoton ionization (MPI) of molecules in intense
laser fields is one of the fundamental processes in attosec-
ond and strong-field phenomena. Most of the recent the-
oretical studies of MPI are based on approximated models
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such as the molecular Ammosov–Delone–Krainov (ADK) [13]
and Keldysh–Faisal–Reiss [14] models, which usually consider
only the highest-occupied molecular orbital (HOMO) contri-
bution and neglect the multi-electron dynamics from multiple
orbitals. However, there have been several recent experimental
studies showing significant discrepancies between experimen-
tal observations and approximated models, for examples, the
non-suppression of F2 MPI [15, 16] and the orientation depen-
dence of CO2 MPI [17, 18], etc. More recently, the importance
of contribution to HHG and MPI from the inner orbital just be-
low HOMO has been experimentally demonstrated in diatomic
N2 [19] and polyatomic N2O4 [20], which cannot be explained
by the approximated models. Thus, it is an important and timely
task to develop more comprehensive and accurate theoretical
description of strong-field electronic dynamics including elec-
tron correlation and multi-electron responses. Along this di-
rection, we note that the self-interaction-free time-dependent
density-functional theory (TDDFT) has been recently devel-
oped and successfully applied to a number of studies of atomic
and diatomic molecular processes in intense laser fields [21–
25], with results in good agreement with experiments.

We note that besides the TDDFT approach, several other
time-dependent approaches such as time-dependent configura-
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tion interaction (TDCI) [26] and multi-configurational time-
dependent Hartree–Fock (MCTDHF) [27] methods have been
recently proposed. However, most of these recent studies have
been applied to either one-dimensional model systems or con-
sider only the transitions among the bound states without in-
cluding the continuum spectrum and ionization problems. In-
deed, accurate study of strong-field ionization in polyatomic
molecular systems, taking into account both electron correla-
tion and multiple orbital responses, remains a grand challeng-
ing problem in strong-field molecular physics. In this paper,
we consider the extension of the TDDFT approach with proper
long-range potential to the ab initio nonperturbative study of
multiphoton ionization of polyatomic molecules in intense laser
fields.

From the numerical aspect, the multi-center Coulombic sin-
gularity is a key bottleneck for the accurate treatment of elec-
tronic structure and dynamics in polyatomic molecules. The
Coulombic potential (−1/r) incorporates cusps at nuclear posi-
tions in electronic bound states and also influences continuum
states that are crucial in strong-field electronic dynamics. The
commonly used equal-spacing grid methods [28] are not ade-
quate to handle the short- and long-range of the Coulombic po-
tential. To address this issue, a numerical grid-based method re-
quires local grid refinement around nuclei, such as non-uniform
grids that are distributed denser near nuclei and sparser away
from nuclei. For atomic and diatomic systems, Chu and collab-
orators [21, 29–31] have developed the time-dependent general-
ized pseudospectral (TDGPS) method on non-uniform and opti-
mal grids to accurately solve the electronic structure and strong-
field quantum dynamics with the realistic Coulombic potential
by use of the spherical coordinates (for atoms) and the prolate
spheroidal coordinates (for diatomic molecules). In this paper,
we present a new and different numerical procedure for poly-
atomic molecular systems based on highly adaptive molecular
grids, regardless of the coordinate system and molecular sym-
metry.

To accurately solve the Schrödinger equation on highly adap-
tive molecular grids, we can employ the Voronoi diagram [32].
The Voronoi diagram has tremendous applications [33, 34] over
one century because of its attractiveness and versatility of ge-
ometry. One of noticeable applications for numerical analysis
is the natural element method (NEM) [35–37] taking geomet-
rical advantages of the Voronoi diagram. As a simpler form of
NEM, Sukumar and colleagues [38, 39] recently proposed the
Voronoi-cell finite difference (VFD) method for numerical so-
lutions of the Poisson equation on arbitrarily distributed grids.
In contrast to the ordinary finite difference method with reg-
ular uniform grids, this method can accommodate any types
of grid distributions. Since there is no restriction on the lo-
cations of grid points, VFD is regarded as a meshfree (or mesh-
less) method which is of current interest in numerical analy-
sis [40, 41]. More recently, the VFD method was extended to
the Schrödinger equation solver for polyatomic molecular cal-
culations [42].

In this paper, we present a new time-dependent Voronoi-cell
finite difference (TDVFD) method for the accurate and efficient
solution of time-dependent Schrödinger and Kohn–Sham equa-

tions, combining with the split-operator technique in the en-
ergy representation [29, 30]. Then we shall apply the proposed
numerical method to the all-electron TDDFT calculation (with
proper long-range potential) for the investigation of strong-field
multiphoton electronic dynamics in diatomic and small poly-
atomic molecules, taking into account electron correlation and
multi-electron responses.

The outline of this paper is as follows. In Sec. 2, we discuss
the Laplacian and gradient operators in the VFD method, es-
pecially for the solution of the Schrödinger equation, and then
introduce a new TDVFD method. We also propose highly adap-
tive molecular grids suitable for polyatomic molecular calcula-
tions. In Sec. 3, we present the electronic structures of sev-
eral small polyatomic molecules with self-interaction-free DFT
computed by the VFD method. In Sec. 4, we extend the TD-
VFD method to the solution of TDDFT equations to investigate
the orientation dependence of MPI of N2 and H2O in intense
and ultrashort laser pulses. This is followed by a conclusion in
Sec. 5.

2. Time-dependent Voronoi-cell finite difference method

2.1. Discrete Laplacian operator
The discrete Laplacian operator in the Voronoi-cell finite

difference (VFD) scheme was proposed by Sukumar and col-
leagues [38, 39]. In this section, we briefly review the deriva-
tion of the Laplacian matrix in the VFD scheme.

