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We extend the many-mode Floquet theorem �MMFT� for the investigation of multiphoton resonance dy-
namics driven by intense frequency-comb laser fields. The frequency comb structure generated by a train of
short laser pulses can be exactly represented by a combination of the main frequency and the repetition
frequency. MMFT allows non-perturbative and exact treatment of the interaction of a quantum system with the
frequency-comb laser fields. We observe simultaneous multiphoton resonance processes between a two-level
system and frequency-comb laser. The multiphoton processes can be coherently controlled by tuning the laser
parameters such as the carrier-envelope phase �CEP� shift. In particular, high-order harmonic generation shows
immense enhancement by tuning the CEP shift, due to simultaneous multiphoton resonances.
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I. INTRODUCTION

Recently, frequency-comb laser generated from the mode-
locked short-pulse laser has remarkably impacted on high-
precision optical frequency measurement and synthesis
�1–3�, and enabled optical atomic clocks �4–6� and high sen-
sitive molecular detection �7,8�. As a universal optical
frequency-comb synthesizer, it provides the direct link be-
tween optical and microwave frequencies �9–11�. The fem-
tosecond frequency-comb techniques are also stimulating
new frontiers in ultrafast science �12,13�. Control of the
waveform and phase evolution of few-cycle laser pulses
�10,14� provides a powerful new tool for the study of highly
nonlinear optical phenomena that depend on the carrier-
envelope phase �CEP�, and the generation of soft-x-ray at-
tosecond pulses by means of high-order harmonic generation
�HHG� �13�, etc.

More recently, the feasibility of the extension of the fre-
quency comb structure and coherence into vacuum-
ultraviolet �vuv� and/or extreme ultraviolet �xuv� regimes via
HHG has attracted considerable attention �15,16�. It is specu-
lated that the frequency comb structure may be retained in
each of the higher harmonics. However, currently the experi-
mental realization of the comb structure in higher harmonics
has not yet been achieved due to some experimental reso-
lution problems, with the exception of the third harmonics
�16�. It is also not clear whether the frequency comb struc-
ture and coherence can survive in very high-order harmonics
and in the situation where substantial ionization occurs in the
presence of high intensity laser fields. To advance this field,
we have recently presented ab initio theoretical exploration
of the frequency comb structure and coherence in the vuv-
xuv regimes via HHG �17�. The HHG spectrum driven by a
sequence of laser pulses is calculated accurately and effi-
ciently by propagating the time-dependent Schrödinger equa-

tion by means of the time-dependent generalized pseu-
dospectral method �18�. We explored the comb structure and
coherence by varying the time interval between pulses, the
number of pulses, and the laser intensity. We showed that
each harmonic �from the first harmonic all the way to the
cutoff� has a nested comb structure and this global pattern
persists regardless of the time interval and the number of
pulses, even in the presence of appreciable ionization.

In this paper, we present an ab initio investigation of the
coherent control of multiphoton resonance dynamics by
means of intense frequency comb laser fields. In the limit of
infinite number of pulses, we show that the many-mode Flo-
quet theory �MMFT� �19–23� provides an exact formalism
for nonperturbative treatment of the interaction of the fre-
quency comb laser fields with atomic and molecular systems,
allowing accurate treatment of the coherent control of mul-
tiphoton processes. We note that the original MMFT was
developed for the exact treatment of multiphoton processes
in the presence of quasiperiodic and/or polychromatic time-
dependent laser fields. In this paper, we extend the MMFT to
the study of simultaneous multiphoton resonant excitations
and coherent control of HHG enhancement driven by fre-
quency comb laser fields.

The paper is organized as follows. In Sec. II, we present
the MMFT for the treatment of the interaction of frequency
comb laser fields with finite-level quantum systems. In Sec.
III, we apply our theory to the study of the coherent control
of multiphoton resonant dynamics of two-level systems by
means of frequency comb laser fields. This is followed by
the conclusion in Sec. IV.

II. MMFT TREATMENT OF MULTIPHOTON EXCITATION
BY MEANS OF FREQUENCY-COMB LASER

Frequency-comb laser consists of spectral comb lines in
the frequency domain �24,25�,

�m = m�r + ��, �1�

where �r is the repetition angular frequency, m is an integer
index, and �� is the offset angular frequency �0�����r�.
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This frequency-comb laser can be generated by a temporal
train of short laser pulses which have the carrier �fundamen-
tal� angular frequency �c and the time interval � between
pulses. Because the time period �=2� /�c� of the carrier
wave and the time duration ��=2� /�r� of the pulse envelope
are often incommensurate, there is the carrier-envelope phase
�CEP� after each pulse: �=�c�. Current mode-locking laser
technique allows us to precisely control the CEP by includ-
ing the pulse-to-pulse CEP shift �� that plays a key role in
stabilizing of the comb structure �9�. The CEP shift �� de-
termines all absolute positions of frequencies in the comb
structure by setting the offset frequency ��=�� /�.

