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We present a Floquet treatment of multiphoton quantum interference in a strongly driven superconducting
flux qubit. The periodically time-dependent Schrödinger equation can be reduced to an equivalent time-
independent infinite-dimensional Floquet matrix eigenvalue problem. For resonant or nearly resonant multi-
photon transitions, we extend the generalized Van Vleck �GVV� nearly degenerate high-order perturbation
theory for the treatment of the Floquet Hamiltonian, allowing the reduction of the infinite-dimensional Floquet
matrix to an N�N effective Hamiltonian, where N is the number of eigenstates under consideration. The GVV
approach allows accurate treatment of ac Stark shift, power broadening, time-dependent and time-averaged
transition probability, etc., well beyond the rotating wave approximation. We extend the Floquet and GVV
approaches for numerical and analytical studies of the multiphoton resonance processes and quantum interfer-
ence phenomena for the superconducting flux qubit system �N=2� driven by intense ac fields.

DOI: 10.1103/PhysRevA.79.032301 PACS number�s�: 03.67.Lx, 85.25.�j, 42.50.Hz

I. INTRODUCTION

Superconducting flux qubit �1� is a promising candidate
for quantum computing �2�. When the superconducting qubit
is driven by an oscillating field, it involves plentiful dynam-
ics of macroscopic quantum states such as Rabi oscillations
and coherent control �3,4�. Recently, Oliver and colleagues
experimentally demonstrated multiphoton resonance and
quantum interference in a strongly driven flux qubit as an
analogue of Mach-Zehnder interferometry �5,6�. The peaks
in the transition probability between two qubit states form
fringe patterns around multiphoton resonance positions. This
is explained by the phase differences of the qubit states after
they are swept by a strong driving field �5�. Since the
strongly driven qubit can be modeled by a two-level system
interacting with the strong oscillating field, the development
of an analytical approach for a time-dependent problem is
desirable to explore the rich dynamics of the two-level sys-
tem. Understanding dynamics of strongly driven two-level
systems is important to superconducting approach of quan-
tum computation. For instance, because superconducting qu-
bits usually have short coherence time �3,4,7–9�, it is often
necessary to apply the strong ac field to decrease the time
required for each gate operation. Furthermore, microwave
spectroscopy, especially the position of resonant peaks, is
also widely used to calibrate qubit parameters which are cru-
cial to reduce gate errors �3,4,7–9�. Therefore, treating
strongly driven qubits is not only theoretically desirable but
also practically useful.

The generalized Floquet formalisms �10� have been de-
veloped and applied to a number of time-dependent prob-
lems: from two-level models to realistic atomic and molecu-
lar systems �10–13�, and from monochromatic to

polychromatic �14� and frequency-comb laser fields �15�. It
provides nonperturbative and accurate treatment of the inter-
action of a quantum system with intense time-dependent
fields. In the Floquet procedure, a time-dependent problem
can be transformed into an equivalent time-independent
infinite-dimensional Floquet matrix eigenvalue problem. For
analytic treatment of an N-level system, this infinite-
dimensional matrix can be further reduced into an effective
N�N matrix. The rotating wave approximation �RWA� in-
cludes only one resonant term, whereas the generalized Van
Vleck �GVV� nearly degenerate perturbation theory �16,17�
includes all leading terms that result in the ac Stark level
shift and power broadening of multiphoton resonance posi-
tions.

The two-level system that interacts with the external field
through off-diagonal time-dependent couplings �i.e., trans-
verse couplings� has been extensively studied in the frame-
work of the Floquet theory �10,17,18�. On the contrary, the
qubit that is the two-level system interacting through diago-
nal couplings �i.e., longitudinal couplings� with driving fields
has been investigated only within RWA �5,19�. Recently,
Ashhab et al. �20� have studied the two-level system within
RWA and the transfer-matrix approach, and Greenberg �21�
and Wilson et al. �22� have studied the qubit using the
dressed-state approach. However, to the best of our knowl-
edge, the ac Stark level shift for multiphoton resonance pro-
cesses which appears beyond RWA has not been considered
so far for this qubit system. As to be shown later, the con-
sideration of level shift and power broadening is significant
for quantitative exploration of multiphoton quantum interfer-
ence phenomena in the superconducting qubit. In this paper,
we extend the Floquet theory for a comprehensive investiga-
tion of the strongly driven qubit system and provide insight-
ful GVV analytic solutions to better understand the multi-
photon resonance condition including the level shift and
coherent quantum interference patterns.

The outline of the paper is as follows. In Sec. II, we
present the generalized Floquet formalism for a supercon-
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ducting flux qubit system driven by a strong ac field. In Sec.
III, we present analytic GVV solutions for level shift and
transition probability, etc., for the analysis of multiphoton
quantum interference. In Sec. IV, we compare the numerical
results of the full Floquet matrix and analytic results of RWA
and GVV, and show quantum interference fringe patterns in
the transition probability. This is followed by conclusion in
Sec. V.

