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Abstract 
Infectious diseases and cancers are the second and third largest causes of death 

worldwide.  UDP-N-acetyl-glucosamine (UNAG) enolpyruvyl transferase (MurA) 
and Cyclin-dependent kinases (CDKs) are proven as antibiotic and anticancer targets, 
respectively. 

MurA belongs to the enolpyruvyl transferase family of enzymes.  MurA catalyzes 
the first committed step in the biosynthesis of cell wall peptidoglycan, and is the 
target of fosfomycin, a naturally occurring broad-spectrum antibiotic.  Ever 
increasing resistance of bacteria to fosfomycin has placed an emphasis on the 
identification and characterization of novel MurA inhibitors. 

Knowledge of the detailed enzymatic mechanism is essential for the discovery of 
potent MurA inhibitors.  The studies on the mutant MurA enzymes Arg91Lys, 
Asp123Ala, Arg120Ala, and Cys115Asp, revealed key catalytic residues and residues 
important for the conformational changes in the enzymatic reaction.  Several new 
inhibitors of MurA were identified by High-Throughput Screening (HTS), and 
kinetically characterized.  It appears that most of these compounds bind to the open 
conformation of MurA, and thus the inhibitor binding site is largely solvent exposed.  
These results suggest that MurA inhibitors need to be designed to induce the open-
closed transformation of the enzyme, like the natural substrate UNAG.  Such 
inhibitors should be much more potent than the inhibitors discovered in this work. 

CDK2 plays a critical role in the G1- to S-phase checkpoint of the cell cycle.  
Only a few drugs targeting CDK2 are in clinical trials, thus there is a need for the 
discovery of novel CDK2 inhibitors.  

Six CDK2 inhibitor scaffolds were identified by HTS, and the molecular modes 
of action of four of them were thoroughly characterized by steady-state kinetics and 
crystallography.  Structure-Activity Relationship (SAR) analysis of the four scaffolds 
gave rise to the design of analogs with excellent potency.  In addition, computational 
studies were performed, and novel CDK2 inhibitor scaffolds were designed.  The 
selectivities and cytotoxic properties of these inhibitors are not known yet.   
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1. Introduction 
1.1. MurA (UDP-N-acetyl-glucosamine enolpyruvyl transferase)  

Since the antibiotic properties of penicillin were first discovered in 1929, many 

antibiotic agents have contributed to the prevention and treatment of infections 

caused by bacteria.  Despite the success of the antibiotics in the market and clinics, 

infections are still the second largest cause of death and remain as a major public 

health problem.  Antibiotic resistance is a serious public health threat and results in 

the return of untreatable infections on a massive scale.  Thus, there is a great need for 

novel antibiotic agents to solve resistance problems of current antibiotics1.  One of the 

best known targets for antibiotic therapy is the peptidoglycan biosynthetic pathway, 

validated in the clinic with fosfomycin, vancomycin, and penicillins. 

The peptidoglycan (murein) in a bacterial cell confers mechanical resistance to 

the higher internal osmotic pressure and provides the cell with structural strength. 

Peptidoglycan is also a structure unique to prokaryotic cells.  Thus drugs targeting the 

biosynthesis of peptidoglycan (i.e. the Mur pathway) would be effective antibiotic 

agents leading to cell death, without affecting the host2.   

Peptidoglycan consists of glycan chains comprised of alternating N-acetyl-

muramic acid and N-acetyl-glucosamine residues, and both residues are cross-linked 

by short peptides.  This cross-linkage joining glycan chains makes peptidoglycan 

structures rigid and tensile2.  The biosynthesis of peptidoglycan is a complex process, 

consisting of a three-step pathway3.  The first stage is the synthesis of the monomeric 
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Figure 1.  Three stages of peptidoglycan biosynthesis9. 

building block, UDP-N-acetyl-glucosamine and UDP-N-acetyl-muramyl pentapeptide 

in the cytoplasm by the enzymes MurA-F4.  The second stage occurs on the inner side 

of the membrane, with synthesis of a lipid-linked intermediate and its subsequent 

translocation to the external face of the cytoplasmic membrane by MraY5 and MurG6.  

Then, a polymerization reaction takes place in the periplasmic space catalyzed by 

transglycosylases7 and transpeptidases8, 9 (Figure 1).  

Mur enzymes are unique to bacteria and are involved in critical functions of 

almost all bacterial organisms10.  In addition, inhibitors of Mur enzymes have 

potential to be bactericidal, leading to cell lysis and bacterial cell death11.  

The first committed step in the pathway is the transfer of an enolpyruvyl group 

from phosphoenol pyruvate (PEP) to UNAG producing enolpyruvyl-UDP-N-acetyl-

glucosamine (EP-UNAG) with the release of inorganic phosphate (Pi).  This step is 
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Figure 2.  The reactions catalyzed by MurA and EPSPS 

catalyzed by UDP-N-acetyl-glucosamine enolpyruvate transferase (MurA, 

EC 2.5.1.7.) (Figure 2)3, 12.  While PEP is used as a phosphoryl transferring agent in 

most PEP-dependent enzymatic reactions, the reaction catalyzed by MurA is unique 

because it involves the attack at the chemically less reactive C-2 position of PEP, 

leading to the cleavage of the C–O bond rather than P–O bond.  MurA is inhibited by 

the naturally occurring antibiotic fosfomycin13, which is the active ingredient of the 

broad spectrum antibiotic Monurol®. 

The only other enzyme known to catalyze a similar reaction is 5-enolpyruvyl-

shikimate-3-phosphate synthase (EPSPS, EC 2.5.1.19) (Figure 2), which uses 

shikimate-3-phosphate (S3P) as its second substrate instead of UNAG.  EPSPS 

catalyzes the sixth step in the biosynthesis of the aromatic amino acids (the shikimate 

pathway) in bacteria, plants, and fungi, and has been extensively studied because it is 

the target of glyphosate14, the active ingredient of the herbicide Roundup®.   
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While Gram-negative bacteria including E. coli have one copy of the murA gene, 

several Gram-positive bacteria have two genes, murA1 and murA2.  Gene knockout 

experiments that removed either, but not both, of the murA genes showed that the 

organism was still viable, suggesting that the two genes encode active enzymes that 

can substitute for each other15.  It is also known that both MurA enzymes are 

inhibited by fosfomycin. 

1.1.1. Reaction Mechanism of MurA 

The unusual reaction catalyzed by MurA has been extensively studied.  

Mechanistic and structural data of MurA show that the reaction follows an ordered 

addition-elimination mechanism, with UNAG interacting with free enzyme prior to 

the binding of PEP or fosfomycin.  However, the detailed enzymatic mechanism of 

MurA has only been clearly identified recently16–20. 

The first step of the MurA reaction is thought to proceed by protonation of PEP 

producing an oxocarbonium ion and deprotonation of the 3'-OH on UNAG.  The oxy-

anion then attacks C-2 of the PEP-oxocarbonium ion, leading to a tetrahedral 

intermediate of both substrates (Figure 3-B).  The detailed mechanism of the 

formation of this tetrahedral intermediate is not certain.  Whether it is a concerted or a 

stepwise mechanism is currently under debate.  The elimination step of the reaction 

may proceed either by the aid of a residue in the MurA active site (Figure 3-C1) or by 

intramolecular-catalysis (Figure 3-C2), i.e. the deprotonation of C-3 of PEP can be 

performed by the phosphate moiety attached to C-2 of PEP or by a basic amino acid 
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Figure 3.  Addition-elimination mechanism catalyzed by MurA.  
 A proton is added to phosphoenol pyruvate yielding a PEP oxocarbenium ion and the 

target hydroxyl group of UNAG is deprotonated (A1). It is followed by a 
nucleophilic attack of the oxyanion on the C2 atom of the PEP oxocarbenium ion 
leading to a covalent adduct of the two substrates, where the C2 atom of the PEP 
moiety is in a tetrahedral configuration (B). The elimination of phosphate may 
proceed through the action of an enzyme residue (C1) or through self-catalysis (C2). 
Either mechanism results in the formation of the vinyl ether product and Pi (D). 

in the MurA active site, leading to separation of the product, EP-UNAG, and 

releasing of inorganic phosphate (Pi).  

Some early biochemical studies of the enzymatic mechanism of MurA proposed 

the existence of a covalent adduct of PEP and Cys115 in the reaction17, 18.  Since this 

mechanism cannot explain the activity of Cys115Asp mutant MurA, it has been 

suggested that UNAG directly attacks PEP at the first step of the MurA reaction.     

While the existence of the hemi thio-ketal intermediate of Cys115 and PEP is still 

debated, another role of Cys115 in the reaction catalyzed by MurA has been 

identified.  Studies with the Cys115Ser mutant enzyme indicated that the function of 
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Figure 4.  A stereoview of EP-UNAG bound to Cys115Ser MurA20.  The reaction products, 

EP-UNAG and Pi, are shown in green color. The active site residues are in grey. The 
violet colored residues represent polar/charged residues. Water and glycerol 
molecules are shown in transparent cyan color. Dashed lines represent polar or ionic 
interactions. 

Cys115 is to support product release.  Kinetic analysis of Cys115Ser mutant MurA 

showed a single turnover of the reaction.  Structural study in the presence of the 

substrates depicts the product state of the enzyme with EP-UNAG and Pi (Figure 4)20.   