Given an arbitrarily distributed grid-point set {ri} in n-
dimensions, a Voronoi cell surrounding a grid of ri is defined by
a set of points that are closer to ri than to any other grids [33],

Ti = {r ∈ Rn : d(r, ri) ≤ d(r, r j) for ∀ j , i}, (1)

where d(ri, r j) is a distance between two points ri and r j. It is
well known that the Voronoi diagram is uniquely defined for a
given grid-point set [33]. Thus the Voronoi diagram provides an
unique discretization of the whole space. Figure 1 shows one
example of a Voronoi diagram in the 2-dimensional (2D) case.
Ti indicates the Voronoi cell encapsulating the i-th grid, and its
volume is given by vi. A Voronoi facet, si j, is the surface where
two adjacent Ti and T j meet together. Note that the Voronoi
facet is a line in 2D (also called the Voronoi edge) as shown in
Fig. 1 and a plane in 3D. hi j is a distance between the i-th and
j-th grids. From the Voronoi properties, si j is the perpendicular
bisector of hi j. A natural neighbor [43] is defined by the fact
that if two grids share a common Voronoi facet, they are natural
neighbors. For example, in Fig. 1 the grids of 1–5 are natural
neighbors of the i-th grid but the grid of 6 is not. A Voronoi
vertex is defined as the point where Voronoi facets converge. In
other words, the Voronoi facet between two neighboring grids
is surrounded by Voronoi vertices belonging to the two grids.
Therefore, an area of si j in 3D (or a length in 2D) can be com-
puted using the position of the surrounding vertices. Ti is fur-
ther decomposed into polygonal pyramids that have their apex
at the i-th grid and their base as each Voronoi facet, so vi can be
computed by the sum of volumes of these polygonal pyramids.
To summarize, for a given set of arbitrarily distributed grids, vi,
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Figure 1: (Color online) Voronoi diagram on arbitrarily distributed grid points

si j, and hi j are easily calculated by Voronoi vertices and natural
neighboring relations within the Voronoi diagram. For numer-
ical determination of the Voronoi diagram, we use the Qhull
package [44], and all calculations are performed in 3D.

The Gauss’s theorem [45] states that∫
V
∇ · F dV =

∫
S

F · n dS . (2)

From this theorem, the Laplacian acts on a function ϕ is defined
in the integral form,

∇
2ϕ = lim∫

V dV→0

∫
S ∇ϕ · n dS∫

V dV
, (3)

where n is the normal vector of the surface S . After the Voronoi
discretization, the volume in the vicinity of the i-th grid can
be given by the Voronoi cell, Ti. Then the volume integral is
converted into the Voronoi volume, vi, and the surface integral
is decomposed into the areas of the Voronoi facets, si j, over
neighboring grid j’s. The inner product indicates a directional
derivative of ϕ, which can be approximated by the simple dif-
ference scheme, (∇ϕ)i · ni j ≈ (ϕ j − ϕi)/hi j, since hi j is perpen-
dicular to si j. Thus the discrete Laplacian at the i-th grid in the
VFD scheme can be evaluated by [38, 39],

(
∇

2ϕ
)

i
=

1
vi

neighbors∑
j

ϕ j − ϕi

hi j
si j. (4)

Once vi, si j, and hi j for given grid points are available, one can
simply compute the Laplacian in the framework of VFD. The
matrix form of the Laplacian operator L in VFD is expressed as

L : Li j =


−

1
vi

neighbors∑
k

sik

hik
(i = j),

1
vi

si j

hi j
(i, j: neighbors),

0 (otherwise),

(5)

where k runs over natural neighbors of the i-th grid. Note that
L is not symmetric (Li j , L ji) due to vi.

This VFD scheme resembles the finite volume method
(FVM) [46] in the sense that both are based on the Gauss’s
theorem and cell volumes to derive basic formula. However,
VFD substitutes the volume integral with the Voronoi volume
and the surface integral with the simple finite difference form
of the directional derivatives, while FVM generally evaluates
those integrals using interpolation and quadrature. As a result,
VFD provides the simple and explicit expressions at each grid
without additional background grids.

2.2. Symmetrized VFD Hamiltonian for the time-independent
Schrödinger equation

In this section, we discuss how to solve the time-independent
Schrödinger equation with the symmetrized VFD Hamiltonian
matrix [42]. One can directly use the discrete Laplacian opera-
tor in VFD to solve the Schrödinger equation for one electron,[

−
1
2
∇

2 + u(r)
]
ψ(r) = εψ(r), (6)

where u(r) is a potential function, ψ(r) is an eigenfunction, and
ε is an eigenvalue. Note that the atomic units are used through-
out the paper, unless otherwise indicated. The reduced mass of
the electron is set to the unity. In the matrix representation, the
Hamiltonian matrix is given by

H = − 1
2 L + U, (7)

where U is a potential matrix and given by diagonal elements
evaluated at each grid,

U : Ui j = δi ju(ri). (8)

Then, the eigenvalue problem to be solved is

HC = CE, (9)

where C is the eigenvector matrix and E is the diagonal matrix
of eigenvalues. Since L is non-symmetric, it is advantageous to
transform H into a symmetric form to facilitate the eigenvalue
solution.

Here we introduce a transformation of C̃ = V 1
2 C where V is

given by diagonal elements of Voronoi volumes,

V : Vi j = δi jvi. (10)

When C = V− 1
2 C̃ is substituted into Eq. (9), one obtains(
− 1

2 V
1
2 LV−

1
2 + U

)
C̃ = C̃E, (11)

where V 1
2 UV− 1

2 = U is used because both U and V are diagonal
matrices. Using a similarity transformation of L,

L̃ = V
1
2 LV−

1
2 , (12)

one obtains a symmetric matrix L̃. The explicit expressions for
L̃ elements are

L̃ : L̃i j =


−

1
vi

neighbors∑
k

sik

hik
(i = j),

1
√viv j

si j

hi j
(i, j: neighbors),

0 (otherwise).

(13)
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Note that VFD provides a very sparse matrix because it con-
sists of diagonal elements and nonzero elements only at natural
neighboring indexes.

Now one can solve the symmetric eigenvalue problem with
H̃ = − 1

2 L̃ + U instead of Eq. (9),

H̃C̃ = C̃E. (14)

The eigenvalues of this real symmetric sparse matrix are numer-
ically determined by the implicitly restarted Lanczos method
of ARPACK [47] and the large sparse matrix solver of PAR-
DISO [48].