II. FLOQUET FORMULATION FOR A
SUPERCONDUCTING FLUX QUBIT

The superconducting flux qubit discussed here is a com-
pound Josephson junction �CJJ� rf superconducting quantum
interference device �SQUID� as shown in Fig. 1 �23�. It con-
sists of a main loop and a CJJ loop subjected to external flux
biases �x and �x

CJJ, respectively. The CJJ loop is interrupted
by two nominally identical Josephson tunnel junctions con-
nected in parallel with total capacitance C and critical current
Ic. The CJJ and main loops have inductances LCJJ and L,
respectively. For LCJJ�L, the Hamiltonian of the CJJ rf
SQUID can be approximated by that of a simple rf SQUID
as

H =
Q2

2C
+ U��� , �1�

where � represents the total flux threading the main loop and
Q is the charge stored in the capacitance. The potential en-
ergy of the rf SQUID is

U��� =
�� − �x�2

2L
− EJ cos���x

CJJ

�0
�cos�2��

�0
� , �2�

where EJ=�0Ic /2� and �0�h /2e is the flux quantum. For
�L��x

CJJ���2�LIc /�0�cos���x
CJJ /�0��1, U��� is a

double-well potential and thus this device can be operated as
a qubit for −�0 /2��x

CJJ��0 /2 and �x��0 /2. Denoting
the counterclockwise as the positive direction of the persis-
tent current Ip in the loop, the two logic states of the qubit,
		
 and 	�
, correspond to Ip
0 and Ip�0 and thus the flux
particle in the left- and right-hand wells, respectively. The
state-dependent persistent current is given by Ip= �		��
−�x� /L		
 or ��	��−�x� /L	�
. If the temperature is much
less than the small oscillation frequency �i.e., the plasma
frequency� at the bottom of the double-well potential the
superconducting flux qubit can be described by a 2�2 ef-
fective Hamiltonian matrix �24�,

H0 = −
1

2
��0 



 − �0
� , �3�

where 
 is called the tunnel splitting and �0 is the detuning
energy given by �0=2	Ip	��x where ��x��x−�0 /2 is the
flux detuning. Note that Eq. �3� is obtained using the two
logic states of the qubit, 		
= �1 0�T and 	�
= �0 1�T, as the
bases. Figure 2 shows the eigenvalues of Eq. �3�, E
= ���0

2+
2 /2, as a function of the detuning energy �0. A
positive slope of the dispersion curve corresponds to 	�

while a negative slope to 		
. These two states are coupled
through the tunneling strength 
 and show the avoided cross-
ing at �0=0 as shown in Fig. 2. Thus, 
 is given by the
energy separation of two eigenstates of H0 at �0=0 which are
�		
− 	�
� /�2 and �		
+ 	�
� /�2. Both 	Ip	 and 
 are con-
trolled in situ by �x

CJJ. Note that 	Ip	 is a decreasing function
of �x

CJJ while 
 increases from zero to the plasma frequency
as �x

CJJ approaches ��0 /2. For �x
CJJ=0 one expects 
→0.

When the qubit becomes localized in 		
 or 	�
 Ip generates
a magnetic flux that can be resolved by an inductively
coupled dc SQUID �see Fig. 1� as described in Ref. �23�.

When the superconducting flux qubit is driven by a strong
ac field, the time-dependent Hamiltonian is given as �5�

H�t� = −
1

2
���t� 



 − ��t�
� , �4�

where ��t�=�0+A cos �t. Note that for typical superconduct-
ing flux qubits the longitudinal coupling is more commonly
used than the transverse coupling. � is the angular frequency
of the driving ac field and A is its amplitude that is param-
etrized in the energy unit and proportional to ac flux bias �6�.
Note that this Hamiltonian generally describes the two-level
system interacting through the longitudinal coupling and is
directly applicable to other qubit systems. For example, in
Cooper-pair box qubits �22� the electrostatic energy and the
Josephson coupling energy directly correspond to �0 and 

in Eq. �4�, respectively.

The generalized Floquet theory �10� provides an exact
formulation of time-periodic problems and a combined pic-
ture of the N-level system and electromagnetic fields by the
use of quasienergy states. According to the Floquet theorem
�25�, for a given time-periodic Hamiltonian, the time-
dependent Schrödinger equation,

Φ

ΦCJJ
x

CJJ

dc SQUID

Φx

FIG. 1. Schematic diagram for a combined Josephson junction
rf SQUID.