The stereochemical course of the reaction has been studied as well.  Initial studies 

with PEP analogs had led to the conclusion that the addition of UNAG to C-2 of PEP 

proceeds from the 2-si face and with the anti addition and the syn elimination 

steps19, 21, 22.  However, a structural study with Asp305Ala MurA mutant clearly 

demonstrated that the addition step occurs to the 2-re face of PEP suggesting syn 

addition and anti elimination stereochemistry (Figure 5)23.  From the crystal structure 

of Asp305Ala MurA with the TI, it was shown that Asp305 is responsible for the 

final deprotonation reaction required for the elimination of Pi (Enz-Z of Figure 3-C1). 
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The identification of the residues involved in the catalysis of MurA has been 

enhanced by structural information given by crystallographic data.  Crystallization of 

the MurA mutants, Cys115Ser and Asp305Ala, with products and the TI, 

respectively, allowed the identification of a set of charged residues, interacting with 

the PEP moiety of the TI or products.  These charged amino acids in the active site 

are postulated to be critical residues in the reaction mechanism of MurA by serving as 

acid-base catalysts.  These residues are Lys22, Arg120, Arg331, and Arg371, and 

(A) 

 
(B) 

 
 

Figure 5.  Structural study with Asp305Ala MurA23. 
(A) A stereoview of the tetrahedral intermediate bound to MurA active site.  The 
TI is shown in green and the set of charged residues in MurA are shown in magenta. The polar 
and charged interactions are shown as dashed lines. 
(B) Stereochemical course of enolpyruvyl transferase reaction.  Enzyme-X and H-
Y-Enzyme denote residues in the active site involved in proton transfer.  
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they are highly conserved through MurA enzymes from various organisms.  

Structural studies of mutant enzymes on these residues would provide a detailed 

catalytic mechanism of MurA. 

1.1.2. Structural Features of MurA 

In recent years, 

the mechanistic 

understanding of 

the enzymatic 

reaction by MurA 

has been given a 

structural basis 

through deter-

mination of a series 

of crystal structures of various forms of the enzyme19, 24–27.  The single polypeptide 

chain of MurA folds into two globular domains, each comprising an inside-out α/β 

barrel, built up by 6-fold repetition of a common βαβαββ motif.  This architecture is 

shared with EPSPS, the only other enolpyruvyl transferase, although the sequence 

identity between MurA and EPSPS is only ~25 %28.  Thus, these two enzymes share 

not only a unique enzymatic reaction, but also distinct structural features.   

 
 
Figure 6.  Conformational changes of MurA upon binding of 

UNAG. The open form of MurA undergoes the 
conformational changes into the closed form after UNAG 
binding. 

Several crystal structures of liganded and un-liganded MurA have been 

determined.  MurA contains a highly flexible loop, which is involved in substrate and 

inhibitor binding.   The conformation of the loop varies in these crystal structures, 
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depending on the presence or absence of ligands and the crystallization conditions, 

i.e. pH and ionic strengths.  Prior to the binding of substrates, free MurA enzyme 

exists in an open state.  Upon binding of UNAG the two domains approach each 

other, establishing the active site in the cleft between the two domains and generating 

the PEP binding site (Figure 6).  One of the notable structural changes during this 

process is the conformation of a loop, composed of the 10 amino acid residues, 

Pro112–Pro121, in the top domain, N-terminal domain.  The loop moves toward to 

the active site and closes the cleft like a lid.  This ‘induced fit’ mechanism is the 

structural evidence of the ordered substrate binding for the MurA enzymatic reaction. 

The conformational change from the open to the closed states of MurA can be 

monitored by the use of the extrinsic fluorophor, 8-anilino-1-naphthalene sulfonate 

(ANS).  The co-crystal structure of MurA with ANS showed that ANS binds to the 

flexible loop, Pro112–Pro121, and restructures it29.  ANS in the open form of MurA 

is released by UNAG binding, thus ANS is used as a detector of the conformational 

 
Figure 7.  Structures of MurA at free stage, ANS binding, and UNAG binding.  ANS binds 

on the loop of the open state, and is released when the MurA undergoes conformation 
changes upon UNAG binding.  The loop of MurA is shown in magenta color, and 
ANS and UNAG are represented in yellow color. 
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change of MurA (Figure 7).  In the closed state of MurA, the loop has moved toward 

the cleft, and the conformation of Arg91 is changed to stabilize the closed loop 

conformation through hydrogen bonds to backbone carbonyl oxygen atoms of Gly113 

and Arg120.  Arg91 is also essential for the ANS binding to un-liganded open-form 

MurA, and the conformational change of this residue will dissociate ANS.  Thus, 

Arg91 is considered as one of the critical residues in the open-closed conformational 

change of the loop.  In addition, there are other conserved residues in the loop and the 

hinge regions, which may be essential for the loop conformational change (Table 130).  

 

Table 1. Conserved amino acids in the loop and hinge region of MurA30.  Conservation is the 
result of comparing 163 MurA sequences. 

 
Residue Asp49 Arg91 Pro112 Gly113 Gly114 Ile117 Gly118 Arg120 Pro121 Asp123 Asp231 

Conservation 100% 100% 95.7% 100% 100% 95.7% 100% 100% 86.5% 87.1% 100% 

Although the large flexible loop of MurA is a unique and interesting feature, it 

often interferes with crystallization due to its flexible character. 

1.1.3. MurA Inhibition of and Resistance to Fosfomycin 

Fosfomycin ((1R, 2S)-epoxy propyl phosphonic acid31) is a naturally occurring 

antibiotic produced by certain Streptomyces species using PEP as a precursor.  It is 

effective against both Gram-positive and Gram-negative bacteria.  Fosfomycin is the 

drug for the treatment of pediatric gastrointestinal infections resulting from Shiga-like 

toxin–producing E. coli in Japan32–34.  It is also predominantly used for the treatment 

of bacterial infections of the urinary tract and is clinically desirable due to its low 

toxicity to humans.  It has been shown that fosfomycin is effective even against 
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bacterial infections resistant to other antibiotics, e.g. vancomycin-resistant 

enterococci35 and quinolone-resistant E. coli36.   

The bactericidal activity of fosfomycin is exerted through inhibition of MurA.  

Inhibition of MurA by fosfomycin is competitive against PEP but becomes 

irreversible by forming a covalent bond with the active Cys115 residue of the enzyme 

via epoxide ring opening (Figure 8)26, 37, 38.  Fosfomycin inhibition of MurA was 

found to be time-dependent as well as UNAG-dependent, which suggests that the 

conformational change of MurA upon UNAG binding prior to fosfomycin is essential 

for inactivation.  

 

 
Figure 8. Inhibition of MurA via a covalent modification of Cys115 by fosfomycin.  

Although resistance of E. coli to fosfomycin is rarely found in the clinic, there is a 

high frequency of development of fosfomycin resistance in many other pathogenic 

organisms causing urinary tract infections such as Serratia marcescens, Klebsiella 

pneumoniae, E. cloacae, and Staphylococcus epidermidis39–43.  Several mechanisms 

of fosfomycin resistance are known: i) decreased uptake of fosfomycin13, 44–46, ii) 

inactivation of fosfomycin by a plasmid-encoded glutathione transferase47–52, and iii) 
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replacement of MurA Cys115 by Asp53.  Detailed descriptions of these mechanisms 

are as follows. 

i) Early instances of resistance to fosfomycin were due to chromosomal mutants 

resulting in decreased uptake44, 45.  Fosfomycin is taken into cells by active 

transporters, L-α-glycerophosphate uptake system and glucose-6-phosphate uptake 

system13.  Most chromosomally changed resistant organisms have impairments in one 

or both of these uptake systems, thus losing the ability to import fosfomycin into the 

cells44.   

ii) A decade after the first use of fosfomycin in the clinic, plasmid-mediated 

resistance was observed, consisting the inactivation of fosfomycin by fosfomycin 

resistance proteins39, 54.  The analysis of the first enzyme (FosA) shown to inactivate 

fosfomycin revealed that the resistance was caused by adduct formation between 

fosfomycin and the sulfhydryl of glutathione, a reaction catalyzed by glutathione S-

transferase47, 48.  This reaction opens the epoxide ring to render fosfomycin inactive 

against MurA. 

iii) Alteration of MurA Cys115 to an Asp residue has been found in 

Mycobacterium and Chlamydiae species, which show an innate resistance to 

fosfomycin53, 55.  Studies of site-directed mutagenesis of Cys115 to Asp revealed 

retention of enzyme activity, but conferred resistance to fosfomycin53.  Since other 

organisms, Actinomycetales, Actinomyces, Nocardia, and Streptomyces, have Asp in 

place of MurA Cys115, it is expected that these organisms are also resistant to 

fosfomycin53, 55. 
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1.1.4. Inhibitors of MurA 

As described in the previous section, fosfomycin is the most well-known inhibitor 

of MurA, also the only one used in the clinic.  A number of novel inhibitors of MurA 

have been discovered through high-throughput screening (HTS) in the pharmaceutical 

industry.  Three new inhibitors of MurA, compound 1, 2, and 3 in Figure 9, were 

identified with a submicromolar range of IC50 values (IC50 = 0.2 – 0.9 μM)56.  They 

showed UNAG-dependent and time-dependent inhibition, which suggests that these 

compounds may have similar modes of action as fosfomycin.  However, they also 

showed nonspecific inhibition of DNA, RNA, and protein biosynthesis.  From a 

whole-cell assay of peptidoglycan biosynthesis, a derivative of diarylmethane 

(compound 4) was identified as an inhibitor of MurA and showed the same pattern of 

MurA inhibition as fosfomycin57.  4-alkyl and 4,4-bis-alkyl pyrazolidinedione 

derivatives (e.g. compound 5) were reported as inhibitors of MurA and MurB58.  