When a numerical integral is required, for examples, compu-
tation of energy functionals in Sec. 3.1 or ionization probability
in Sec. 4.1, a set of Voronoi volumes, {vi}, works as weights
in the nodal quadrature method [49] without additional back-
ground cells or grids. The integral in the VFD scheme is simply
evaluated by the summation over all grids,∫

V
f (r)dV ≈

all∑
i

f (ri)vi. (15)

The numerical error of this nodal quadrature was analyzed else-
where [42].

2.3. Discrete gradient operator
In this section, we derive a discrete gradient operator in the

VFD scheme as the same manner as the Laplacian operator in
Sec. 2.1. One can recall an alternative form of the Gauss’s the-
orem [45], ∫

V
∇ f dV =

∫
S

f n dS . (16)

The gradient is defined in the integral form,

∇ϕ = lim∫
V dV→0

∫
S ϕn dS∫

V dV
. (17)

The gradient at the i-th grid is given by the summation over
Voronoi facet areas divided by the Voronoi volume after the
Voronoi discretization. To evaluate the surface integral over
S , ϕ on S is approximated to (ϕi + ϕ j)/2 on si j because si j is
the perpendicular bisector of hi j. Utilizing

∑
j ni jsi j = 0 and

the normal vector on si j by ni j = (r j − ri)/hi j, one obtain the
discrete gradient at the i-th grid in the VFD scheme as

(∇ϕ)i =
1
vi

neighbors∑
j

ϕ j + ϕi

2
ni jsi j

=
1

2vi

neighbors∑
j

ϕ jsi j(r j − ri)
hi j

. (18)

Note that this expression using the middle point of ϕi and ϕ j is
different from the gradient operator using the center of mass of
the Voronoi facet [50]. The matrix form of the x-component of
the gradient operator G(x) is expressed as

G(x) : G(x)
i j =


0 (i = j),
1

2vi

si j

hi j
(r j − ri) · êx (i, j: neighbors),

0 (otherwise),

(19)

where êx is the unit vector of the x-axis. Also G(y) and G(z) are
defined likewise. Note that the gradient operator is intrinsically
non-symmetric.

2.4. TDVFD with the split-operator technique in the energy
representation

In this section, we present a time-dependent Voronoi-cell fi-
nite difference (TDVFD) method as an extension of VFD to
the time domain, incorporating with the second-order split-
operator technique in the energy representation [29, 30]. Let us
consider the time-dependent Schrödinger equation with a time-
dependent potential u(r, t),

i
∂

∂t
ψ(r, t) = Ĥ(r, t)ψ(r, t), (20)

where Ĥ(r, t) = − 1
2∇

2 + u(r, t). For a numerical time-
propagation of Eq. (20), Ĥ(r, t) can be split into two parts as

Ĥ(r, t) = Ĥ0(r) + Û(r, t), (21)

where

Ĥ0(r) = −
1
2
∇

2 + u(r, 0), (22)

Û(r, t) = u(r, t) − u(r, 0). (23)

Here the unperturbed Hamiltonian Ĥ0(r) is accurately solved
by the VFD method and the time-dependent potential Û(r, t) is
simply given by a diagonal matrix evaluated at each grid in the
VFD scheme. Then the second-order split-operator technique
for the time-propagation yields

ψ(t + ∆t) = e−iÛ(t) ∆t
2 e−iĤ0∆te−iÛ(t) ∆t

2 ψ(t) + O(∆t3), (24)

where the coordinate r is not explicitly expressed for briefness.
In the matrix representation,

f(t + ∆t)← e−iU(t) ∆t
2 e−iH0∆te−iU(t) ∆t

2 f(t), (25)

where f(t) is a column vector of the time-dependent wavefunc-
tion represented in every grid,

f(t) = (· · · fi(t) · · · )T ; fi(t) = ψ(ri, t). (26)

The exponential of the diagonal matrix is trivially obtained by
exponentiating every entry on the main diagonal. Since U(t)
is given by a diagonal matrix in VFD, exp(−iU(t) ∆t

2 ) is simply
computable. For exp(−iH0∆t), one defines an evolution matrix
S with the spectral decomposition of H0 = CEC−1,

S = e−iH0∆t = Ce−iE∆tC−1, (27)

where exp(−iE∆t) is easily computable with the eigenstate en-
ergies in the diagonal matrix E.

For the symmetric Hamiltonian H̃0 in Eq. (14), the symmet-
ric version is expressed by

S̃ = e−iH̃0∆t = C̃e−iE∆tC̃T , (28)
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and then the time-propagation is performed by

f̃(t + ∆t) = W(t) · S̃ ·W(t) · f̃(t), (29)

where f̃ = V
1
2 f and W(t) = e−iU(t) ∆t

2 . All operations here are
the matrix–vector multiplication and even W(t) is a diagonal
matrix. The explicit expressions of the S̃ elements are

S̃ : S̃ i j =
∑

k

C̃ikC̃ jke−iεk∆t, (30)

where εk is the k-th eigenstate energy and C̃ik is a value at the
i-th grid of the k-th eigenvector of H̃. We emphasize that this S̃
is a time-independent complex symmetric matrix and it needs
to be constructed only once before the time-propagation, which
remarkably reduces the computation time.

This TDVFD scheme in the energy representation is different
from the conventional split-operator techniques [51, 52] where
Ĥ0 is usually chosen to be the kinetic energy operator solved
by the fast Fourier transformation on the uniform grids. The
advantages of using our proposed method are (i) highly adap-
tive molecular grids to solve Ĥ0, which are to be discussed in
the next section, and (ii) elimination of the undesirable fast-
oscillating high-energy components in the S̃ matrix [29, 30].
Both features allow us to reduce the number of spatial grids
and to speed up the time-propagation considerably. Further-
more, this scheme inherits unconditionally numerical stability
and conservation of probability from the original split-operator
technique due to the unitary evolution operator [51]. Thus
it conserves the norm of the wavefunctions during the time-
propagation (for example, errors of the norm are about 10−10 in
the field-free case), ensuring the numerical accuracy of ioniza-
tion probabilities computed from the norm of the wavefunctions
in Sec. 4.1.