0

→
E

ne
rg

y

→ ε0

�β〉 �α〉

�α〉 �β〉

FIG. 2. �Color online� Energy diagram for a superconducting
flux qubit.
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i�
�

�t
��t� = H�t���t� , �5�

has a solution that can be written as

��t� = e−iqt/���t� , �6�

where ��t� is periodic in time and q is called the quasien-
ergy. When Eq. �6� is substituted into Eq. �5�, we obtain an
eigenvalue equation for the quasienergy,

�H�t� − i�
�

�t
���t� = q��t� . �7�

The periodically time-dependent problem can be trans-
formed into an equivalent time-independent infinite-
dimensional generalized Floquet matrix eigenvalue problem
�10,18�. The temporal part of the Hamiltonian H�t� and the
quasienergy eigenfunction ��t� is expanded with the Fourier
components of �,

H�t� = 

n

H�n�e−in�t, �8�

��t� = 

n

��n�e−in�t, �9�

where H�n� and ��n� are spanned by any orthonormal basis
set. We can employ the Floquet-state nomenclature �10�,

		n
 = 		
 � 	n
 , �10�

where 	 is the system index and n is the Fourier index that
runs from −� to �. Note that in the generalized Floquet

formalism 	 can be the N-level system index, but for the
effective Hamiltonian of Eq. �4� it is restricted to the qubit
state �N=2�. Substituting Eqs. �8� and �9� into Eq. �7� and
employing Eq. �10�, we obtain the following time-
independent Floquet matrix eigenvalue equation:



�



m

�	n	HF	�m
��m	q�l
 = q�l�	n	q�l
 , �11�

where q�l is the quasienergy eigenvalue and 	q�l
 is the cor-
responding eigenvector, �	n 	q�l
=�	�

�n−l�. Here, HF is the
time-independent Floquet Hamiltonian defined by

�	n	HF	�m
 = H	�
�n−m� + n���	��nm. �12�

For simplicity, we set �=1 hereafter.
For the effective Hamiltonian of the superconducting flux

qubit given by Eq. �4�, there are only three nonvanishing
Fourier components,

H�0� = −
1

2
��0 



 − �0
� , �13a�

H�+1� = −
1

4
�A 0

0 − A
� , �13b�

H�−1� = −
1

4
�A 0

0 − A
� , �13c�

where H�n−m�+n��nmI �I: 2�2 identity matrix� forms the nth
column and the mth row of the Floquet blocks. The Floquet
matrix for the qubit represented by bases of 		n
 and 	�m

according to Eq. �12� is given as follows:

HF =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

. . .
...

· · ·

− ε0

2
−2ω −∆

2
−A

4
0 0 0 0 0 0 0

−∆

2

ε0

2
−2ω 0 A

4
0 0 0 0 0 0

−A

4
0 − ε0

2
−ω −∆

2
−A

4
0 0 0 0 0

0 A

4
−∆

2

ε0

2
−ω 0 A

4
0 0 0 0

0 0 −A

4
0 − ε0

2
−∆

2
−A

4
0 0 0

0 0 0 A

4
−∆

2

ε0

2
0 A

4
0 0

0 0 0 0 −A

4
0 − ε0

2
+ω −∆

2
−A

4
0

0 0 0 0 0 A

4
−∆

2

ε0

2
+ω 0 A

4

0 0 0 0 0 0 −A

4
0 − ε0

2
+2ω −∆

2

0 0 0 0 0 0 0 A

4
−∆

2

ε0

2
+2ω

· · ·

...
. . .

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

.

← |α,−2�

← |β,−2�

← |α,−1�

← |β,−1�

← |α, 0�

← |β, 0�

← |α, +1�

← |β, +1�

← |α, +2�

← |β, +2�

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

|α,−2� |β,−2� |α,−1� |β,−1� |α, 0� |β, 0� |α, +1� |β, +1� |α, +2� |β, +2�

�14�
Eigenvalues of this Floquet matrix are numerically solved by truncating the number of the Floquet blocks. For numerical

solutions in Sec. IV, 101 Floquet blocks �n=−50 to 50� are included to be sufficiently converged for multiphoton processes. It
is worthwhile to note that there has been no approximation made in Eq. �14� to solve the time-dependent Hamiltonian of Eq.
�4�. Therefore, Eq. �14� can be applied for all parameter regimes.
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After solving the eigenvalue problem of the Floquet matrix, the time-averaged transition probability between 		
 and 	�

can be computed by

P̄	→� = 

n



�l

	��n	q�l
�q�l		0
	2, �15�

which is corresponding to the probability of finding the excited state of the qubit in experiment.

III. ANALYTIC SOLUTION OF THE FLOQUET MATRIX FOR THE DRIVEN QUBIT SYSTEM

To solve the Floquet matrix of Eq. �14� analytically, we employ the generalized Van Vleck �GVV� nearly degenerate
perturbation theory �16,17�. By introducing a perturbation parameter, �=−
 /2, the Floquet matrix can be divided into
unperturbed and perturbed parts,

HF = H0 + �V , �16�

where H0 has the following matrix structure:

H0 =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

. . .
...