Naphthyl tetronic acids were also identified as inhibitors targeting multiple Mur 

enzymes in the peptidoglycan biosynthetic pathway59. The most potent compound 

(compound 6) in this group was active against both Gram-positive and Gram-negative 

bacteria in cell-based assays.  Sesquiterpene lactones (e.g. compound 7) were shown 

to be irreversible inhibitors of Pseudomonas aeruginosa and E. coli MurA by 

alkylating Cys11560.  The sesquiterpene lactone compounds did not show inhibitory 

activity against Cys115Asp mutant MurA.  A new series of inhibitors of MurA with 

2-aminotetralone motif (compound 8) was recently discovered by screening, and a 

mode of action involving formation of a covalent adduct was proposed61.  
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Figure 9.  Structures of MurA inhibitors described in the literatures56–63. (Amino acid 
sequence is shown for inhibitor 10.) 
Each IC50 value is shown below its structure with species tested on.  Ki value is 
shown for inhibitor 9 (T6362).
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Compound 9 (T6362) discovered in Aventis was co-crystallized with MurA62.  In the 

structure, the inhibitor bound on the loop in the open state of MurA.  From the 

structural study along with kinetic analysis, it was found that the compound inhibits 

MurA by inhibiting the conformational change to the closed state.  In addition to 

small molecule inhibitors, inhibitions of MurA by peptides and proteins have been 

discovered.  A 12-mer peptide inhibitor (PEP 1354 peptide, 8 of Figure 9) of MurA 

was identified by phage display and showed a competitive inhibition to UNAG with 

an IC50 value of 200 μM for Pseudomonas aeruginosa MurA63.  A protein of RNA 

phage Qβ (A2) was reported to cause host cell lysis by inhibiting MurA64.  Although 

fosfomycin has remained the only MurA inhibitor on the market up to date, numerous 

efforts to find novel inhibitors of MurA, using accumulated mechanistic and 

structural information, are currently in progress.  

 

1.2. Cyclin-dependent kinase 2 

1.2.1. Cell Cycle and Cyclin-Dependent Kinase (CDK) 

Many polypeptide chains released from a ribosome after translation often need 

posttranslational modification such as phosphorylation, attachment of fatty acids, or 

glycosylation65, 66.  Reversible protein phosphorylation, principally on serine, 

threonine, or tyrosine residue, is one of the most important posttranslational 

modifications.  The phosphorylation of a protein can change its function, leading to 

the gain or loss of catalytic activity, or increasing binding affinity to other proteins.  
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Thus, phosphorylation plays a critical role in the regulation of many cellular 

processes including cell cycle, growth, apoptosis, and signal transduction pathways67.  

The enzymes catalyzing the phosphorylation are protein kinases.  Protein kinases 

catalyze the transfer of a γ-phosphoryl group from ATP to the side chain hydroxyl 

(OH) of a serine, threonine, or tyrosine residue on a target protein.  From the human 

genome project, genes for 518 protein kinases have been identified68.  These have 

been classified into 8 families based on the sequence of the catalytic domains and 

biological functions. The cyclin-dependent kinases (CDKs, EC 2.7.11.22), which are 

members of serine/threonine protein kinases, are categorized in the CMGC kinase 

family which is named an acronym of CDKs, mitogen-activated kinases, glycogen-

synthase kinases, and CDK-like kinases. 

CDKs are responsible for control of the cell cycle progression in proliferating 

eukaryotic cells.  Currently, eleven CDKs have been identified69, 70.  The CDK 

proteins have similar sizes of 30-40 kDa and share approximately 40% amino acid 

sequence similarity.  The 

activity of CDKs is 

closely associated with 

specific cyclins71, 72.  The 

complexes of CDK and 

cyclin found to date are 

shown in Table 2.  Each 

phase of the cell cycle is 

Table 2. CDK and partner cyclins 

Cyclin-dependent Kinase Cyclin 
CDK1 A, B 
CDK2 A, E 
CDK3 C 
CDK4 D 
CDK5 D 
CDK6 D 
CDK7 H 
CDK8 C 
CDK9 K, T 

CDK11 L 
unknown F, G, I 
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characterized by the expression of different CDK-cyclin complexes70, 73.  Cyclins of 

the D family form complexes with CDK4 and 6 during the G1 phase71, cyclin E with 

CDK2 in late G1, cyclin A with CDK2 in S phase, and cyclin B with CDK1 during 

the transition from G2 to M phase74, 75.  Control of CDK activity in a cell cycle is 

accomplished by a number of mechanisms.  CDKs are regulated by the formation of 

an active hetero-dimer complex with their cyclin partners.  The CDKs are not 

catalytically active unless bound to a cyclin, resulting in a complex with basal 

catalytic activity.  Concentrations of cyclin partners oscillate during the cell cycle and 
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Figure 10.  An overview of some essential steps in cell-cycle progression.  CDKs, their 

activators (cyclins, CDK7:cyclinH), and inhibitors (p15, p16, p18, p21, and p27) 

 35



are regulated by transcription, followed by ubiquitin-mediated degradation.  

Phosphorylation of the CDK at a conserved threonine residue (Thr160 in CDK2) by 

CDK-activating kinase (CAK, also known as CDK7) is required for full activity76.   

In addition to the positive role of cyclins and CAK on CDK activity, endogenous 

CDK inhibitors provide counteracting negative control77–79.  There are two categories 

of CDK inhibitors defined by whether the inhibitor binds to CDK alone or CDK/cylin 

complexes.  The former category is termed the INK family, and p15, p16, p18, and 

p19 belong to this group of CDK inhibitors.  These proteins bind to CDK and prevent 

formation of the complex with cyclins. CDK inhibitors in the latter category include 

p21, p27, and p57, and they bind to CDK/cyclin complexes (Figure 10).  

Uncontrolled cell growth due to abnormal cell cycle progression is the basic 

feature of cancer.  Thus, many of the cell cycle regulatory mechanisms have been 

found to be altered in cancerous tumor cells.  Mutations and over-expression of 

cyclins, loss of the function of CDK inhibitors, and CDK substrate alterations are the 

hallmark of many different kinds of cancer, including lung cancer, colon cancer, 

breast cancer, B-cell and T-cell lymphoma, bladder cancer, and neuroblastoma80.  In 

particular, over-expression of cyclins D1 and E is often found in breast cancer and 

colon cancer81, 82.  Amplification and over-expression of CDK4 are also seen in 

various human cancers83.  One of the strategies for cancer treatment is to control the 

indiscriminate proliferation of tumor cells and arrest the cell cycle at the G1 or S 

phase.  Inhibition of CDK activity with low molecular weight molecules could indeed 
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restore this cell-cycle control, and thus potentially help in combating cancer and its 

proliferation. 

1.2.2. Structural Features of CDK2 

Structural studies of CDKs have provided a detailed understanding of the 

activation of CDK by cyclin, ATP binding and phosphorylation.  Almost 200 crystal 

structures of CDKs have been 

released to date, with and without 

ions, cyclins, ATP, phosphorylated 

residues, or other ligands.  Among 

these structural studies of CDKs, 

studies with CDK2 are the most 

abundant84.  CDK2 adopts a 

typical protein kinase fold.  A 

smaller N-terminal domain 

consists principally of β-strands 

and one helix, and a larger C-

terminal domain is primarily α-

helical85.  The ATP binding site is 

located at the interface of the two domains, and ATP binding to CDK2 induces a 

slight closure of the cleft (Figure 11).  This ATP binding site can be divided into three 

regions: adenine, ribose, and phosphate binding regions, defined with reference to the 

chemical moieties in ATP.  The adenine ring is located between Ala31 and Leu134 

 
Figure 11. Overall structure of CDK2 with ATP. 

(PDB ID: 1HCK).  The ATP binding site is 
located between C- and N-terminal.  The P- and 
T-loops are flexible regions in the CDK2 
structure and become rigid by the complex 
formation with cyclinA. 
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forming hydrophobic pockets by Ile10, Ala31, Val64, Phe80, Glu81, Phe82, Leu83, 

Leu134, and Ala144.  In addition to the hydrophobic interactions, the N6 and N1 

atoms of adenine form hydrogen bonds with the backbone carbonyl of Glu81 and the 

backbone NH of Leu83, respectively.  The ribose ring of ATP has a hydrophobic 

interaction with Val18 while Asp86 and Gln131 make hydrogen bonds with its 

hydroxyl groups.  The triphosphate component forms a hydrogen bond with Lys33 

and contacts Asp145 and Asn132 by the mediation of a magnesium ion (Figure 12)86.  

 

(A)   (B) 

 
 
Figure 12.   (A) Chemical structure of ATP.  

(B) A stereoview of ATP binding site of CDK2-ATP complex structure 
(1HCK) 86.  Green colored molecule is ATP. Blue dashed lines represent hydrogen 
bonds and orange dashed lines show van der Waals interactions.  Purple colored 
sphere denotes magnesium ion. 

 

In all structures of the CDK2 monomer, electron density is weakly and poorly 

defined in two regions, residues 36–47 corresponding to the cyclin recognition part 

(known as the P-loop) and residues 150–164 containing the phosphorylation site (the 

T-loop)86–89.  Binding of cyclin A to CDK2 induces significant structural changes to 
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CDK2, producing an optimized ATP binding site, while there is little structural 

change in cyclin A itself (Figure 13).  This conformational change allows 

catalytically important residues to move into the correct positions in the active site, i.e. 

Glu51 and Lys33 coordinate to the α-phosphate of ATP and Asp145, Phe146, and 

Gly147 induce the correct conformation in the triphosphate moiety of ATP for 

catalytic transfer90, 91. Phosphorylation at Thr160 of CDK2 is required for full activity 

of the CDK2/cyclin A complex.  The crystal structure of the CDK2 (phosphorylated 

Thr160)/cyclin A complex shows that the phosphorylation completes the structural 

changes in the active site by creating a peptide binding site.  Phosphorylated Thr160 

 
 
Figure 13.  Overall structures of CDK2-ATP complex (left with blue color, 1HCK)86 and 

CDK2-cyclinA-ATP complex (right with light blue color, 1FIN)91.  Grey colored 
molecule on each structure is ATP, and red and yellow colored structures denote P-
loop and T-loop, respectively.  Note that a part of P-loop on CDK2-ATP complex is 
invisible in crystal structure because of the flexibility. Orange and green colored α-
helix undergo conformational changes upon making complex with cyclinA.  
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acts as an organizing center by interacting with Arg126, adjacent to the catalytic 

aspartate, Asp12789, 90.  