2.5. VFD discretization for molecular systems

In the real-space grid method for polyatomic molecular cal-
culations, local refinement around nuclear positions is requi-
site to capture the multi-center Coulomb singularity. Since the
VFD scheme allows the freedom to choose any arbitrary grid
distributions, i.e., calculations are performed on unstructured1

grids, it may be possible to optimize molecular grids in a highly
structured2 manner. For polyatomic molecular grids, it is nat-
ural and intuitive to consider spherical atomic grids located at
nuclear positions to attain more grids near the nuclei. In the
previous work [42], we introduced three different types: non-
overlap, overlap, and squeezed composite molecular grids. We
concluded that non-overlap type would be better in accuracy
and efficiency, which is constructed by the way that spherical
atomic grids are combined and the grids in the overlapping re-
gion are removed except ones closest to the atom.

1In numerical analysis, unstructured means that there is no fixed connec-
tivity among grids, while structured means that there is a fixed number for
connectivity among grids.

2Here, we use structured to express a well-designed grid distribution suit-
able for specific problems.

(a) Lebedev grids (b) Womersley grids

Figure 2: Comparison of two angular grid distributions plotted over the half
sphere.

To achieve more local refinement in the vicinity of nuclei, the
radial part of the spherical atomic grids with a finite maximum
radius rmax is generated by an algebraic mapping function [29],

r(x) = L
1 + x

1 − x + 2L
rmax

(−1 < x ≤ 1), (31)

where L is a mapping parameter and x is defined as uniform
grid points in 1D,

xi =
2i
Nr
− 1 (i = 1, · · · ,Nr), (32)

where Nr is the number of radial grids.
For the angular part of the spherical atomic grids, we adopt

angular gird distributions from the Lebedev quadrature [53] and
the Womersley quadrature [54]. Figures 2 compares the Lebe-
dev and Womersley grid distributions for lmax=32 that is the
order of angular grids and also indicates the maximum angular
momentum. The Lebedev grids retain the octahedral symmetry,
so their distribution is to some extent biased around x, y, and z-
axes. For a given lmax, the number of angular grids is estimated
by Nang ≈ 4(lmax + 1)2/3. On the other hand, the Womers-
ley grids are designed to be fairly uniform over the sphere, and
the number of angular grids is given by Nang = (lmax + 1)2 ex-
actly. Since numerical results of eigenvalues for both grid types
show a very small difference (� 5 × 10−5 a.u. for lmax=10) but
the Womersley scheme offers the smaller Nang, we shall use the
Womersley grids for all calculations in this paper.

There are only four parameters to build up spherical atomic
grids: Nr, L, and rmax for the radial part, and lmax for the an-
gular part. Using the non-overlap scheme, we can construct
molecular grids from the spherical atomic grids for the VFD
calculations. Figure 3 shows 2D sketches of three examples of
molecular grids: diatomic N2, linear triatomic CO2, and bent
triatomic H2O. One can observe that molecular grids are highly
adaptive satisfying more grid points around nuclei.

3. Electronic structure calculation of polyatomic molecules
by self-interaction-free density-functional theory

3.1. Application of VFD to density-functional theory
We apply the VFD method to accurately compute the elec-

tronic structure of many-electron polyatomic molecules using
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(a) N2 (b) CO2 (c) H2O

Figure 3: 2D sketches of molecular grids used in the Voronoi-cell finite difference method.

the density-functional theory (DFT) [55]. The DFT states the
total energy can be obtained by energy functional [56],

Etotal = E[ρ] = Ts[ρ] + J[ρ] + Ene[ρ] + Exc[ρ↑, ρ↓], (33)

where ρ is the total density, and ↑ and ↓ indicate spin-up and
spin-down, respectively. Ts[ρ] is the noninteracting kinetic en-
ergy functional, J[ρ] is the classical electron–electron repulsion
energy functional, and Ene[ρ] is the nucleus–electron Coulomb
interaction energy functional.

J[ρ] =
1
2

∫∫
ρ(r)ρ(r′)
|r − r′|

drdr′, (34)

Ene[ρ] =

∫ ∑
A

ZAρ(r)
|r − RA|

dr, (35)

where RA and ZA are the nuclear position and charge of the A-
th nucleus, respectively. Exc[ρ↑, ρ↓] is the exchange–correlation
energy functional whose exact form is unknown and it needs to
be approximated.

In the Kohn–Sham DFT formulation [57], one solves the
Schrödinger-like equation for N-electron systems,[

−
1
2
∇

2 + ueff,σ(r)
]
ψiσ(r) = εiσψiσ(r),

(i = 1, 2, ...,Nσ) (36)

where i and σ are the orbital and spin indexes, respectively. The
spin density is given by

ρσ(r) =

Nσ∑
i=1

|ψiσ(r)|2, (37)

and the total density is given by

ρ(r) =
∑
σ

ρσ(r) = ρ↑(r) + ρ↓(r). (38)

The effective potential ueff,σ(r) consists of three terms,

ueff,σ(r) = une(r) + uh(r) + uxc,σ(r). (39)

In the framework of VFD, detailed expressions for each term
are as follows.

(i) Nucleus–electron potential: The Coulomb interaction be-
tween the electron and nuclei is given by

une(r) =
∑

A

ZA

|r − RA|
. (40)

Its matrix form in VFD is simply given by diagonal elements
evaluated at each grid.

(ii) Hartree potential: The Hartree potential is given by the
classical electron–electron repulsion,

uh(r) =

∫
ρ(r′)
|r − r′|

dr′. (41)

Alternatively, it is computable by solving the Poisson equation,

∇
2uh(r) = −4πρ(r). (42)

Its discrete form uh is simply solvable by a linear system solu-
tion of the Laplacian matrix in VFD,

Luh = −4πρ, (43)

where uh and ρ are column vector forms of the Hartree potential
and the total density represented in every grid.

uh = (· · ·wi · · · )T ; wi = uh(ri), (44)

ρ = (· · · ρi · · · )T ; ρi = ρ(ri). (45)

Here L is the VFD Laplacian matrix in Eq. (5). After substitut-
ing the similarity transformation of Eq. (12) into Eq. (43), one
obtains the symmetric form,

L̃ũh = −4πρ̃, (46)

where ũh = V 1
2 uh and ρ̃ = V 1

2 ρ. The boundary conditions
for the Hartree potential (= Q/r where Q is the total charge
of electrons) are easily incorporated within L̃. Note that the
Poisson equation is solved with the same local grid refinement
as the Schrödinger equation or the Kohn–Sham equation. Even
though molecular grids are introduced to capture the nucleus–
electron Coulomb singularity, one can expect that they also take
care of electron–electron Coulomb singularity because the total
electronic density is localized near nuclear positions.