· · ·

− ε0

2
−2ω 0 −A

4
0 0 0 0 0 0 0

0 ε0

2
−2ω 0 A

4
0 0 0 0 0 0

−A

4
0 − ε0

2
−ω 0 −A

4
0 0 0 0 0

0 A

4
0 ε0

2
−ω 0 A

4
0 0 0 0

0 0 −A

4
0 − ε0

2
0 −A

4
0 0 0

0 0 0 A

4
0 ε0

2
0 A

4
0 0

0 0 0 0 −A

4
0 − ε0

2
+ω 0 −A

4
0

0 0 0 0 0 A

4
0 ε0

2
+ω 0 A

4

0 0 0 0 0 0 −A

4
0 − ε0

2
+2ω 0

0 0 0 0 0 0 0 A

4
0 ε0

2
+2ω

· · ·

...
. . .

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

.

← |α,−2�

← |β,−2�

← |α,−1�

← |β,−1�

← |α, 0�

← |β, 0�

← |α, +1�

← |β, +1�

← |α, +2�

← |β, +2�

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

|α,−2� |β,−2� |α,−1� |β,−1� |α, 0� |β, 0� |α, +1� |β, +1� |α, +2� |β, +2�

�17�
To obtain the eigenstates of H0, Eq. �17� can be separated into two segments because all off-diagonals are zero in each 2
�2 block, i.e., 		
 and 	�
 are decoupled in H0,

H0�	 or �� =�
� ]

¯

b − 2� a 0 0 0

a b − � a 0 0

0 a b a 0

0 0 a b + � a

0 0 0 a b + 2�

¯

] �

� , �18�

where b=−�0 /2 and a=−A /4 for the state of 		
, and b= +�0 /2 and a= +A /4 for 	�
. Eigenvalues and eigenvectors of Eq.
�18� can be analytically solved in terms of Bessel functions Jk�x� �see the Appendix A for detailed derivation�,

Eigenvalues: b + n� �n is an integer� , �19a�
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Eigenvectors: �n = 

k=−�

�

Jk−n�−
2a

�
�	k
 . �19b�

Therefore, the eigenstates of H0 in Eq. �17� are represented as follows:

		�,n
 = 

k=−�

�

Jk−n� A

2�
�		k
 , �20a�

	��,m
 = 

k=−�

�

Jk−m�−
A

2�
�	�k
 . �20b�

Since the GVV method requires the eigenstates for the unperturbed Hamiltonian, the Floquet matrix HF in Eq. �14� is now
rewritten in terms of the bases of 		� ,n
 and 	�� ,m
 �see the Appendix A�,

H ′
F =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

. . .
... . .

.

· · ·

− ε0

2
−2ω −∆

2
J ′

0 0 −∆

2
J ′

1 0 −∆

2
J ′

2 0 −∆

2
J ′

3 0 −∆

2
J ′

4

−∆

2
J ′

0

ε0

2
−2ω −∆

2
J ′
−1 0 −∆

2
J ′
−2 0 −∆

2
J ′
−3 0 −∆

2
J ′
−4 0

0 −∆

2
J ′
−1 − ε0

2
−ω −∆

2
J ′

0 0 −∆

2
J ′

1 0 −∆

2
J ′

2 0 −∆

2
J ′

3

−∆

2
J ′

1 0 −∆

2
J ′

0

ε0

2
−ω −∆

2
J ′
−1 0 −∆

2
J ′
−2 0 −∆

2
J ′
−3 0

0 −∆

2
J ′
−2 0 −∆

2
J ′
−1 − ε0

2
−∆

2
J ′

0 0 −∆

2
J ′

1 0 −∆

2
J ′

2

−∆

2
J ′

2 0 −∆

2
J ′

1 0 −∆

2
J ′

0

ε0

2
−∆

2
J ′
−1 0 −∆

2
J ′
−2 0

0 −∆

2
J ′
−3 0 −∆

2
J ′
−2 0 −∆

2
J ′
−1 − ε0

2
+ω −∆

2
J ′

0 0 −∆

2
J ′

1

−∆

2
J ′

3 0 −∆

2
J ′

2 0 −∆

2
J ′

1 0 −∆

2
J ′

0

ε0

2
+ω −∆

2
J ′
−1 0

0 −∆

2
J ′
−4 0 −∆

2
J ′
−3 0 −∆

2
J ′
−2 0 −∆

2
J ′
−1 − ε0

2
+2ω −∆

2
J ′

0

−∆

2
J ′

4 0 −∆

2
J ′

3 0 −∆

2
J ′

2 0 −∆

2
J ′

1 0 −∆

2
J ′

0

ε0

2
+2ω

· · ·

. .
. ...

. . .

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

,

← |α′,−2�

← |β′,−2�

← |α′,−1�

← |β′,−1�

← |α′, 0�

← |β′, 0�

← |α′, +1�

← |β′, +1�

← |α′, +2�

← |β′, +2�

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

|α′,−2� |β′,−2� |α′,−1� |β′,−1� |α′, 0� |β′, 0� |α′, +1� |β′, +1� |α′, +2� |β′, +2�

�21�

where Jk�=Jk�A /��.
From the matrix structure of Eq. �21�, one can see that

		� ,0
 is coupled to 	�� ,−n
 throughout an off-diagonal term
of − 


2 J−n� . When the Floquet states 		� ,0
 and 	�� ,−n
 are
nearly degenerate, namely, −�0 /2��0 /2−n�, Eq. �21� is re-
duced to a 2�2 matrix by neglecting all other coupling
terms except the one between 		� ,0
 and 	�� ,−n
,

HRWA =� −
�0

2
−




2
J−n�

−



2
J−n�

�0

2
− n�� . �22�

This is equivalent to the rotating wave approximation
�RWA�, whose form is identical to previous works used for
the superconducting qubit subject to the longitudinal cou-
pling �5,19,20�. Note that this RWA is different from conven-
tional one subject to the transverse coupling, where RWA
breaks down in the strong field.