1.2.3. CDK Inhibitors and Their Modes of Action 

The development of CDK inhibitors has progressed rapidly, aided by the enlarged 

structural information of CDK2-ligand interactions from numerous crystal structure 

studies.  All known CDK2 inhibitors target the ATP binding site.  They compete with 

ATP for inhibition and interact with CDK2 in the same manner as ATP, i.e. by 

making hydrogen bonds with backbone of Glu81 and Leu83, and hydrophobic 

interactions with Ala31 and Leu13488, 92–107.  Several classes of inhibitors based on 

their scaffolds have been developed and successfully modified to improve their 

potency as CDK2 inhibitors (Figures 14 and 15).  Some of them have shown 

moderate selectivity. 

As it will be discussed in detail in the following paragraphs, substantial efforts 

have led to the discovery of several different classes of CDK inhibitors with excellent 

potency.  First-generation CDK inhibitors, UCN-01 and flavopiridol, are in late stages 

of clinical trials for cancer treatment, and several second-generation inhibitors such as 

roscovitin, E7070, and aminothiazole, are also being evaluated in clinical trials and 

showing promising results.  However, inhibitors selective for a single CDK have yet 

to be identified.  This could be due to the conservation of the ATP binding pocket of 

CDKs.  CDK inhibitors can be subdivided into three main classes based on their 

selectivity108, 109: i) compounds that are not selective for any specific CDK (e.g. 

flavopiridol and oxindole (7)), ii) compounds that inhibit CDK1, 2, 5 (e.g. 
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Figure 14.  Small molecule inhibitors of CDK (1).   
The numbers below each structure represent IC50 values for various CDKs. 
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Figure 15.  Small molecule inhibitors of CDK (2).  
The numbers below each structure represent IC50 values for various CDKs. 
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compound (19) compound (20)

CDK1/cyclin B >30 M
CDK2/cyclin E >30 M
CDK4/cyclin D 1.2 M

CDK1/cyclin B >40 M
CDK2/cyclin A 209 nM
CDK2/cyclin E 165 nM
CDK4/cyclin D 8 nM

NH
NH

O
HN

O

O

N

N NN
H

O

N
HO

 
 
Figure 16.   Chemical structures of CDK inhibitors selective to CDK4 and CDK6. 

olomoucine, roscovitine, purvalanol, hymenialdisine, indirubin-5-sulfonate, and 

alsterpaullone), and iii) compounds that are selective for CDK4 and 6 (e.g. 

compounds 19 and 20 in Figure 16). 

Selectivity is a key issue for CDK inhibitors because of the toxicity and inhibition 

of specific cancer types.  The toxicities resulting from targeting specific CDKs 

restrict the use of inhibitors to certain cell types, for example, pituitary or pancreatic β 

cells for CDK4 inhibitors due to reduced proliferation of endocrine or erythroid cells, 

and germ cells for CDK2 inhibitors due to sterility.  Inhibitors targeting specific 

CDKs show inhibition of certain types of tumor cells.  For example, CDK4 inhibition 

is efficient on Her2-positive mammary gland tumors but not on MYC-induced breast 

carcinomas, and CDK1 inhibition by purvalanol shows cytotoxic effects in MYC-

overexpressing cells but not in oncogene-type cells. 

1) The first small molecule inhibitors of CDKs is Staurosporine, a metabolite 

from Streptomyces sp, which has attracted considerable attention since it was 

characterized as a potent inhibitor of protein kinase C (IC50 = 1 nM)110, 111.  It was 

 43



later found that staurosporine is a nonspecific inhibitor of a number of protein kinases 

with IC50 values of 1 – 100 nM range.  Some staurosporine derivatives are more 

selective protein kinase inhibitors and show anti-tumor activities in various human 

cancer cell lines112, 113.  Among them, UCN-01, also isolated from Streptomyces, is 

currently under–

going clinical 

trials for cancer 

treatment114.  In 

vitro, UCN-01 is 

effective in cell 

cycle regulation 

by inhibiting 

CDK2, CDK4, 

and CDK6 with IC50 values of 30, 32, and 58 nM, respectively.  In the crystal 

structure of the CDK2/staurosporine complex (Figure 17), staurosporine binds to the 

ATP binding site93.  The N1 atom of staurosporine makes a hydrogen bond with the 

backbone carbonyl of Glu81 and the O5 atom with the backbone NH of Leu83, 

mimicking the hydrogen bonds by ATP to CDK2.  In addition, N4 of the glycosyl 

portion in staurosporine forms additional hydrogen bonds with the side chain oxygen 

of Asp86 and the backbone carbonyl of Gln131.  The fused aromatic ring in 

staurosporine makes significant hydrophobic interactions with CDK2.  The residues 

of CDK2 contributing to hydrophobic contacts with staurosporine include Ile10, 

 

 
Figure 17. A stereoview of staurosporine binding site of CDK2 

complex structure (1AQ1)93.  Green colored molecule is 
staurosporine. Blue dashed lines represent hydrogen bonds 
and orange dashed lines denote van der Waals interactions. 
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Gly11, Val18, Ala31, Lys33, Val64, Phe80, Phe82, Asp86, Gln131, Leu134, Ala144, 

and Asp145. 

2)  The second class of compounds extensively studied as inhibitors of CDKs are 

flavones.  Flavopiridol and 

deschloroflavopiridol are 

synthetic flavonoid analogs 

of a natural alkaloid, 

rohitukine, extracted from 

the stem-bark of the plant 

Dysoxylum binactariferum.  

Flavopiridol is the first 

CDK inhibitor to enter 

clinical trials for cancer 

treatment due to its 

antiproliferative properties115–117.  Flavopiridol is active against a number of protein 

kinases, but it is most active against CDK/cyclin complexes with IC50 values up to 

100 nM.  The X-ray crystal structure of CDK2/deschloroflavopiridol reveals the 

inhibition mode of action of deschloroflavopiridol (Figure 18)118.  Deschloro-

flavopiridol binds in the ATP binding site of CDK2 with the benzopyran ring of 

deschloroflavopiridol occupying the same position as the adenine of ATP.  The O5 

hydroxyl group and O4 of deschloroflavopiridol form hydrogen bonds with the 

backbone carbonyl of Glu81 and the backbone NH of Leu83, respectively.  The 

 
 
Figure 18.  A schematic diagram of deschloroflavopiridol 

binding in CDK2118.  Hydrogen bonds are shown 
as green dashed lines with distances.  Blue arches 
represent van der Waals interactions while red 
arches denote possible sterical clashes. 
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phenyl ring of deschloroflavopiridol points toward the outside of the ATP binding site, 

i.e. the solvent exposed space.  The piperidinyl ring occupies a part of the phosphate 

binding pocket of CDK2.  The flavopiridol molecule has an additional chlorine atom 

on the phenyl ring of deschloroflavopiridol, and this difference results in an increased 

inhibitory potency by a factor of 10.  This is probably due to the new interactions that 

the chloro group is able to make with Ile10, Phe82, and Leu83.  This area is 

conserved between CDKs, but not in protein kinase A, and thus protein kinase A is 

not potently inhibited by flavopiridol119.   

3) Indirubins are CDK inhibitors which belong to the oxindole class.  Oxindoles 

have been used in traditional Chinese medicine for the treatment of chronic 

myelocytic leukemia120.  Indirubin analogs such as indirubin-5-sulfate have shown 

good inhibitory potency for CDK1, CDK2, CDK4, and CDK5 compared to other 

protein kinases100.  The crystal structures of CDK2 complexed with indirubin-5-

sulfate (1E9H)121 and oxindole (7 in Figure 14, 1FVT)92 show that both derivatives 

bind to the ATP binding site in a similar fashion (Figure 19).  The amide nitrogen of 

lactam acts as a hydrogen bond donor to the backbone carbonyl of Glu81, and the 

amide oxygen of lactam forms a hydrogen bond with the backbone NH of Leu83.  In 

addition to these two hydrogen bonds, the indole NH of oxindole donates a hydrogen 

bond to the backbone carbonyl of Leu83.  In the structures, it is shown that oxindoles 

make an additional interaction with Phe80, which is not seen in the ATP binding to 

CDK2.  The sulfate group of indirubin-5-sulfate induces a conformational change of 

Asp145 and Phe146 to avoid possible steric hindrance.  This makes CDK2 adopt a 
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conformation 

similar to the 

one it adopts 

when bound to 

cyclin A.  Also, 

the sulfate 

group makes 

additional ionic 

interactions 

with Lys33 and 

Asp145, which 

may explain the 

increased 

potency of 

indirubin sulfate (IC50 = 35 nM for CDK2/cyclinA), compared to the indirubin 

without the sulfate group (IC50 = 2.2 μM for CDK2/cyclinA).  In the crystal structure 

of oxindole (compound 7 in Figure 14) bound to CDK2, one of the sulfonamide 

oxygens accepts a hydrogen bond from the backbone NH of Asp86 and the 

sulfonamide NH donates a hydrogen bond to the side chain of Asp86.  It is likely that 

these interactions of the sulfonamide contribute to the high inhibitory potency of 

oxindole (compound 7)119. 

 

 
 

Figure 19.  Stereoviews of indirubin-5-sulfate (upper, 1E9H)121 and 
oxindole (7) (bottom, 1FVT)92 in the binding sites of CDK2 
complex structures.  Green colored molecules are inhibitor 
molecules. Blue dashed lines represent hydrogen bonds and 
orange dashed lines denote van der Waals interactions. 
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4) The CDK inhibitors of purine derivatives have been identified by screening.  

The compound olomoucine represents the initial purine analogous inhibitor122.  