(iii) Exchange–correlation potential: The conventional
exchange–correlation functionals, such as local spin-density
approximation (LSDA) or generalized gradient approximation
(GGA), contain spurious self-interaction energy [55] and they
do not possess the correct long-range Coulombic (−1/r) be-
havior. To take into account the proper long-range potential
and remove the self-interaction energy, we adopt the improved
Leeuwen–Baerends (LBα) potential [58],

uLBα
xc,σ(r) = αuLSDA

x,σ (r) + uLSDA
c,σ (r)

−
βx2

σ(r)ρ1/3
σ (r)

1 + 3βxσ(r) log
(
xσ(r) +

√
x2
σ(r) + 1

) , (47)
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where xσ(r) = |∇ρσ(r)|/ρ4/3
σ (r). Note that α and β are two

adjustable parameters in the LBα potential. uLSDA
x,σ and uLSDA

c,σ
indicate the exchange and correlation potentials of LSDA, re-
spectively, and we use the Perdew–Wang representation for the
correlation functional [59]. To assure the asymptotic Coulom-
bic tail of −1/r, the Fermi–Amaldi term is smoothly attached
for the long-range distance [60]. By means of the VFD gradi-
ent operator in Eq. (19), xσ(r) at the i-th grid is computed by

xσ(ri) =

√(
g(x)

i

)2
+

(
g(y)

i

)2
+

(
g(z)

i

)2

ρ4/3
σ (ri)

, (48)

where g(x)
i =

[
∇ρσ(r) · êx

]
i =

∑
j G(x)

i j ρσ(r j) and likewise for g(y)
i

and g(z)
i .

3.2. VFD electronic structure calculation of polyatomic
molecules

The DFT formula with the self-interaction-correction term
provides considerable improvement on the electronic structure
of atoms and molecules. Analogue to Koopman’s theorem
for the Hartree–Fock approximation, orbital energies from the
Kohn–Sham equation in Eq. (36) are comparable to the ex-
perimental vertical ionization potentials [61]. In Table 1, we
present orbital binding energies (−ε) of several small poly-
atomic molecules calculated by the VFD method with the
LSDA and LBα potentials, in comparison with experiments and
other calculations.

We use experimental equilibrium geometry for the bond
length (R) and the bond angle (∠):

(i) N2: RNN=2.074 a.u. [62],
(ii) F2: RFF=2.668 a.u. [62],

(iii) CO2: RCO=2.196 a.u. [63] and ∠OCO=180◦,
(iv) H2O: ROH=1.810 a.u. and ∠HOH=104.48◦ [64],
(v) NH3: RNH=1.913 a.u. and ∠HNH=106.67◦ [63],

(vi) CH4: RCH=2.054 a.u. [65] and ∠HCH=109.471◦.

Computational parameters in the VFD method are Nr=300,
L=0.5 a.u., rmax=20 a.u., and lmax=25 for all molecular cases.
For LBα parameters, we use α=1.19 and β=0.01 for all cases.

For LSDA, we compare the VFD values with results by
the standard quantum chemistry program of the linear com-
bination of atomic orbitals (LCAO), which are performed by
GAMESS [66] with a large basis-set of aug-cc-pVQZ [67]
that is nearly converged to the complete basis-set limit. The
LSDA orbital energies computed by VFD are well agreed up
to ∼ 0.1 eV for valence orbitals and up to ∼ 0.4 eV for core
orbitals with large basis-set calculations.

For LBα, we compare the VFD values with the results ob-
tained by the generalized pseudospectral (GPS) method [30,
68], which provides machine accuracy for atoms and diatomic
molecules [31]. For diatomic molecules, N2 and F2, the LBα
valence orbital energies by VFD are almost exactly matched
with the GPS values [25], ensuring the numerical accuracy of
the VFD method.

These LBα values are comparable with experimental verti-
cal ionization potentials [69–75]. For outer valence orbitals,

LBα orbital energies computed by VFD are close to experi-
mental values within ∼ 0.9 eV. Note that conventional LSDA
functional without the self-interaction correction cannot de-
scribe electronic structure and ionization potential correctly,
i.e., LSDA valence orbital energies are too weakly bound for
all molecules.

4. Exploration of strong-field electronic dynamics in poly-
atomic molecules by time-dependent density-functional
theory with proper long-range potential

4.1. Application of TDVFD to time-dependent density-
functional theory

We now consider the solution of a set of time-dependent
Kohn–Sham equations for N-electron systems in the time-
dependent density-functional theory (TDDFT) framework [76],

i
∂

∂t
ψiσ(r, t) =

[
−

1
2
∇

2 + ueff,σ(r, t)
]
ψiσ(r, t),

(i = 1, 2, ...,Nσ), (49)

where the time-dependent effective potential is expressed by

ueff,σ(r, t) = une(r) + uh(r, t) + uxc,σ(r, t) + F(t) · r. (50)

The time-dependent Hartree potential is

uh(r, t) =

∫
ρ(r′, t)
|r − r′|

dr′, (51)

and for the time-dependent exchange–correlation potential we
use the adiabatic approximation [22] with the LBα potential of
Eq. (47),

uxc,σ(r, t) = uLBα
xc,σ[ρσ]

∣∣∣∣
ρσ=ρσ(r,t)

. (52)

The correct long-range asymptotic behavior of the LBα poten-
tial is crucial for proper DFT treatment of molecular excited and
continuum states in strong-field electronic dynamics [21, 23–
25, 77]. The last term F(t) · r is the interaction of an electron
with a linearly-polarized external laser field.