The electric field for a train of pulses with the CEP shift in
the time domain �24� is expressed by

E�t� = �
n

f�t − n��ei��ct−n�c�+n���, �2�

where f�t� is the envelope function for one pulse in the time
domain. In the ideal case that an infinite number of pulses
are added up, Eq. �2� reduces to the summation of exponen-
tials of discrete comb frequencies with their individual field
amplitudes �5�,

E�t� = �
m

Emei�mt, �3�

where Em is the field amplitude corresponding to �m given
by Eq. �1�. See the Appendix for detailed derivation. Without
loss of generality, we can rewrite these comb frequencies
��m� as

�k = �0 + k�r, �4�

where k is an integer index and �0 is the main angular fre-
quency defined to be the frequency in ��m� whose field am-
plitude is the maximum in the frequency domain. In other
words, �0 is the closest frequency to �c among all the comb
frequencies. The relation between �0 and �c is given by

�0 = ��c − ��

�r
	�r + ��, �5�

where � � is the round function. Note that the fundamental
frequency �c is not necessarily one of the comb frequencies
nor does it equal �0 in general. But if we choose �c=�0 or
�c� ��k�, then �� will be a reminder of �c divided by �r.

If the envelope function f�t� has the Gaussian form, then
the infinite summation in Eq. �3� will reduce to the finite
summation, and the field amplitudes can be explicitly deter-
mined. Let f�t�= f0e−t2/2	2

where f0 is the peak field ampli-
tude at t=0 and 	 is the standard deviation of a Gaussian
function. An integer number N is chosen such that Ek
0
when �k�
N. As a result, the electric field of �2N+1� comb
frequencies is given by

E�t� = �
k=−N

N

Eke
i�kt, �6�

where the field amplitude Ek corresponding to �k is

Ek =
f0	�r

�2�
e−	2��0 − �c + k�r�

2/2. �7�

Detailed derivations are given in the Appendix.
To investigate the interaction of an atomic or molecular

system with the comb laser generated by a finite number of
pulses, Eq. �2� has been employed for solving the time-
dependent Schrödinger equation in the time domain �17�. On
the other hand, for the ideal comb laser generated by an
infinite number of pulses, Eq. �6� is more preferable to use,
but it may require infinite duration time for the time propa-
gation. Consequently, in order to consider the interaction
with the ideal comb laser, it is more expedient to avoid the
time propagation of wave functions.

The many-mode Floquet theory �MMFT� �19–23� can be
applied to the solution of the polychromatic or quasiperiodic
time-dependent Schrödinger equation without the time
propagation of wave functions. Let us now consider the in-
teraction of an atomic or molecular system with a linearly
polarized frequency-comb laser �E z�. The corresponding
Hamiltonian including �2N+1� comb frequencies is given
by,

H�r,t� = Ĥ0�r� − �
k=−N

N

��r� · EkRe�ei�kt�

= Ĥ0�r� − �
k=−N

N

ẑEk cos �kt

= Ĥ0�r� − �
k=−N

N
1

2
ẑEk�ei��0+k�r�t + e−i��0+k�r�t� , �8�

where Ĥ0�r� is the unperturbed Hamiltonian of the system
and ��r� is the electric dipole moment operator.

The MMFT states that any polychromatic �multi-color
laser-field� problem has the exact solution in terms of the
generalized many-mode quasienergy eigenvalues and eigen-
functions �19,20�. Because all the comb frequencies can be
represented by two variables, �0 and �r, we can employ the
two-mode Floquet theory with double Fourier components,

��nm� = ��� � �n� � �m� , �9�

where � is the system index, and n and m are Fourier com-
ponents of �0 and �r, respectively. Then, the Hamiltonian
can be expanded with double Fourier components of n and
m,

H�r,t� = �
n,m

H�n,m��r�e−i�n�0+m�r�t, �10�

where
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H�0,0� = Ĥ0,

H�−1,0� = H�+1,0� = −
1

2
ẑE0,

H�−1,−1� = H�+1,+1� = −
1

2
ẑE1, H�−1,+1� = H�+1,−1� = −

1

2
ẑE−1,

H�−1,−2� = H�+1,+2� = −
1

2
ẑE2, H�−1,+2� = H�+1,−2� = −

1

2
ẑE−2,

] ]

H�−1,−N� = H�+1,+N� = −
1

2
ẑEN, H�−1,+N� = H�+1,−N� = −

1

2
ẑE−N.