Olomoucine 

inhibits CDK1, 

CDK2, and 

CDK5 but does 

not inhibit 

CDK4 or 

CDK6123.  

Roscovitine is 

the most 

promising drug 

candidate in this 

group of CDK 

inhibitors.  

Roscovitine was 

identified 

through a series of structure-activity relationship (SAR) studies, and it is currently in 

clinical trials124, 125.  In the structure of the complexes of CDK2 with olomoucine 

(1WOX) and roscovitine (2A4L)126, there are no significant differences compared to 

the ATP bound CDK2 structure (Figure 20).  N6 of the purine ring makes a hydrogen 

bond with the backbone carbonyl oxygen of Leu83 and N7 with the backbone NH of 

 

 
 
Figure 20.  Stereoviews of olomoucine (up, 1W0X) and roscovitine 

(down, 2A4L)126 binding sites of CDK2 complex structures. 
Green colored molecules are purine analog inhibitors. Blue 
dashed lines represent hydrogen bonds and orange dashed lines 
denote van der Waals interactions. 
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Leu83.  The benzyl ring of olomoucine and roscovitine occupies space outside the 

ATP binding site forming hydrophobic interactions with Ile10, Phe82, and His84.  

The hydroxyl alkyl chain is located in the ribose binding pocket, and the alkyl group 

on N9 occupies the space near Lys33.  Combinatorial chemistry has assisted in the 

discovery of CDK inhibitors with purine scaffolds that possess excellent 

potency94, 127, 128.  Purvanalol B was identified from a pool of compounds prepared by 

combinatorial chemistry, and it inhibits CDK2/cyclin A with a 1000-fold better 

potency than olomoucine (IC50 = 6 nM)94.  

5) The pyrimidine class inhibitor, NU6027, was designed as an alternative to 

purine derivative inhibitors129, 130.  NU6027 maintains three hydrogen bonds with 

backbone Leu83 and Glu81.  The purpose of the 5-nitroso group was to provide an 

intramolecular interaction with NH2 on the 6-position, thus assisting the hydrogen 

atom of the NH2 to be located on the correct position for a hydrogen bond with the 

backbone oxygen of Glu81.  The concept of the design of NU6027 was supported by 

a study with compound 13 (Figure 15), which does not have the nitroso group and 

shows no inhibitory activity. 

6) Quinazoline compounds were found through screening to be CDK 

inhibitors95, 131.  In the crystal structure of compound 16 (Figure 15) (2B53)131, the 

inhibitor is found in the ATP binding site of the enzyme (Figure 21).  Interestingly, 

the hydrogen bonds between the inhibitor and the backbone of CDK2 are bridged 

with a water molecule, i.e. N1 of quinazoline has a hydrogen bond with a water 
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Figure 21.  A stereoview of quinazoline inhibitor bound to CDK2 (2B53)131. 

Green colored molecule is a quinazoline inhibitor. Blue dashed lines 
represent hydrogen bonds and orange dashed lines denote van der 
Waals interactions.  A water molecule is shown as a cyan sphere. 

molecule and the water molecule forms hydrogen bonds with the backbone carbonyl 

oxygen of Glu81 and the backbone nitrogen of Leu83. 

7) Hymenialdisine (compound 14 in Figure 15), the natural product isolated from 

a marine sponge, was found to have inhibitory potency against CDK1, CDK2, and 

CDK5, as well as glycogen synthase 3β (GSK3β)96.  In the crystal structure of 

hymenialdisine bound to CDK2 (1DM2)96, three hydrogen bonds between the 

inhibitor and backbone of CDK2 were observed (Figure 22). The nitrogen atom of the 

pyrrole ring makes a hydrogen bond with the backbone oxygen of Leu83, and the 

amide of azepine have hydrogen bonds with the backbone nitrogen of Leu83 and the 

backbone carbonyl of Glu81.  In addition, the guanidine ring makes direct hydrogen 

bonds to one of the side chain oxygen atoms of Asp145 and two more hydrogen 

bonds through water molecules to the backbone nitrogen of Asp145 and to the 

backbone carbonyl of Gln131.  
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Figure 22.   A stereoview of hymenialdisine bound to CDK2 (1DM2)96.  Green colored 

molecule is hymenialdisine. Blue dashed lines represent hydrogen bonds and orange 
dashed lines denote van der Waals interactions. Water molecules are shown as cyan 
spheres. 

8) The Paullone class of compounds were identified as CDK inhibitors from the 

analysis of the NCI compound collection132, 133.  The most potent inhibitor of this 

group is a nitro derivative, alsterpaullon, inhibiting CDK2/cyclin A with a 15 nM IC50 

value133.  Paullones show good potency for CDK1, CDK2, and CDK5, but show no 

inhibition against CDK4.  

Although the studies of CDK were initially directed towards anticancer therapies, 

CDK inhibitors are currently being evaluated in multiple therapeutic areas, such as 

nervous systems, viral infections, cardiovascular diseases, reproduction, and 

protozoan diseases, and it seems likely that other therapeutic indications may yet be 

discovered.  Thus, the discovery of novel CDK inhibitors with better selectivity 

would provide the next generation of CDK inhibitors that are effective on specific 

diseases as well as cancer.  
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2. Materials and Methods 
2.1. General Materials 

2.1.1. Competent Cells 

Competent cell strains used: BL21(DE3) (Stratagene, La Jolla, CA) and DH5α 

(Invitrogen, Carlsbad, CA). 

2.1.2. Chemicals 

A Labconco Water Pure Plus System (Kansas City, MO) was used to purify H2O 

used for all research.   All biochemical reagents were purchased from Sigma (St. 

Louis, MO) or Fisher (Springfield, NJ) unless otherwise noted. 

2.1.3. Solutions 

2.1.3.1.  Media 

All media was autoclaved and stored at 4 ˚C.  Antibiotic stocks were added to the 

media prior to use. 

Luria Bertani (LB): 

10 g tryptone 

5 g yeast extract 

10 g NaCl 

Fill to 1 L with H2O  
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2.1.3.2.  Antibiotics 

Ampicillin (Amp, Fisher) at 100 mg/mL and kanamycin (Kan, Fisher) at 

30 mg/mL were sterile filtered with a 0.45 μm filter and stored at -20 ˚C.  Antibiotics 

were used as a 1:1000 dilution unless otherwise mentioned. 

2.1.3.3.  DNA Electrophoresis 

A 50× concentrated stock solution of TAE was stored at room temperature and 

diluted before the use.  The protocol for DNA gel is following: 500 mg of agarose in 

50 mL of 1× TAE was heated with microwave until dissolved, 1 μL of ethidium 

bromide (5 mg/mL) was added to the solution and the gel was cast. 

 

50× TAE (1L): 

242 g Tris (pH 8.5) 

57.1 mL glacial acetic acid 

100 mL 0.5 M EDTA (pH 8.0) 

Fill to 1 L with H2O 

 

Molecular ladder (Cambrex Bio Science, Rockland, ME) was prepared by adding 

5 μL marker and 2 μL 10× Blue-juice (Invitrogen) to 3 μL H2O.  The DNA ladder 

corresponded to 10, 7, 5, 4, 3, 2.5, 2, 1.5, and 1 Kb markers. 

 53



2.1.3.4. SDS Electrophoresis 

SDS-PAGE running buffer was prepared as a 10× concentrated solution and 

diluted prior to use.  Coomassie stain was filtered with a Nalgene PES filter with 

75 μm membrane size and stored in a bottle wrapped with aluminum foil at room 

temperature.  30 % Acrylamide/bisacrylamide, 10 % APS (Biorad, Hercules CA), 

TEMED (Biorad) and Tris buffers were stored at 4 ˚C.  All other solutions were 

stored at room temperature.  SDS-PAGE gels were made according to the following 

protocol and stored at 4 ˚C for up to 2 weeks.  

 

Resolving SDS gel portion (1 gel):  

4 mL  30 % acrylamide/bisacrylamide 

100 μL 10% SDS 

2.5 mL 1.5 M Tris (pH 8.8) 

3.36 mL water 

80 μL 10 % APS  

10.0 μL TEMED  

 

30 % Acrylamide/bisacrylamide (500 mL): 

150 g acrylamide  

4 g bisacrylamide 

Fill to 500 mL with H2O 

 

Stacking SDS gel portion (1 gel):  

650 μL 30 % acrylamide/bisacrylamide 

50 μL 10 % SDS 

1.25 mL 0.5 M Tris (pH 6.8) 

3.05 mL water 

40 μL 10 % APS 

5 μL TEMED 

 

10× SDS Running buffer (1L): 

30 g Tris (pH 8.5) 

144 g glycine 

10 g SDS 

Fill to 1 L with H2O 
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Destaining solution (1L):  

500 mL ethanol 5× Treatment buffer: 

100 mL acetic acid  300 mM Tris (pH 8.5) 

400 mL H2O 10 % SDS  

 4 mL H2O 

Coomassie stain (1L): 25 % β-mercaptoethanol 

1.25 g Coomassie brilliant blue R-250 50 % glycerol 

500 mL 95 % ethanol 282 mM HCl 

450 mL H2O 0.05 % bromophenol blue 

50 mL 100 % acetic acid 

 
 
 
 
SDS low range marker (Biorad): 

Protein Molecular marker was prepared by adding 50 μL concentrated marker and 

100 μL 5× treatment buffer to 350 μL H2O and heating the solution at 100 ˚C for 

5 min.  Marker was stored at -20 ˚C.  The molecular weights in the marker 

corresponded to 97.4, 66.2, 45, 31, 21.5, and 14.4 kDa.   