To solve Eq. (49), we use the TDVFD method described in
Sec. 2.4. In the split-operator technique, Ĥ0(r) and Û(r, t) are
given by

Ĥ0(r) = − 1
2∇

2 + ueff,σ(r, 0), (53)

Û(r, t) = F(t) · r +
[
uxc,σ(r, t) − uxc,σ(r, 0)

]
+ [uh(r, t) − uh(r, 0)] , (54)

and the time-dependent wavefunction for each spin-orbital is
propagated by Eq. (24). Through the TDDFT formulation
solved by the TDVFD method, we can now explore strong-field
electronic dynamics including all molecular spin-orbitals and
continuum states.

From the TDDFT solutions, one can compute the time-
dependent ionization probability of individual spin-orbital by

Piσ(t) = 1 − Niσ(t), (55)
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Table 1: Orbital binding energies computed with LSDA and LBα in comparison with experimental (EXP) vertical ionization potentials and other calculations. All
values are in eV. LCAO: Linear combination of atomic orbitals computed by GAMESS [66] with aug-cc-pVQZ; GPS: Generalized pseudospectral method [25].

LSDA LBα
Molecule Orbital LCAO VFD GPS VFD EXP [Ref.]

N2 3σg 10.4 10.4 15.5 15.5 15.5 [69]
1πu 11.9 11.9 16.9 16.9 16.8 [69]
2σu 13.4 13.5 18.5 18.5 18.6 [69]
2σg 28.2 28.2 33.0 37.3 [69]
1σu 380.0 380.1 402.8 409.9 [69]
1σg 380.1 380.2 402.8 409.9 [69]

F2 1πg 9.6 9.7 16.0 16.0 15.9 [70]
1πu 13.1 13.1 19.2 19.3 18.8 [70]
3σg 15.8 15.8 21.9 21.9 21.1 [70]
2σu 27.4 27.5 33.8
2σg 33.9 33.9 39.9
1σu 658.7 659.1 686.7
1σg 658.7 659.1 686.7

CO2 1πg 9.3 9.4 14.7 13.8 [71]
1πu 13.0 13.0 18.2 17.6 [71]
3σu 12.8 12.8 18.2 18.1 [71]
4σg 13.8 13.8 19.2 19.4 [71]
2σu 28.2 28.1 33.3 36.9 [72]
3σg 29.1 29.1 34.2 38.0 [72]
2σg 271.1 271.1 291.7 297.5 [69]
1σu 508.6 508.9 533.7 540.8 [69]
1σg 508.6 508.9 533.7 540.8 [69]

H2O 1b1 7.4 7.4 12.5 12.6 [73]
3a1 9.4 9.4 14.5 14.8 [73]
1b2 13.3 13.3 18.2 18.7 [73]
2a1 25.2 25.2 30.1 32.4 [73]
1a1 506.4 506.6 531.0 539.7 [69]

NH3 3a1 6.3 6.3 10.9 10.8 [74]
1e 11.3 11.4 15.9 16.0 [74]
2a1 21.1 21.1 25.6 27.7 [74]
1a1 376.6 376.7 398.7 405.6 [69]

CH4 1t2 9.5 9.5 13.9 13.6 [75]
2a1 17.0 17.0 21.3 22.9 [75]
1a1 265.5 265.6 285.4 290.7 [69]
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where
Niσ(t) = 〈ψiσ(r, t)|ψiσ(r, t)〉 (56)

is the population or survival probability of the spin-orbital,
which is decreasing as a function of t due to the absorber [29]
to prevent spurious reflections at radial boundary and to filter
out the ionized wave packet. The total ionization probability P
after one pulse (t = T ) can be calculated by

P = 1 −
∏
iσ

[1 − Piσ(T )] . (57)

In the limit of small Piσ(T ), Eq. (57) is reduced to the sum of
individual ionization probabilities,

P ≈
∑
iσ

Piσ(T ). (58)

4.2. Orientation dependence of multiphoton ionization of N2

We perform TDDFT calculations of N2 with arbitrary field–
molecule orientation by means of the TDVFD method. The
ground-state electronic configuration of N2 is

[core](2σg)2(2σu)2(1πu)4(3σg)2,

where [core] is (1σg)2(1σu)2 that corresponds to 1s orbitals of
two N’s. All orbitals except the core orbitals participate in the
time-propagation.

For time-dependent solutions with the TDVFD method, the
most time consuming part is Eq. (29), involving the matrix–
vector multiplication. In the VFD and TDVFD schemes, the
matrix size is identical to the total number of grid points. Ta-
ble 2 shows LBα orbital binding energies of N2 with smaller
number of grids than one used in Table 1: Nr=80, L=2 a.u.,
rmax=40 a.u., and lmax=12, corresponding to the total number
of grids Ntot=21,164. For LBα parameters, α=1.24 is used.
One can see that LBα orbital energies with a small number
of grids still reproduce the electronic structure of N2 in good
agreement with experiments. Based on this electronic struc-
ture with the matrix size of Ntot=21,164, we are able to carry
out time-dependent calculations with a reasonable computation
time.

Table 2: Orbital binding energies (in eV) of N2 computed by VFD with a small
number of grids.

Orbital VFD/LBα EXP [Ref.]
3σg(HOMO) 15.5 15.5 [69]
1πu(HOMO−1) 17.0 16.8 [69]
2σu(HOMO−2) 19.0 18.6 [69]
2σg 33.3 37.3 [69]
1σu 410.8 409.9 [69]
1σg 410.8 409.9 [69]

In order to examine electronic dynamics as a function of the
angle between the polarization of the laser field and the orienta-
tion of aligned N2, we define the orientation angle as shown in

Figure 4: Molecular geometry and molecular orbital pictures of N2. The prin-
cipal axis is the z-axis and the molecular geometry is fixed. Two nitrogen atoms
(gray ball) are located in the z-axis. The field polarization axis with respect to
the principal axis changes toward the x-axis (Θ).