To go beyond RWA, we extend the GVV method allowing
the reduction of the infinite-dimensional HF� into a 2�2 ef

fective Hamiltonian which includes all n-photon coupling
channels �see the Appendix B for details�,

HGVV =�−
�0

2
+ � u

u
�0

2
− � − n�� , �23�

where � is the ac Stark level shift and u is the nonvanishing
off-diagonal term which is related to the power broadening
of the transition probability peaks,

u = J−n� � − 

k=−�

k�−n

�

� 

l=−�

l�−n

�
Jk�Jl�Jk+l+n�

��0 + k����0 + l��
+

Jk�
2J−n�

��0 + k��2��3

+ O��5� , �24�
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� = − 

k=−�

k�−n

�
Jk�

2

�0 + k�
�2 + O��4� . �25�

The leading term appears in the first order of ��=−
 /2� in u
and in the second order of � in �. In other words, most of
dominant terms involving all multiphoton resonance pro-
cesses are taken into account within the second-order pertur-
bation of �, in contrast to the conventional transverse cou-
pling case that requires the �2n+1�-st-order perturbation to
obtain the nonvanishing terms for n-photon process �17�. If
one considers the first-order term only, HGVV is reduced to
HRWA. Note that Eqs. �23�–�25� are valid regardless of the
strong or weak driving field amplitude A.

The effective Hamiltonian of Eq. �23� has the standard
form for the two-level system in an oscillating field beyond
RWA �10,16–18�. Eigenvalues of Eq. �23� are given by

q� = −
n�

2
� p , �26�

where

p2 =
�n� − �0 + 2��2

4
+ u2. �27�

The n-photon time-dependent transition probability from
		
 to 	�
 is obtained by

P	→�
�n� �t� =

u2

p2 sin2�pt� , �28�

and the n-photon time-averaged transition probability is ob-
tained by

P̄	→�
�n� = lim

T→�

1

T
�

0

T

P	→�
�n� �t�dt =

1

2

u2

u2 + �n� − �0 + 2��2/4
.

�29�

With the first-order term only �RWA limit�, it yields to

P̄	→�
�n� =

1

2

�
Jn��
2

�
Jn��
2 + �n� − �0�2 , �30�

since J−n�x�= �−1�nJn�x�. This RWA result is identical with
previous formulation in Ref. �5�. Note that the first-order
expression does not contain the level shift term.

Let us now investigate the behavior of the level shift � in
the weak and strong driving field regimes �see Appendix C
for detailed derivation�. The level shift is particularly impor-
tant in qubit calibration because it determines the accurate
positions of resonance peaks. From the second-order GVV in
Eq. �25�, � is proportional to 
2 and given by the series with
the Bessel function involving A as its argument. In the weak-
field regime, � is approximated as the following:

� � −
A2
2�0

8�2��0
2 − �2�

�n = 0� , �31a�

�−

2

4�0
+

A2
2��0 + 2��
16�2�0��0 + ��

�n = 1� , �31b�

�−

2

4�0
−


2A2

8�0��0
2 − �2�

�n � 2� . �31c�

On the other hand, � in the strong-field regime asymptoti-
cally becomes zero,

� � −

2

4 

k=1

� � Jk−n�2

k�
−

J−k−n�2

k�
� � 0. �32�

This is somewhat surprising because the level shift presum-
ably increases as the field amplitude increases like classical
examples of the two-level system �10,11,17,18�. For this su-
perconducting qubit system, however, longitudinal terms
driven by the strong ac field show different behavior of the
level shift. The two harmonic series with the Bessel func-
tions in Eq. �32� are diverged separately but canceled by
each other because J�k−n

2 �J�−k−n
2 for all k. Therefore, the

level shift asymptotically diminishes in the strong-field re-
gime. However, � does not monotonously decrease because
of the summation with the Bessel functions in Eq. �25�. Fig-
ure 3 shows the change of � �numerically computed from Eq.
�25�� as a function of the field amplitude A for a few
n-photon cases. Due to this level shift �, the multiphoton
resonance condition is not �0=n� as derived from RWA, but
shifted to

�0 − 2� = n� �n � 1� . �33�

To summarize, the level shift � appears more vivid in the
weak-field regime. Note that the shift � is most prominent
when the number of photons involved is small �n�1�.