�11�

The MMFT allows the exact transformation of the time-
dependent problem into an equivalent time-independent
infinite-dimensional generalized Floquet matrix eigenvalue
problem,

�


�
n�

�
m�

��nm�HF�n�m���n�m���� = ���nm��� ,

�12�

where � is the quasienergy eigenvalue and ��� is the corre-
sponding eigenvector. The two-mode Floquet matrix HF is
constructed by

��nm�HF�n�m�� = H�
�n−n�,m−m�� + �n�0 + m�r���,�n,n��m,m�,

�13�

where

H�
�n−n�,m−m�� = ���H�n−n�,m−m����

= ����,�n,n��m,m�

+ �
k=−N

N

V�
�k���n+1,n��m+k,m� + �n−1,n��m−k,m�� ,

�� = ���Ĥ0��� and V�
�k� = −

1

2
Ek���ẑ�� . �14�

The HF matrix has a block band-diagonal structure with
infinite-dimensional diagonal blocks and subdiagonal blocks
corresponding to interactions between the quantum system
and the �2N+1� comb frequencies. The structure of HF for
the linearly polarized case is as follows:

HF =�
� ]

A + 2�rI B1 B2 B3 B4 ¯

B1
T A + �rI B1 B2 B3

B2
T B1

T A B1 B2

B3
T B2

T B1
T A − �rI B1

¯ B4
T B3

T B2
T B1

T A − 2�rI

] �

� , �15�

where A is a block tridiagonal matrix and Bk is a block off-
diagonal matrix,

A =�
� ]

Z + 2�0I X 0 0 0 ¯

X Z + �0I X 0 0

0 X Z X 0

0 0 X Z − �0I X

¯ 0 0 0 X Z − 2�0I

] �

� ,

�16�

Bk =�
� ]

0 Yk 0 0 0 ¯

Y−k 0 Yk 0 0

0 Y−k 0 Yk 0

0 0 Y−k 0 Yk

¯ 0 0 0 Y−k 0

] �

� . �17�

The matrices of X, Yk, and Z which form blocks in A and B
have the following forms:
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X =�
0 V�

�0� V��
�0�

¯

V�
�0� 0 V�

�0�

V��
�0� V�

�0� 0

] �

�, Yk =�
0 V�

�k� V��
�k�

¯

V�
�k� 0 V�

�k�

V��
�k� V�

�k� 0

] �

� ,

Z =�
�� 0 0 ¯

0 � 0

0 0 ��

] �

� . �18�

After solving the eigenvalue problem of the generalized
Floquet matrix, the time-averaged transition probability can
be computed from the quasienergy eigenvectors �20�,

P̄�→ = �
n,m

�
�,n�,m�

��nm���n�m�����n�m���00��2, �19�

which has the maximum value of 1
2 at avoided crossings of

quasienergies associated with multiphoton resonance transi-
tions �21�. The induced dipole moment can be likewise ex-
panded in double Fourier series,

d�t� = �
n,m

dn,me−i�n�0+m�r�t. �20�

If n and m are given, the angular frequency � is determined
by �=n�0+m�r. The HHG power spectra in the length form
can be expressed by �26�

P�n�0 + m�r� = �dn,m�2 = � �
n�,m�

��,n�−n,m�−m�ẑ���,n�,m���
2.

�21�

Here harmonic order is defined by � /�c and can be a frac-
tional number because of the comb structure of frequencies.

III. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we present a case study of the multiphoton
resonance enhancement of a two-level system driven by
frequency-comb laser fields. The laser parameters used are
peak intensity 2.5�1015 W /cm2, carrier frequency 563.5
THz �corresponding to �c=0.085 645 4 a.u., and wave-
length 532 nm�, and repetition frequency 10 THz �corre-
sponding to �r=1.519 83�10−3 a.u. and pulse separation
�=0.1 ps� generated from a train of Gaussian pulses with 20
fs full width at half maximum �FWHM�. The main frequency
�0 is set to be the carrier frequency �c, so that the offset
angular frequency �� is chosen to be a reminder of �c di-
vided by �r. For the two-level system, the transition dipole
moment ���ẑ��=0.1 a.u. is used. Figure 1�a� shows the
two-mode quasienergies, and Fig. 1�b� shows the time-
averaged transition probabilities as a function of energy
separation of the two-level system, ���=�−��, varying
from 0.0 to 0.5 a.u. Multiphoton resonances are found near
odd numbers of �c similar to the one-mode Floquet calcula-
tion �27�. However, a cluster of resonances are observed in
the vicinity of resonance positions due to the comb structure
of frequencies. The quasiperiodic structure of the quasiener-
gies can be represented by �20,21�

��nm = �� + n�0 + m�r, �22�

where n is an even integer when �=� and an odd integer
when �= due to parity consideration. Because of multiples
of �r, the quasienergy plot becomes more complicated with
avoided crossings as shown in Fig. 1�c�, where the one-
photon dominant resonance pattern is enlarged from the gray
box in Fig. 1�a�. The corresponding transition probabilities
are shown in Fig. 1�d�.

Many features of the frequency-comb structure can be
explained by simultaneous multiphoton resonances that oc-
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FIG. 1. �a� Quasienergies and �b� time-averaged transition probabilities as a function of energy separation, for the two-level system driven
by frequency-comb laser fields with peak intensity 2.5�1015 W /cm2, carrier frequency 563.5 THz, and repetition frequency 10 THz of 20
fs FWHM Gaussian pulses. �c� Enlarged quasienergy plots in the one-photon resonance regime corresponding to the gray box in �a�. �d� The
corresponding time-averaged transition probabilities.
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cur due to the multitude of frequencies at the same time. Let
us consider an n-photon resonance condition of a monochro-
matic frequency �,

�res = n� , �23�

where �res is the resonance frequency. On the other side,
when one comb frequency � is on n-photon resonance, many
combinations of comb frequencies can simultaneously con-
tribute to that multiphoton resonance. For example, if
�res=n� where �� �m�r+���, then a combination of
�n−2��, �−�r, and �+�r is also on resonance with �res.
Thus all combinations of � with �l�r�l : integer� are also
contributed to the resonance. Consequently, the n-photon
resonance condition with frequency combs can be expressed
by the congruence relation of real numbers,

�res � n��mod �r� . �24�

Equation �24� means the reminders of �res and n� are the
same when divided by �r.

Now, we explore the optimization of the multiphoton
resonance processes by tuning the CEP shift ��. We note
that changing the CEP shift, the resonance processes can be
easily achieved because �� determines absolute comb posi-
tions more precisely than �c and even �r ���=�r�� /2��.
For example, with the laser parameters used in Fig. 1, 1%
variation on �� yields 0.018% changes on frequencies,
which emphasizes that the control of the CEP shift in comb
laser is much easier than the control of the carrier frequency
in one-mode �monochromatic� laser to reach the resonance
frequency. Also the resonance position will be retained when
the phases vary because the pulse energy is conserved. More-
over, when the CEP shift is varied, it is possible to achieve n
times of n-photon resonance, where n is an odd number. If
comb frequencies with the offset �� are n-photon resonant
with �res,

�res � n�m�r + ��� �mod �r�

�n�� �mod �r� , �25�

then ��+ j
n�r �j: integer, 0� j�n� are also n-photon reso-

nant with �res, leading to simultaneous multiphoton reso-
nances, because

n�m�r + �� +
j

n
�r� � n�� �mod �r� . �26�

Equations �25� and �26� show that comb frequencies with ��

and with ��+ j
n�r have the same reminder as �res when di-

vided by �r. The CEP shifts of comb frequencies with the
offset ��+ j

n�r are given by

�� j = 2����

�r
+

j

n
� �0 � j � n� , �27�

so that resonance peak positions of �� j are separated by
2� /n. Figure 2�a� shows the quasienergies and Fig. 2�b�
shows the time-averaged transition probabilities as a function
of the CEP shift. The energy separation is fixed at
��=0.25 a.u. which corresponds to the three-photon
dominant resonance regime �3�c
���, and �� is varied

�0����2��. Other laser parameters are the same as those
in Fig. 1. Shown in Fig. 2 is the case of three-photon domi-
nant resonance. Here the resonance can be achieved three
times by varying the CEP shift, and these three peaks are
separated by 2� /3 exactly.