Fig. 4(a). Without loss of generality, we assume that the molec-
ular axis coincides with the z-axis and the polarization vector of
the external field lies in the xz-plane, then F(t) · r is given by

F(t) · r = F(t)(x sin Θ + z cos Θ), (59)

where Θ is the orientation angle between the molecular axis and
the field polarization axis.

For the sine-squared pulse envelope, we use

F(t) = F0 sin2
(
πt
T

)
sinωt, (60)

where F0 is the peak field amplitude, ω is the carrier frequency,
and T is the pulse duration. During the time-propagation, we
use the radial-based absorber function [29] as

w(rc) = cos
1
4

[
π(rc − r0)
2(r1 − r0)

]
for r0 ≤ rc ≤ r1, (61)

where rc is a radial distance from the closest nucleus. For
computational parameters of time-dependent problems, we
use ω=0.0556 a.u. corresponding to the wavelength 800 nm,
T=20 optical cycles (o.c.), ∆t=0.001 o.c., r0=15 a.u., and
r1=25 a.u. For T=20 o.c. calculation (20,000 time iterations
in total), the computation time takes about 10.5 hours on the
lab workstation equipped with two Intel X5355 CPUs.

Figures 4(b)–(e) illustrate individual orbital pictures of N2
obtained by GAMESS [66] and MacMolPlt [78]. HOMO (3σg)
and HOMO−2 (2σu) lie along with the z-axis and two degen-
erate HOMO−1 (1πu,x and 1πu,y) lie in the xz- and yz-planes.
Energetically, the orbital of less ionization potential tends to
be more ionized. Thus HOMO is usually expected to be the
most dominant portion in the total ionization probability. How-
ever, the ionization process is also related to the molecular or-
bital symmetry [25, 31, 77, 79]. When the linearly-polarized
laser field is applied to the z-axis (parallel, Θ=0◦), HOMO
and HOMO−2 can be more perturbed and ionized than other
orbitals because the induced dipole change of σ-symmetry
is preferable along with this field polarization parallel to the
molecular axis [19]. On the other hand, when the field is ap-
plied to the x-axis (perpendicular, Θ=90◦), HOMO−1 (only
1πu,x in this case) symmetry is along with the field polariza-
tion. Therefore, we expect that the orientation dependence of
MPI is reflected by individual orbital symmetries.
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Figure 5: Plots of the time-dependent electron population Niσ(t) of individual
spin-orbital of N2. The laser peak intensities are 1014 W/cm2 in (a) and (d),
3 × 1014 W/cm2 in (b) and (e), and 5 × 1014 W/cm2 in (c) and (f). The field–
molecule orientation angles are Θ=0◦ for (a)–(c) and Θ=90◦ for (d)–(f). The
legend in (d) is for all plots.

In Fig. 5, we plot time-dependent electron population Niσ(t)
of individual N2 spin-orbital in the parallel [Fig. 5(a)–(c)] and
perpendicular [Fig. 5(d)–(f)] cases. The peak intensities are
1014 W/cm2 in Fig. 5(a) and (d); 3×1014 W/cm2 in Fig. 5(b) and
(e); and 5× 1014 W/cm2 in Fig. 5(c) and (f). In the parallel case
(Θ=0◦), HOMO exhibits the most dominant contribution to the
total ionization and HOMO−2 contribution is also increasing as
the intensity increases. On the other hand, HOMO−1 contribu-
tion is increasing as the intensity increases in the perpendicu-
lar case (Θ=90◦) due to the orbital symmetry of πu. Note that
HOMO contribution is still dominant in both cases.

Figure 6 shows the orientation dependence of ionization
probabilities of N2 with 800 nm and 2 × 1014 W/cm2 as a func-
tion of the field–molecule orientation angle. Note that larger an-
gular grids are used (lmax=15) in calculations to plot individual
orbital ionization probabilities in Fig. 6 because of a possible
resonance between HOMO and HOMO−1. The total ionization
probability in the polar plot (left panel) looks like a dumbbell
shape in accord with experiments [17]. The ionization prob-
abilities of individual orbitals (right panel) illustrates impor-
tance of multi-electron effects between HOMO and HOMO−1.
For Θ=15–40◦, HOMO−1 contribution is larger than HOMO
contribution. Thus, both HOMO and HOMO−1 contribute to
this dumbbell shape of the orientation dependent plot of the
total ionization probability. These comparable contributions
from HOMO and HOMO−1 are explained by a small orbital
energy difference and a strong coupling between HOMO and
HOMO−1. In Table 2, calculated difference between HOMO
and HOMO−1 is only 1.5 eV, which is relatively small in com-
parison with other molecules in Table 1. Moreover, this energy
gap is very close to the photon energy (1.55 eV) correspond-
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Figure 6: Orientation dependence of total ionization probability (left panel)
and individual ionization probability of multiple orbitals (right panel) of N2
with 800 nm and 2 × 1014 W/cm2.
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Figure 7: Effects of laser intensity on the orientation dependence of total ion-
ization probability of N2.

ing to the carrier wavelength of 800 nm. A transition between
HOMO (3σg) and HOMO−1 (1πu) is forbidden in the parallel
case (Θ=0◦) but allowed in other angles, so it leads to a possible
one-photon resonance between HOMO and HOMO−1. This
phenomenon is also theoretically predicted in MPI and HHG of
N2 in the 800 nm laser field [80].

Next, we consider effects of laser intensity on the orientation
dependent patterns in Fig. 7. The peak intensity of laser pulses
is varying from 1014 to 5 × 1014 W/cm2, and the wavelength
is fixed at 800 nm. All data sets are normalized to their maxi-
mum value. As the intensity increases, the polar plot becomes
less anisotropic [25] because at higher intensity all orbitals par-
ticipate in the ionization process, thus losing a characteristic
pattern of each orbital.