IV. RESULTS AND DISCUSSIONS

Figure 4 shows the quasienergies and corresponding time-
averaged transition probabilities as a function of �0 with
fixed parameters of 
 /�=0.5 and A /�=5.0, computed by
solving Eq. �14�. The solid red lines indicate lower Floquet
states and dashed blue lines indicate upper Floquet states.
Due to the periodicity of the quasienergy, the quasienergy
plot has repeating structure by � with the avoided crossings
between the lower and upper Floquet states in the vicinity of
�0�n� �n is a positive integer�. At the avoided crossings,
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FIG. 3. �Color online� Plots of the level shift � as a function of
the field amplitude A.

SON, HAN, AND CHU PHYSICAL REVIEW A 79, 032301 �2009�

032301-6



the lower and upper Floquet states are strongly mixed and
resonance transitions between 		
 and 	�
 occur, as shown in
the plot of time-averaged transition probability. Also �0
�n� indicates that these transitions are multiphoton reso-
nance processes.

To compare the numerical and analytic results, we present
the transition probability plots as a function of �0 in Fig. 5,
computed by a numerical solution of the full matrix of Eq.
�14� and analytic solutions of the 2�2 matrices of Eqs. �22�
and �23�. Figure 5�a� shows the weak-field case of A /�
=0.5 and Fig. 5�b� the strong-field case of A /�=10.0. 
 /�
=0.5 is used for both cases. The solid red line indicates the
numerical solution by solving a 202�202 Floquet matrix.
The dotted green line is used for the RWA solution, and the
dashed blue line for the second-order GVV solution. The
third-order GVV result is not shown because it is almost the
same as the second-order one in this regime. The analytic
GVV expression shows very good agreement with the nu-
merical results near n-photon resonance regions, whereas the
RWA results show large deviations in the weak-field case
�Fig. 5�a��. The time-averaged transition probability hits the
maximum value of 1

2 near �0�n�. Note that in Fig. 5�a�
those resonance positions of the numerical and GVV solu-

tions are ac Stark shifted due to the level shift � in the weak-
field regime. As �0 increases, this shift becomes smaller ac-
cording to the dominant terms in Eq. �31�. Since the RWA
method does not include the level shift, the dotted green line
remains unshifted. On the other hand, in the strong-field case
of Fig. 5�b�, the level shift diminishes and all lines coincide
near the multiphoton resonances.

To reveal the dependence of the ac Stark shift upon the
field amplitude, Fig. 6 plots quasienergies as a function of A.
�0 /�=4.9 and 
 /�=0.5 are fixed. For clarity, Fig. 6 shows
the behavior of the lower quasienergies only. The GVV re-
sults �dashed blue line� coincide with the numerical results
�solid red line�. In contrast, quasienergies computed by the
RWA method �dotted green line� deviates from the numerical
results in the weak A region and this deviation decreases as A
increases. Oscillating patterns as a function of A are mainly
due to 	u	, i.e., the shape of the Bessel function. From Eqs.
�26� and �27�, q mainly involves 	Jn�A /��	 when �0−2�
�n�. For example, in Fig. 6, the oscillating patterns follow
	J5�A /��	 because �0 /��5.

In the transition probability plot of Fig. 4, one can see that
the width of the peaks varies nonmonotonically as �0 �i.e., n�
increases. In fact, these patterns also depend on A. These
widths are correlated with the difference between the lower
and upper states at the avoided crossings in the quasienergy
plot. Figures 7�a�–7�c� show a contour map of the transition
probability computed by Eq. �15� as a function of A and �0
with 
 /�=0.1, 0.5, and 1.0, respectively. Multiphoton reso-
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FIG. 4. �Color online� Plots of quasienergies and transition
probabilities as a function of �0. 
 /�=0.5 and A /�=5.0 are used.
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FIG. 5. �Color online� Comparison for numerical results and analytic RWA and GVV results by the transition probability plots as a
function of �0. 
 /�=0.5 is used. �a� Weak field: A /�=0.5. �b� Strong field: A /�=10.0.
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nance processes occur near integer numbers closest to �0 /�
indicated as bright yellow fringes in the plot. Figure 7�a�
with relatively small 
 agrees well with previous experimen-
tal and theoretical results for the superconducting flux qubit
�5�. In Figs. 7�b� and 7�c� with large 
, however, it is clearly
shown that the level shift alters multiphoton resonance posi-
tions especially in the regime of small �0 and weak A. Also
for all figures resonance transitions are suppressed at certain
positions of A, which is a phenomenon known as the coher-
ent destruction of tunneling �26�. These positions can be de-
termined by the roots of the Bessel function of order of n that
is the nearest integer to �0 /� �5,20�. From the analytic ex-
pression of the time-averaged transition probability in Eq.

�29�, we can easily confirm that P̄	→�
�n� →0 as u→0. When

J−n�A /��=0, the first order of 
 in u in Eq. �24� disappears
and u is proportional to 
3. Thus, the width of the time-
averaged transition probability becomes very narrow near the
roots of the Bessel function, J−n�A /��, which depends on the
number of photons n���0 /�� and the amplitude A.