In Fig. 3, we present the HHG power spectrum of two-
level systems driven by frequency-comb laser. The laser pa-
rameters are the same as those in Fig. 1 and the energy
separation is fixed at ��=0.25 a.u. For comparison, HHG
driven by one-mode laser with the same carrier frequency
and the corresponding root-mean-square field strength is
plotted with the dots in Fig. 3, computed by one-mode Flo-
quet calculation. Note that HHG spectrum driven by comb
laser is orders of magnitude higher than that by one-mode
laser. In addition, HHG driven by comb laser forms a nested
comb structure within each of the harmonics, due to the con-
structive interferences among the sequence of induced di-
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FIG. 2. �a� Plots of quasienergies and �b� time-averaged transi-
tion probabilities as a function of the CEP shift ��. It shows three
resonance positions separated by 2� /3 due to three-photon domi-
nant resonance.
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FIG. 3. HHG power spectrum of two-level systems driven by
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comb peaks are connected by a line. The laser parameters used are
peak intensity 2.5�1015 W /cm2, carrier frequency 563.5 THz, and
repetition frequency 10 THz of 20 fs FWHM Gaussian pulses. Dots
represent HHG spectra driven by the corresponding one-mode laser.
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poles generated by the incident sequence of laser pulses �17�.
For instance, the comb structure within the fifth-order har-
monic is shown in the inset in Fig. 3. Each of the harmonic
orders has the same repetition angular frequency �r and the
offset angular frequency n�� for the nth-order harmonic. The
frequency comb spectrum for the nth-order harmonic can be
expressed with �0,

�k� = n�0 + k�r, �28�

or expressed with ��,

�m� = n�� + m�r, �29�

where m and k are an integer index.
Finally, we investigate the coherent control and enhance-

ment of HHG power spectra by tuning the CEP shift to
achieve multiphoton resonances. Figure 4 shows the en-
hancement of HHG by varying the CEP shift, �� /2�=0.1
�off-resonance�, 0.168, and 0.168 295 �near-resonance� with
peak intensity 1�1014 W /cm2. Other parameters for comb
laser and the system are the same as those in Fig. 3. Table I
lists the power spectrum values of the maximum peak for the
near- and off-resonance cases with several peak intensities.
Figure 4 and Table I show that HHG peaks can be dramati-

cally enhanced by varying the CEP shift due to simultaneous
multiphoton resonances. In the case of n-photon resonance
processes, the system can easily reach the excited state by
the absorption of n photons and the higher-order �
n� har-
monic spectra can be also enhanced. The power spectra of
I=1�1014 W /cm2 are enhanced by about 108 times. For the
case of I=1�1015 W /cm2, an enhancement factor is about
105 times, while for the case of I=2.5�1015 W /cm2, it is
about 103 times. Note that similar enhancement is observed
at other resonance positions of the CEP shift. For example,
Fig. 2�b� indicates three different resonance positions of
�� at I=2.5�1015 W /cm2. The enhancement factors
of the HHG power spectrum with �� /2�=0.2697, or
0.2697+1 /3, or 0.2697+2 /3 are all the same about 103

times.

IV. CONCLUSION

In this paper, we show that a train of an infinite number of
short laser pulses generates spectral combs in the frequency
domain, that can be exactly expressed in terms of the main
frequency and the repetition frequency. The many-mode Flo-
quet theory utilizing those two frequencies is extended to
accurately solve the interaction between the quantum system
and frequency-comb laser. It is shown that there are simul-
taneous multiphoton resonance processes between the sys-
tem and comb laser, and that they can be optimally con-
trolled by tuning the pulse-to-pulse CEP shift. HHG driven
by intense frequency-comb laser has the comb structure with
the same repetition frequency and different offset for each
harmonic. Moreover, HHG can be dramatically enhanced by
tuning the CEP shift due to simultaneous multiphoton reso-
nance among all the comb frequencies. Extension of the
present work to the study of the coherent control of atomic
and molecular processes is in progress.
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TABLE I. Effects on the power spectra by varying the CEP shift ��. q is the harmonic order of the maximum peak for each harmonic
and P�q�c� is the corresponding to power spectrum at �=q�c. The label A indicates �� /2�=0.1 that shows off-resonance cases, while B
indicates the near-resonance cases: �� /2�=0.168 295, 0.206 53, and 0.2697 for 1�1014, 1�1015, and 2.5�1015 W /cm2, respectively.
The number in brackets indicates the power of 10.