2.1.3.5.  FPLC Buffers 

All buffers for protein purification were filtered with a 0.45 μm filter and stored at 

4 ˚C. 
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Buffer A: 

50 mM Tris (pH 7.8) 

1 mM DTT 

1 mM EDTA 

 

Buffer A + 1M (NH4)2SO4: 

50 mM Tris (pH 7.8) 

1 M (NH4)2SO4 

1 mM DTT 

1 mM EDTA 

 

Buffer A (CDK-GST 1) 

50 mM HEPES (pH 7.5) 

150 mM NaCl 

1 mM EGTA 

10 mM MgCl2 

2 mM DTT 

 

 

 

 

Buffer A + 0.4M NaCl: 

50 mM Tris (pH 7.8) 

0.4 M NaCl 

1 mM DTT 

1 mM EDTA 

 

 

 

 

 

 

Buffer A (CDK-GST 1) + glutathione 

50 mM HEPES (pH 7.5) 

150 mM NaCl 

1 mM EGTA 

10 mM MgCl2 

2 mM DTT 

10 mM glutathione, reduced 
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Buffer A (CDK-GST 2) + glutathione Buffer A (CDK-GST 2) 

50 mM HEPES (pH 7.5) 50 mM HEPES (pH 7.5) 

150 mM NaCl 150 mM NaCl 

1 mM EGTA 1 mM EGTA 

10 mM MgCl2 10 mM MgCl2 

2 mM DTT 2 mM DTT 

0.01 mM ADP 0.01 mM ADP 

 10 mM glutathione, reduced 

 

2.1.3.6. Lanzetta Reagent 

Lanzetta reagent was prepared by using plastic-ware to avoid phosphate 

contamination from glass.  The following protocol was used:  5.25 g ammonium 

molybdate was dissolved in 41 mL of 12 M HCl and added to a solution containing 

169 mg malachite green in 375 mL H2O.  This solution was stirred for 2 - 4 hrs, 

filtered using a Nalgene PES filter with 75 μm pore size and stored at room 

temperature wrapped in aluminium foil. 

2.1.3.7. Crystallization Solutions 

For crystallization screening, Hampton 1 and 2 (Tables 3 and 4, Hampton 

Research, Aliso Viejo, CA), and Wizard 1 and 2 (Tables 5 and 6, Emerald 

Biosciences, Cambridge, MA) screening solutions were purchased. 
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Table 3. Crystallization buffers for Hampton crystallization screen #1. 
 

 Salt Buffer Precipitant 
1 0.02 M CaCl2 ·2H2O 0.1 M NaOAc ·3H2O pH 4.6 30% v/v MPD 
2 None None 0.4 M K/Na tartrate ·2H2O 
3 None None 0.4 M (NH4)H2PO4 
4 None 0.1 M TRIS· HCl pH 8.5 2.0 M (NH4)2SO4 
5 0.2 M Na3citrate ·2H2O 0.1 M HEPES· Na pH 7.5 30% v/v MPD 
6 0.2 M MgCl2 ·6H2O 0.1 M TRIS· HCl pH 8.5 30% w/v PEG4,000 
7 None 0.1 M Na cacodylate  pH 6.5 1.4 M NaOAc ·3H2O 
8 0.2 M Na3citrate ·2H2O 0.1 M Na cacodylate pH 6.5 30% v/v 2-Propanol 
9 0.2 M NH4OAc 0.1 M Na3citrate· 2H2O pH 5.6 30% w/v PEG4,000 

10 0.2 M NH4OAc 0.1 M NaOAc· 3H2O pH 4.6 30% w/v PEG4,000 
11 None 0.1 M Na3citrate· 2H2O pH 5.6 1.0 M (NH4)H2PO4 
12 0.2 M MgCl2 ·6H2O 0.1 M HEPES· Na pH 7.5 30% v/v 2-Propanol 
13 0.2 M Na3citrate ·2H2O 0.1 M TRIS· HCl pH 8.5 30% v/v PEG400 
14 0.2 M CaCl2 ·2H2O 0.1 M HEPES· Na pH 7.5 28% v/v PEG400 
15 0.2 M (NH4)2SO4 0.1 M Na cacodylate pH 6.5 30% w/v PEG8,000 
16 None 0.1 M HEPES· Na pH 7.5 1.5 M Li2SO4 ·H2O 
17 0.2 M Li2SO4 ·H2O 0.1 M TRIS· HCl pH 8.5 30% w/v PEG4,000 
18 0.2 M Mg(OAc)2 ·4H2O 0.1 M Na cacodylate pH 6.5 20% w/v PEG8,000 
19 0.2 M NH4OAc 0.1 M TRIS· HCl pH 8.5 30% v/v 2-Propanol 
20 0.2 M (NH4)2SO4 0.1 M NaOAc· 3H2O pH 4.6 25% w/v PEG4,000 
21 0.2 M Mg(OAc)2 ·4H2O 0.1 M Na cacodylate pH 6.5 30% v/v MPD 
22 0.2 M NaOAc ·3H2O 0.1 M TRIS· HCl pH 8.5 30% w/v PEG4,000 
23 0.2 M MgCl2 ·6H2O 0.1 M HEPES· Na pH 7.5 30% v/v PEG400 
24 0.2 M CaCl2· 2H2O 0.1 M NaOAc· 3H2O pH 4.6 20% v/v 2-Propanol 
25 None 0.1 M Imidazole pH 6.5 1.0 M NaOAc ·3H2O 
26 0.2 M NH4OAc 0.1 M Na3citrate 2H2O pH 5.6 30% v/v MPD 
27 0.2 M Na3citrate ·2H2O 0.1 M HEPES· Na pH 7.5 20% v/v 2-Propanol 
28 0.2 M NaOAc ·3H2O 0.1 M Na cacodylate pH 6.5 30% w/v PEG8,000 
29 None 0.1 M HEPES· Na pH 7.5 0.8 M K/Na tartrate 2H2O 
30 0.2 M (NH4)2SO4 None 30% w/v PEG8,000 
31 0.2 M (NH4)2SO4 None 30% w/v PEG4,000 
32 None None 2.0 M (NH4)2SO4 
33 None None 4.0 M Na formate 
34 None 0.1 M NaOAc· 3H2O pH 4.6 2.0 M Na formate 

35 None 0.1 M HEPES· Na pH 7.5 0.8 M NaH2PO4 · H2O  
0.8 M KH2PO4 

36 None 0.1 M TRIS· HCl pH 8.5 8% w/v PEG8,000 
37 None 0.1 M NaOAc· 3H2O pH 4.6 8% w/v PEG4,000 
38 None 0.1 M HEPES· Na pH 7.5 1.4 M Na3citrate· 2H2O 

39 None 0.1 M HEPES· Na pH 7.5 2% v/v PEG400 
2.0 M (NH4)2SO4 

40 None 0.1 M Na3citrate· 2H2O pH 5.6 20% v/v 2-Propanol 
20% w/v PEG4,000 

41 None 0.1 M HEPES· Na pH 7.5 10% v/v 2-Propanol 
20% w/v PEG4,000 

42 0.05 M KH2PO4 None 20% w/v PEG8,000 
43 None None 30% w/v PEG1,500 
44 None None 0.2 M Mg formate 
45 0.2 M Zn(OAc)2 ·2H2O 0.1 M Na cacodylate pH 6.5 18% w/v PEG8,000 
46 0.2 M Ca(OAc)2 ·H2O 0.1 M Na cacodylate pH 6.5 18% w/v PEG8,000 
47 None 0.1 M NaOAc ·3H2O pH 4.6 2.0 M (NH4)2SO4 
48 None 0.1 M TRIS· HCl pH 8.5 2.0 M (NH4)H2PO4 
49 1.0 M Li2SO4 ·H2O None 2% w/v PEG8,000 
50 0.5 M Li2SO4 ·H2O None 15% w/v PEG8,000 
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Table 4. Crystallization buffers for Hampton crystallization screen #2. 
 

 Salt Buffer Precipitant 
1 2.0 M NaCl None 10% w/v PEG 6,000 

2 0.5 M NaCl 
0.01 M MgCl2· 6(H2O) None 0.01 M CH3(CH2)15N(Br)(CH3)3 

3 None None 25% v/v Ethylene glycol 
4 None None 35% v/v 1,4-Dioxane 
5 2.0 M (NH4)2SO4 None 5% v/v 2-Propanol 
6 None None 1.0 M Imidazole pH 7.0 

7 None None 10% w/v PEG 1,000 
10% w/v PEG 8,000 

8 1.5 M NaCl None 10% v/v Ethanol 
9 None 0.1 M NaOAc ·3H2O pH 4.6 2.0 M NaCl 

10 0.2 M NaCl 0.1 M NaOAc ·3H2O pH 4.6 30% v/v MPD 
11 0.01 M CoCl2 · 6H2O 0.1 M NaOAc ·3H2O pH 4.6 1.0 M 1,6-Hexanediol 
12 0.1 M CdCl2 ·H2O 0.1 M NaOAc ·3H2O pH 4.6 30% v/v PEG 400 
13 0.2 M (NH4)2SO4 0.1 M NaOAc ·3H2O pH 4.6 30% w/v PEG MME 2,000 
14 0.2 M K Na tartrate  · 4H2O 0.1 M Na3citrate· 2H2O pH 5.6 2.0 M (NH4)2SO4 
15 0.5 M (NH4)2SO4 0.1 M Na3citrate· 2H2O pH 5.6 1.0 M Li2SO4 ·H2O 
16 0.5 M NaCl 0.1 M Na3citrate· 2H2O pH 5.6 2% v/v Ethylene imine polymer 
17 None 0.1 M Na3citrate· 2H2O pH 5.6 35% v/v tert-Butanol 
18 0.01 M FeCl3 · 6H2O 0.1 M Na3citrate· 2H2O pH 5.6 10% v/v Jeffamine M-600 
19 None 0.1 M Na3citrate· 2H2O pH 5.6 2.5 M 1,6-Hexanediol 
20 None 0.1 M MES· H2O pH 6.5 1.6 M MgSO4· 6H2O 