V. CONCLUSION

In this paper, we extend the Floquet theory to investigate
the superconducting flux qubit driven by a strong ac field.

The numerical and analytic solutions of the generalized Flo-
quet formalism are applied to explain multiphoton resonance
processes between the qubit and the driving ac field. We
compare two analytic solutions: the rotating wave approxi-
mation �RWA� and the generalized Van Vleck �GVV� nearly
degenerate perturbation theory. It is shown that the GVV
approach accurately includes the ac Stark level shift which is
completely absent within RWA. The level shifts in resonance
positions are significant when the tunnel splitting is large, the
field is weak, and a small number of photons are involved.
The quasienergy and the time-averaged transition probability
from Floquet calculations are plotted showing multiphoton
resonance transitions at the avoided crossings. From the tran-
sition probability plot as a function of the field amplitude and
the detuning energy, we observe the Bessel functionlike
fringe patterns including the level shift. The general method
described here provides a unified theoretical treatment cov-
ering a wide range of parameter space. Applications of the
Floquet theory to various superconducting qubits lead us to a
better understanding of the results of spectroscopy measure-
ment and the dynamics of ac driven qubits which are impor-
tant for more accurate characterization of and performance
improvement of the qubits.
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APPENDIX A: FLOQUET MATRIX REPRESENTATION

We start from the eigenvalue problem of the infinite-
dimensional tridiagonal matrix in Eq. �18�. It can be consid-
ered as a Floquet matrix transformed from a function h�t�
=b+2a cos �t with Fourier bases of 	k
 �k is an integer�,
where a and b are given numbers. After an inverse transfor-
mation, the original equation to be solved is the following
eigenvalue problem:

�h�t� − i
�

�t
���t� = ���t� . �A1�

A trivial solution is �=b. Its eigenfunction is given by a
Fourier expansion with Bessel functions �27�,

��t� = e−i�2a/��sin �t = 

k=−�

�

Jk�−
2a

�
�eik�t. �A2�

For eigenvalues of �n=b+n� �n is an integer�, �n�t� is
solved as

�n�t� = ein�te−i�2a/��sin �t = 

k=−�

�

Jk�−
2a

�
�ei�n+k��t

= 

k=−�

�

Jk−n�−
2a

�
�eik�t. �A3�

It proves the eigensolutions of Eq. �19�.

FIG. 7. �Color online� A contour map of the transition probabili-
ties as a function of A and �0 with different values of 
. �a� 
 /�
=0.1, �b� 
 /�=0.5, and �c� 
 /�=1.0.
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Next, let us construct the Floquet matrix of Eq. �21� with
bases of 		� ,n
 and 	�� ,m
 in Eq. �20�. Let z=A /2�. From
�	k	HF	�l
=− 


2 �kl in Eq. �14� and the addition theorem for
Bessel function Jn�y+z�=
mJm�y�Jn−m�z� for any integer n
�27�, one can obtain

�	�,n	HF	��,m
 = 

k=−�

�



l=−�

�

Jk−n�z�Jl−m�− z��	k	HF	�l


= −



2 

k=−�

�

Jk−n�z�J−k+m�z� = −



2
Jm−n�2z� ,

�A4�

���,n	HF		�,m
 = 

k=−�

�



l=−�

�

Jk−n�− z�Jl−m�z���k	HF		l


= −



2 

k=−�

�

J−k+n�z�Jk−m�z� = −



2
Jn−m�2z� .

�A5�

From �	k	HF		l
= �−
�0

2 +k���kl−
A
4 ��k,l+1+�k,l−1� in Eq. �14�,

a recursive relation for Bessel function Jn−1�z�+Jn+1�z�
= 2n

z Jn�z� �27�, and summation of 
mJm�z�Jm−n�z�
=
mJm�z�J−m+n�−z�=Jn�0�=�n0 for any integer n, one can
obtain

�	�,n	HF		�,m
 = 

k=−�

�



l=−�

�

Jk−n�z�Jl−m�z��	k	HF		l


= 

k=−�

�

Jk−n�z���−
�0

2
+ k��Jk−m�z�

−
A

4
�Jk−m−1�z� + Jk−m+1�z���

= 

k=−�

�

Jk−n�z��−
�0

2
+ k� − �k − m���Jk−m�z�

= �−
�0

2
+ m�� 


k=−�

�

Jk−n�z�Jk−m�z�

= �−
�0

2
+ n���nm. �A6�

Likewise, from ��k	HF	�l
= �
�0

2 +k���kl+
A
4 ��k,l+1+�k,l−1�,

���,n	HF	��,m
 = ��0

2
+ n���nm. �A7�

Equations from �A4� to �A7� constitute all Floquet matrix
elements of Eq. �21�.