1�1014 W /cm2 1�1015 W /cm2 2.5�1015 W /cm2

A B A B A B

q P�q�c� q P�q�c� q P�q�c� q P�q�c� q P�q�c� q P�q�c�

2.92 9.15�−11� 2.92 2.50�−3� 2.92 7.07�−8� 2.92 2.41�−3� 2.92 1.33�−6� 2.92 2.01�−3�
5.00 4.53�−20� 4.91 3.42�−12� 5.00 6.62�−15� 4.93 3.39�−10� 5.00 1.28�−12� 4.94 2.07�−9�
7.02 1.99�−28� 6.92 1.83�−20� 7.00 3.10�−21� 6.93 1.82�−16� 7.00 4.13�−18� 6.95 6.82�−15�
9.03 5.58�−37� 8.92 4.07�−29� 9.01 6.00�−28� 8.92 3.99�−23� 9.01 5.30�−24� 8.95 9.40�−21�

11.02 5.45�−35� 10.92 4.04�−30� 11.00 3.14�−30� 10.95 5.95�−27�
13.03 1.05�−36� 12.95 1.96�−33�
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FIG. 4. Enhancement of HHG by varying the CEP shift with
peak intensity 1�1014 W /cm2. For clarity, HHG peaks of the
comb structure are connected by a line.
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APPENDIX: FIELD EXPRESSION FOR FREQUENCY-
COMB LASER

The electric field for a train of pulses with the CEP shift
�� in the time domain �Eq. �2�� is expressed by

E�t� = �
n=1

Np

f�t − n��ei��ct−n�c�+n���, �A1�

where Np is the number of pulses and f�t� is the envelope for
one pulse in the time domain. After the Fourier transform,
the electric field in the frequency domain is given by �24�

Ẽ��� = f̃�� − �c��
n=1

Np

e−in���−���, �A2�

where f̃���=�f�t�e−i�tdt determines the field strength in the
spectrum as the envelope function in the frequency domain.
The summation of the exponentials generates frequency
comb structure because they are added up with constructive
interferences only at ��−��=2�m with an arbitrary integer
m �9�. In other words, the summation becomes a series of
frequency lines at �=�m such that

�m =
2�m

�
+

��

�
= m�r + ��, �A3�

which is shown as the comb frequency expression in Eq. �1�.
We can rewrite these comb frequencies with the main angu-
lar frequency �0 �Eq. �4��,

�k = �0 + k�r, �A4�

because it is more convenient to derive the field expression
of Eq. �6� with respect to �0.

When the number of pulses increases, the spectral width
of each frequency comb becomes narrower due to quantum
interference �3,17�. In the ideal case that an infinite number
of pulses are added up, the summation part yields a series of
delta functions centered at each �k,

lim
Np→�

�
n=1

Np

e−in���−��� =
2�

�
�

k=−�

�

��� − �k� . �A5�

Thus the ideal comb laser field in the frequency domain can
be represented by

Ẽo��� = f̃�� − �c��r �
k=−�

�

��� − �k� . �A6�

After applying the inverse Fourier transform to Ẽo���, we
obtain a time-domain expression for the electric field of the
ideal comb laser,

Eo�t� =
�r

2�
�

k=−�

� �
−�

�

��� − �k� f̃�� − �c�ei�td� = �
k=−�

�

Eke
i�kt,

�A7�

where Ek= f̃��k−�c��r /2� represents the field amplitude of
�k. This summation of exponentials of the angular frequen-
cies ��k� with their field amplitudes �Ek� is coherently added
up and then generates the ideal comb structure in the fre-
quency domain. Inversely, this expression plots an infinite
number of train pulses in the time domain, i.e., Eq. �A7� is
identical to Eq. �A1� if Np goes to infinity.

With the help of the envelope function such as a Gaussian
function, it is possible to truncate Eq. �A7� to have a finite
summation. In this case, N is chosen such that Ek
0 when
�k�
N, and then the electric field expression of the comb
laser is reduced to the summation of a finite set of �2N+1�
angular frequencies shown in Eq. �6�,

Eo�t� = �
k=−N

N

Eke
i�kt. �A8�

If a Gaussian function is used for the envelope,
f�t�= f0e−t2/2	2

, the field amplitude Ek in Eq. �7� can be de-
rived explicitly as

Ek =
�r

2�
�

−�

�

f0e−t�2/2	2
e−i��k−�c�t�dt�

=
f0	�r

�2�
e−	2��0 − �c + k�r�

2/2. �A9�

Note that the standard deviation 	 of a Gaussian function is
related to FWHM=2	�2 ln 2.
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