21 0.1 M NaH2PO4 · H2O 
0.1 M KH2PO4 

0.1 M MES· H2O pH 6.5 2.0 M NaCl 

22 None 0.1 M MES· H2O pH 6.5 12% w/v PEG 20,000 
23 1.6 M (NH4)2SO4 0.1 M MES· H2O pH 6.5 10% v/v 1,4-Dioxane 
24 0.05 M CsCl 0.1 M MES· H2O pH 6.5 30% v/v Jeffamine M-600 
25 0.01 M CoCl2 · 6H2O 0.1 M MES· H2O pH 6.5 1.8 M (NH4)2SO4 
26 0.2 M (NH4)2SO4 0.1 M MES· H2O pH 6.5 30% w/v PEG MME 5,000 
27 0.01 M ZnSO4 · 7H2O 0.1 M MES· H2O pH 6.5 25% v/v PEG MME 550 
28 None None 1.6 M Na3citrate ·2H2O pH 6.5 
29 0.5 M (NH4)2SO4 0.1 M HEPES pH 7.5 30% v/v MPD 

30 None 0.1 M HEPES pH 7.5 10% w/v PEG 6,000 
5% v/v MPD 

31 None 0.1 M HEPES pH 7.5 20% v/v Jeffamine M-600 
32 0.1 M NaCl 0.1 M HEPES pH 7.5 1.6 M (NH4)2SO4 
33 None 0.1 M HEPES pH 7.5 2.0 M NH4HCO2 
34 0.05 M CdSO4 · H2O 0.1 M HEPES pH 7.5 1.0 M NaOAc· 3H2O 
35 None 0.1 M HEPES pH 7.5 70% v/v MPD 
36 None 0.1 M HEPES pH 7.5 4.3 M NaCl 

37 None 0.1 M HEPES pH 7.5 10% w/v PEG 8,000 
8% v/v Ethylene glycol 

38 None 0.1 M HEPES pH 7.5 20% w/v PEG 10,000 
39 0.2 M MgCl2· 6H2O 0.1 M Tris pH 8.5 3.4 M 1,6-Hexanediol 
40 None 0.1 M Tris pH 8.5 25% v/v tert-Butanol 
41 0.01 M NiCl2 · 6H2O 0.1 M Tris pH 8.5 1.0 M Li2SO4· H2O 
42 1.5 M (NH4)2SO4 0.1 M Tris pH 8.5 12% v/v Glycerol 
43 0.2 M NH4H2PO4 0.1 M Tris pH 8.5 50% v/v MPD 
44 None 0.1 M Tris pH 8.5 20% v/v Ethanol 
45 0.01 M NiCl2·6H2O 0.1 M Tris pH 8.5 20% w/v PEG MME 2,000 
46 0.1 M NaCl 0.1 M BICINE pH 9.0 20% v/v PEG MME 550 
47 None 0.1 M BICINE pH 9.0 2.0 M MgCl2· 6H2O 

48 None 0.1 M BICINE pH 9.0 2% v/v 1,4-Dioxane 
10% w/v PEG 20,000 
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Table 5. Crystallization buffers for Wizard crystallization screen #1. 
 

  crystallant buffer (0.1 M) salt (0.2 M) 

1 20% (w/v) PEG-8000 CHES pH 9.5 none 
2 10% (v/v) 2-propanol HEPES pH 7.5 NaCl 
3 15% (v/v) ethanol CHES pH 9.5 none 
4 35% (v/v) 2-methyl-2,4-pentanediol imidazole pH 8.0 MgCl2 
5 30% (v/v) PEG-400 CAPS pH 10.5 none 
6 20% (w/v) PEG-3000 citrate pH 5.5 none 
7 10% (w/v) PEG-8000 MES pH 6.0 Zn(OAc)2 
8 2.0 M (NH4)2SO4 citrate pH 5.5 none 
9 1.0 M (NH4)2HPO4 acetate pH 4.5 none 

10 20% (w/v) PEG-2000 MME Tris pH 7.0 none 
11 20% (v/v) 1,4-butanediol MES pH 6.0 Li2SO4 
12 20% (w/v) PEG-1000 imidazole pH 8.0 Ca(OAc)2 
13 1.26 M (NH4)2SO4 cacodylate pH 6.5 none 
14 1.0 M sodium citrate cacodylate pH 6.5 none 
15 10% (w/v) PEG-3000 imidazole pH 8.0 Li2SO4 
16 2.5 M NaCl Na/K phosphate pH 6.2 none 
17 30% (w/v) PEG-8000 acetate pH 4.5 Li2SO4 
18 1.0 M K/Na tartrate imidazole pH 8.0 NaCl 
19 20% (w/v) PEG-1000 Tris pH 7.0 none 
20 0.4 M NaH2PO4/1.6 M K2HPO4 imidazole pH 8.0 NaCl 
21 20% (w/v) PEG-8000 HEPES pH 7.5 none 
22 10% (v/v) 2-propanol Tris pH 8.5 none 
23 15% (v/v) ethanol imidazole pH 8.0 MgCl2 
24 35% (v/v) 2-methyl-2,4-pentanediol Tris pH 7.0 NaCl 
25 30% (v/v) PEG-400 Tris pH 8.5 MgCl2 
26 10% (w/v) PEG-3000 CHES pH 9.5 none 
27 1.2 M NaH2PO4/0.8 M K2HPO4 CAPS pH 10.5 Li2SO4 
28 20% (w/v) PEG-3000 HEPES pH 7.5 NaCl 
29 10% (w/v) PEG-8000 CHES pH 9.5 NaCl 
30 1.26 M (NH4)2SO4 acetate pH 4.5 NaCl 
31 20% (w/v) PEG-8000 phosphate-citrate pH 4.2 NaCl 
32 10% (w/v) PEG-3000 Na/K phosphate pH 6.2 none 
33 2.0 M (NH4)2SO4 CAPS pH 10.5 Li2SO4 
34 1.0 M (NH4)2HPO4 imidazole pH 8.0 none 
35 20% (v/v) 1,4-butanediol acetate pH 4.5 none 
36 1.0 M sodium citrate imidazole pH 8.0 none 
37 2.5 M NaCl imidazole pH 8.0 none 
38 1.0 M K/Na tartrate CHES pH 9.5 Li2SO4 
39 20% (w/v) PEG-1000 phosphate-citrate pH 4.2 Li2SO4 
40 10% (v/v) 2-propanol MES pH 6.0 Ca(OAc)2 
41 30% (w/v) PEG-3000 CHES pH 9.5 none 
42 15% (v/v) ethanol Tris pH 7.0 none 
43 35% (v/v) 2-methyl-2,4-pentanediol Na/K phosphate pH 6.2 none 
44 30% (v/v) PEG-400 acetate pH 4.5 Ca(OAc)2 
45 20% (w/v) PEG-3000 acetate pH 4.5 none 
46 10% (w/v) PEG-8000 imidazole pH 8.0 Ca(OAc)2 
47 1.26 M (NH4)2SO4 Tris pH 8.5 Li2SO4 
48 20% (w/v) PEG-1000 acetate pH 4.5 Zn(OAc)2 
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Table 6. Crystallization buffers for Wizard crystallization screen #2. 
 

  crystallant buffer (0.1 M) salt (0.2 M) 

1 10% (w/v) PEG-3000 acetate pH 4.5 Zn(OAc)2 
2 35% (v/v) 2-methyl-2,4-pentanediol MES pH 6.0 Li2SO4 
3 20% (w/v) PEG-8000 Tris pH 8.5 MgCl2 
4 2.0 M (NH4)2SO4 cacodylate pH 6.5 NaCl 
5 20% (v/v) 1,4-butanediol HEPES pH 7.5 NaCl 
6 10% (v/v) 2-propanol phosphate-citrate pH 4.2 Li2SO4 
7 30% (w/v) PEG-3000 Tris pH 7.0 NaCl 
8 10% (w/v) PEG-8000 Na/K phosphate pH 6.2 NaCl 
9 2.0 M (NH4)2SO4 phosphate-citrate pH 4.2 none 

10 1.0 M (NH4)2HPO4 Tris pH 8.5 none 
11 10% (v/v) 2-propanol cacodylate pH 6.5 Zn(OAc)2 
12 30% (v/v) PEG-400 cacodylate pH 6.5 Li2SO4 
13 15% (v/v) ethanol citrate pH 5.5 Li2SO4 
14 20% (w/v) PEG-1000 Na/K phosphate pH 6.2 NaCl 
15 1.26 M (NH4)2SO4 HEPES pH 7.5 none 
16 1.0 M sodium citrate CHES pH 9.5 none 
17 2.5 M NaCl Tris pH 7.0 MgCl2 
18 20% (w/v) PEG-3000 Tris pH 7.0 Ca(OAc)2 
19 1.6 M NaH2PO4/0.4 M K2HPO4 phosphate-citrate pH 4.2 none 
20 15% (v/v) ethanol MES pH 6.0 Zn(OAc)2 
21 35% (v/v) 2-methyl-2,4-pentanediol acetate pH 4.5 none 
22 10% (v/v) 2-propanol imidazole pH 8.0 none 
23 15% (v/v) ethanol HEPES pH 7.5 MgCl2 
24 30% (w/v) PEG-8000 imidazole pH 8.0 NaCl 
25 35% (v/v) 2-methyl-2,4-pentanediol HEPES pH 7.5 NaCl 
26 30% (v/v) PEG-400 CHES pH 9.5 none 
27 10% (w/v) PEG-3000 cacodylate pH 6.5 MgCl2 
28 20% (w/v) PEG-8000 MES pH 6.0 Ca(OAc)2 
29 1.26 M (NH4)2SO4 CHES pH 9.5 NaCl 
30 20% (v/v) 1,4-butanediol imidazole pH 8.0 Zn(OAc)2 
31 1.0 M sodium citrate Tris pH 7.0 NaCl 
32 20% (w/v) PEG-1000 Tris pH 8.5 none 
33 1.0 M (NH4)2HPO4 citrate pH 5.5 NaCl 
34 10% (w/v) PEG-8000 imidazole pH 8.0 none 
35 0.8 M NaH2PO4/1.2 M K2HPO4 acetate pH 4.5 none 
36 10% (w/v) PEG-3000 phosphate-citrate pH 4.2 NaCl 
37 1.0 M K/Na tartrate Tris pH 7.0 Li2SO4 
38 2.5 M NaCl acetate pH 4.5 Li2SO4 
39 20% (w/v) PEG-8000 CAPS pH 10.5 NaCl 
40 20% (w/v) PEG-3000 imidazole pH 8.0 Zn(OAc)2 
41 2.0 M (NH4)2SO4 Tris pH 7.0 Li2SO4 
42 30% (v/v) PEG-400 HEPES pH 7.5 NaCl 
43 10% (w/v) PEG-8000 Tris pH 7.0 MgCl2 
44 20% (w/v) PEG-1000 cacodylate pH 6.5 MgCl2 
45 1.26 M (NH4)2SO4 MES pH 6.0 none 
46 1.0 M (NH4)2HPO4 imidazole pH 8.0 NaCl 
47 2.5 M NaCl imidazole pH 8.0 Zn(OAc)2 
48 1.0 M K/Na tartrate MES pH 6.0 none 
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The crystallization solutions in which crystals were present were optimized to 