APPENDIX B: THE 2Ã2 EFFECTIVE FLOQUET MATRIX
DETERMINED BY THE GVV METHOD

With the perturbation parameter �=−
 /2, the Floquet
matrix of Eq. �21� is divided into

HF� = H0� + �V�, �B1�

where

H0� =�
� ]

¯

−
�0

2 − � 0 0 0 0 0

0 �0

2 − � 0 0 0 0

0 0 −
�0

2
0 0 0

0 0 0 �0

2
0 0

0 0 0 0 −
�0

2 + � 0

0 0 0 0 0 �0

2 + �

¯

] �

� , �B2�

and
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V� =�
� ] �

¯

0 J0� 0 J1� 0 J2�

J0� 0 J−1� 0 J−2� 0

0 J−1� 0 J0� 0 J1�

J1� 0 J0� 0 J−1� 0

0 J−2� 0 J−1� 0 J0�

J2� 0 J1� 0 J0� 0

¯

� ] �

� . �B3�

The aim is to reduce the infinite-dimensional Floquet ma-
trix of Eq. �21� into the 2�2 matrix by the use of the nearly
degenerate perturbation formalism in the GVV method
�16,17�. According to the perturbation theory, the 2�2 ma-
trix h and its eigenstate solution � can be expanded in pow-
ers of �,

h = 

m=0

�

�mh�m�, �B4�

� = 

m=0

�

�m��m�. �B5�

For n-photon resonance, the Floquet states 		� ,0
 and 	�� ,
−n
 are nearly degenerate. Thus, the zeroth-order ��0�

= ��−
�0��+

�0��T is given by

�−
�0� = 		�,0
 and �+

�0� = 	��,− n
 . �B6�

The zeroth-order h�0� represented by �−
�0� and �+

�0� is given by

h�0� =�−
�0

2
0

0
�0

2
− n�� , �B7�

where two eigenstates are nearly degenerate, i.e., �0�n�.
Following the GVV method, a few high-order terms can be
computed as follows:

�−
�1� = 


k=−�

k�−n

�
− Jk�

�0 + k�
	��,k
 , �B8a�

�+
�1� = 


k=−�

k�−n

�
Jk�

�0 + k�
		�,− n − k
 , �B8b�

h�1� = ���0�	V�	��0�
 = J−n� �0 1

1 0
� , �B9�

h�2� = ���0�	V�	��1�
 − h�1����0�	��1�


= 

k=−�

k�−n

�
Jk�

2

�0 + k�
�− 1 0

0 1
� , �B10�

h�3� = ���1�	V�	��1�
 − ���1�	��1�
h�1�

= − 

k=−�

k�−n

�

� 

l=−�

l�−n

�
Jk�Jl�Jk+l+n�

��0 + k����0 + l��

+
Jk�

2J−n�

��0 + k��2��0 1

1 0
� . �B11�

Equations �B9� and �B11� form the first- and third-order
terms of u in Eq. �24�, respectively, and Eq. �B10� forms the
second-order term of � in Eq. �25�.

APPENDIX C: ASYMPTOTIC EXPRESSIONS OF THE
LEVEL SHIFT

For small arguments �x�1�, the Bessel function has the
following asymptotic form:

Jk�x� �
1

k!
� x

2
�k

�k � 0� , �C1�

where x=A /�. Thus, in the weak-field regime, J0� is domi-
nant over Jk��k�0�. When only J0� is included in the sum of
Eq. �25�, � is approximated as

� = −

2

4�0
+ O�A2,
4� �n � 1� . �C2�

For nonphoton-assisted process �n=0�, there is no 
2 term in
�, i.e., ��0 because J0� is excluded in the sum of Eq. �25�. If
we approximate � up to O�A4�, J0���1−A2 /4�2� and
J�1� ���A /2�� can be included in the sum of Eq. �25�,
which yields to
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� = −
A2
2�0

8�2��0
2 − �2�

+ O�A4,
4� �n = 0� �C3a�

=−

2

4�0
+

A2
2��0 + 2��
16�2�0��0 + ��

+ O�A4,
4� �n = 1�

�C3b�

=−

2

4�0
−


2A2

8�0��0
2 − �2�

+ O�A4,
4� �n � 2� .

�C3c�

On the other hand, for large arguments �x→��, the Bessel
function asymptotically becomes

Jk�x� �� 2

�x
cos�x −

k�

2
−

�

4
� , �C4�

and then J�k
2 is approximated as

Jk�
2 �

2�

�A
cos2�A

�
−

k�

2
−

�

4
�

=
�

�A
�1 + cos�2A

�
− k� −

�

2
��

=
�

�A
�1 + �− 1�k sin�2A

�
�� . �C5�

Thus it yields to Jk�
2�J−k�

2. Using this asymptotic expression
as well as �0�n�, � in the strong-field regime becomes zero
as shown below,

� � −

2

4 

k=−�

k�−n

�
Jk�

2

�n + k��
= −


2

4 

k=−�

k�0

�
Jk−n�2

k�

= −

2

4 

k=1

� � Jk−n�2

k�
−

J−k−n�2

k�
� � 0. �C6�
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