4.3. Orientation dependence of multiphoton ionization of H2O
We perform TDDFT calculations of H2O with arbitrary

field–molecule orientation by means of the TDVFD method.
The ground-state electronic configuration of H2O is

[core](2a1)2(1b2)2(3a1)2(1b1)2,

where [core] is (1a1)2 that corresponds to O 1s orbital. All or-
bitals except the core orbital participate in the time-propagation.
Table 3 lists LBα orbital binding energies with a small number
of grids and α=1.21 is used. The grid parameters are Nr=80,
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L=2 a.u., rmax=40 a.u., and lmax=10, which provide Ntot=20,022
for the triatomic H2O molecule. For the time-propagation of
T=20 o.c., the computation time is about 9 hours on the same
workstation mentioned in Sec. 4.2.

Table 3: Orbital binding energies (in eV) of H2O computed by VFD with a
small number of grids.

Orbital VFD/LBα EXP [Ref.]
1b1(HOMO) 12.6 12.6 [73]
3a1(HOMO−1) 14.6 14.8 [73]
1b2(HOMO−2) 18.2 18.7 [73]
2a1 30.5 32.4 [73]
1a1 540.5 539.7 [69]

Figure 8: Molecular geometry and molecular orbital pictures of H2O. The prin-
cipal axis is the z-axis and the molecular geometry is fixed. Oxygen atom (red
ball) and two hydrogen atoms (white ball) are contained in the yz-plane. The
field polarization axis with respect to the principal axis changes toward the x-
axis (Θ1) or the y-axis (Θ2).

Figure 8 depicts orbital pictures of H2O with the molecular
geometry. The principal axis is the z-axis and the molecular
geometry is fixed. All atoms of H2O are contained in the yz-
plane. HOMO (1b1), HOMO−1 (3a1), and HOMO−2 (1b2)
have atomic p-orbital-like characters along with the x-, z-, and
y-axis, respectively. With respect to the fixed molecular frame
of H2O, the field polarization direction can change in two dif-
ferent ways as shown in Fig. 8(a). First, the angle changes from
the z-axis toward the x-axis (denoted by Θ1). The interaction
between the electron and the field is given by

F(t) · r = F(t)(x sin Θ1 + z cos Θ1). (62)

Second, the angle changes from the z-axis toward the y-axis
(denoted by Θ2). Then,

F(t) · r = F(t)(y sin Θ2 + z cos Θ2). (63)

According to orbital pictures in Figs. 8(b)–(d), there is no ori-
entation dependence when the field polarization varies within
the nodal plane of each orbital, while the orientation depen-
dence maximizes when the field polarization approaches the
p-orbital-like polarization of each orbital. In other words, in-
crement of Θ1 triggers to maximize HOMO ionization, to min-
imize HOMO−1 ionization, and no effects on HOMO−2 ion-
ization. On the other hand, increment of Θ2 causes no effects
on HOMO ionization, to minimize HOMO−1 ionization, and
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Figure 9: Orientation dependence of total ionization probability (left panel) and
individual ionization probability of multiple orbitals (right panel) of H2O with
800 nm and 5 × 1013 W/cm2.

to maximize HOMO−2 ionization. Consequently, it provides
feasibility to selectively probe the MPI processes of individual
orbitals in aligned H2O.

Figure 9 shows the orientation dependence of total ioniza-
tion probability of H2O with 800 nm and 5 × 1013 W/cm2 as
a function of (a) Θ1 and (b) Θ2. When Θ1 changes, the ori-
entation dependence of total ionization probability mostly fol-
lows the pattern of HOMO as shown in Fig. 9(a). On the other
side, the appearance of the orientation dependence is dramati-
cally changed when Θ2 changes. Since HOMO has the nodal
plane of the yz-plane, the change of Θ2 in the yz-plane does not
affect HOMO ionization. Thus the overall pattern of the orien-
tation dependence of total ionization probability is dominantly
determined by HOMO−1 as shown in Fig. 9(b). To our knowl-
edge, this is the first prediction of the dominant contribution
from HOMO−1 to the overall orientation dependent pattern of
MPI.

5. Conclusion

In this paper, we introduced a new time-dependent Voronoi-
cell finite difference (TDVFD) method to investigate multipho-
ton ionization of polyatomic molecules in intense ultrashort
laser fields. Based on the Voronoi diagram and natural neigh-
boring relations, the method provides simple expressions for
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the discrete Laplacian and gradient operators on highly adap-
tive grids suitable for polyatomic molecules. It combines an
efficient and accurate time-propagation method of the split-
operator technique in the energy representation. The method is
applied to solve the self-interaction-free density-functional the-
ory equations for accurate electronic structures of polyatomic
molecules, and the time-dependent density-functional theory
equations for strong-field electronic dynamics in polyatomic
molecules including all spin-orbitals and continuum states.

By means of the proposed TDVFD method, we presented
ab initio time-dependent density-functional studies of multi-
photon ionization (MPI) of N2 and H2O in intense ultrashort
laser fields with arbitrary orientation, including electron corre-
lation and multi-electron responses. Our results showed that
the orientation dependence of MPI is determined by the sym-
metries and dynamics of multiple orbitals. For N2, the orien-
tation dependent pattern of MPI is reflected by contributions
from HOMO and HOMO−1. For H2O, the contribution from
HOMO−1 dominates the overall orientation dependent pattern
of MPI when the laser field polarization is varied. This feature
emphasizes importance of multiple orbital contributions to the
MPI processes. Also it enables us to selectively probe individ-
ual orbital in strong-field electronic dynamics.

Finally, we would like to conclude with some open questions
regarding the TDVFD method and time-dependent density-
functional theory (TDDFT). The TDVFD method presented
here is the first-order scheme in the sense that it considers only
nearest natural neighboring grids in VFD. Although it is shown
that the first-order scheme realizes accurate calculations com-
bined with highly adaptive grids, there will be more rooms for
improvement toward the high-order scheme, allowing explo-
ration of complicated molecules and elaborate strong-field phe-
nomena such as high harmonic generation in the future work.
As for TDDFT, since the exact steady-state and time-dependent
exchange–correlation (xc) energy functional is unknown, fur-
ther refinement of the xc energy functional, such as more rigor-
ous treatment of the self-interaction correction for the molecu-
lar systems as well as the implementation of the derivative dis-
continuation, etc., will be required for the accurate treatment of
other important chemical and physical problems, such as charge
transfer processes and double and multiple electron ionization,
etc., in the future.
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