obtain the best crystal by changing buffer pH and the concentrations of salt and 

precipitant (Tables 7-9).  Every stock solution used to make in-house crystallization 

solutions was filtered with a 45 μm membrane filter prior to mixing.  The components 

of crystallization solutions are shown below. 

 
 
Table 7.  Variations of crystallization condition H1-18.  Each row illustrates the variations 

attempted from the original condition, H1-18. 
 

H1-18 condition Mg(OAc)2 Na cacodylate PEG8000 

H1-18-1 0.1 M 0.1M, pH 6.0 20 % 

H1-18-2 (original) 0.1 M 0.1M, pH 6.5 20 % 

H1-18-3 0.1 M 0.1M, pH 7.0 20 % 

H1-18-4 0.2 M 0.05M, pH 6.0 20 % 

H1-18-5 0.2 M 0.05M, pH 6.5 20 % 

H1-18-6 0.2 M 0.05M, pH 7.0 20 % 

H1-18-7 0.2 M 0.2M, pH 6.0 20 % 

H1-18-8 0.2 M 0.2M, pH 6.5 20 % 

H1-18-9 0.2 M 0.2M, pH 7.0 20 % 

H1-18-10 0.4 M 0.1M, pH 6.0 20 % 

H1-18-11 0.4 M 0.1M, pH 6.5 20 % 

H1-18-12 0.4 M 0.1M, pH 7.0 20 % 

H1-18-13 0.1 M 0.1M, pH 6.0 15 % 

H1-18-14 0.1 M 0.1M, pH 6.5 15 % 

H1-18-15 0.1 M 0.1M, pH 7.0 15 % 

H1-18-16 0.2 M 0.05M, pH 6.0 15 % 

H1-18-17 0.2 M 0.05M, pH 6.5 15 % 

H1-18-18 0.2 M 0.05M, pH 7.0 15 % 

H1-18-19 0.2 M 0.2M, pH 6.0 15 % 

H1-18-20 0.2 M 0.2M, pH 6.5 15 % 

H1-18-21 0.2 M 0.2M, pH 7.0 15 % 

H1-18-22 0.4 M 0.1M, pH 6.0 15 % 

H1-18-23 0.4 M 0.1M, pH 6.5 15 % 

H1-18-24 0.4 M 0.1M, pH 7.0 15 % 
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Table 8. Variations of crystallization condition PEG20K.  Each row illustrates the variations 

attempted from the original condition, PEG20K. 
 

PEG20K condition MES PEG 20K 

PEG20K-1 25 mM 12.5 % 

PEG20K-2 25 mM 10 % 

PEG20K-3 25 mM 8 % 

PEG20K-4 50 mM 12.5 % 

PEG20K-5 50 mM 10 % 

PEG20K-6 50 mM 8 % 

PEG20K-7 100 mM 12.5 % 

PEG20K-8 100 mM 10 % 

PEG20K-9 150 mM 12.5 % 

PEG20K-10 150 mM 10 % 

PEG20K-11 200 mM 12.5 % 

PEG20K-12 200 mM 10 % 

PEG20K-13 200 mM 8 % 

PEG20K-14 200 mM 6 % 
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Table 9.  Variations of crystallization condition H1-41.  Each row illustrates the variations 

attempted from the original condition, H1-41. 
 

H1-41 conditions HEPES 2-propanol PEG4000 

H1-41-1 0.1 M, pH 7.5 10 % 20 % 

H1-41-2 0.1 M, pH 7.5 9 % 20 % 

H1-41-3 0.1 M, pH 7.5 8 % 20 % 

H1-41-4 0.1 M, pH 7.5 7 % 20 % 

H1-41-5 0.1 M, pH 7.5 6 % 20 % 

H1-41-6 0.1 M, pH 7.5 11 % 20 % 

H1-41-7 0.1 M, pH 7.5 12 % 20 % 

H1-41-8 0.1 M, pH 7.5 10 % 22 % 

H1-41-9 0.05 M, pH 7.5 10 % 20 % 

H1-41-10 0.15 M, pH 7.5 10 % 20 % 

H1-41-11 0.1 M, pH 7.5 10 % 18 % 

H1-41-12 0.1 M, pH 7.8 10 % 20 % 

H1-41-13 0.1 M, pH 8.2 10 % 20 % 

H1-41-14 0.1 M, pH 7.2 10 % 20 % 

H1-41-15 0.1 M, pH 6.8 10 % 20 % 

H1-41-16 0.1 M, pH 7.5 14 % 20 % 

H1-41-17 0.1 M, pH 7.5 16 % 20 % 

H1-41-18 0.1 M, pH 7.5 18 % 20 % 

H1-41-19 0.1 M, pH 7.5 10 % 25 % 

H1-41-20 0.1 M, pH 7.5 12 % 22 % 
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2.2. General Methods 

2.2.1.  Preparation of Competent Cells 

Commercially available competent cells were used to make stocks of new CaCl2 

competent cells.  Five milliliters of overnight cultures were grown in LB media with 

no antibiotic and transferred to 250 mL LB media.  When the OD550 reached to 0.5–

0.7, the cells were harvested by centrifugation at 4 ˚C for 10 min at 6,000 rpm using a 

Beckman J2-21 centrifuge.  The cell pellets were washed with 100 mL of sterile 

0.1 M MgCl2 and centrifuged at 4 ˚C for 10 min.  The supernatant was discarded and 

the pellets were resuspended in 100 mL of sterile 0.1 M CaCl2.  The resuspended 

solution was incubated on ice for 20 min prior to centrifugation at 4 ˚C for 10 min.  

The supernatant was decanted and the cells were resuspended with 50 mL of sterile 

0.1 M CaCl2.  Following the resuspension, the cells were incubated for 30 min on ice 

before 5 mL of sterile 50 % glycerol was added.  The cells were aliquoted into 1.5 

mL micro centrifuge tubes and stored at -80 ˚C.   

2.2.2.  Transformations 

Competent cells were transformed by adding 50 to 250 ng of plasmid to 100 μL 

of cells.  This mixture was incubated on ice for 30 min, then heat-shocked for 45 sec 

in 42 ˚C water bath and re-incubated on ice for 2 min.  After adding 900 μL of LB 

broth, the mixture was incubated at 37 °C for 1 h with shaking at 250 rpm.  The cells 

were then centrifuged for 1 min at 6,000 rpm using Eppendorf centrifuge 5417C and 

950 μL of supernatant was removed.  The pellet was resuspended in the remaining 
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solution and plated on LB agar plates, which contained the appropriate antibiotics, 

and incubated overnight at 37 ˚C.   

2.2.3.  Plasmid Preparations 

Plasmids were isolated and purified using the Mini-Prep kit (Qiagen, Valencia, 

CA), according to the user’s manual.  

2.2.4.  DNA Electrophoresis 

All DNA samples were prepared by adding 2 μL of 10× Blue-juice to 8 μL of 

DNA (50–250 ng).  DNA gels were performed at 120 volt for 30 min.  

2.2.5.  Sequencing 

DNA sequences were determined with commercially available T7 primer (GE 

Healthcare) or in-house primers at the biotech research support facility in the 

University of Kansas Medical Center using a PE Biosystems Prism 377XL sequencer 

(Applied Biosystems, Foster City, CA). 

2.2.6.  Glycerol Stocks 

An 800 μL aliquot of an overnight cell culture was mixed with 200 μL 50% 

glycerol and stored at -80 ˚C for future use. 

2.2.7.  SDS Electrophoresis 

All SDS-PAGE samples were prepared by adding the appropriate amount of 5× 

loading buffer to the sample, followed by heating the sample at 100 ˚C for 5 min.  

 66



SDS-PAGE was performed using a mini PROTEAN® 3 cell (Biorad) at 150 volt for 

1 hour.  

2.2.8.  Determination of Protein Concentration 

Protein concentration was determined using the Coomassie reagent (Pierce, 

Rockford IL) according to the Bradford method.  All protein concentrations were 

determined by comparison to a bovine serum albumin (BSA) standard curve at 

concentrations of 0.5, 1.0, 1.5 and 2.0 mg/mL.    

The protein concentrations of standards and unknowns were determined as 

follows: 5 μL of protein was added to 95 μL of water and 900 μL of Coomassie 

reagent and the absorbance was measured at 596 nm.  The UV absorption of each 

unknown was fit to the BSA standard curve to determine the protein concentration.  

All measurements were recorded in a cuvette using a Shimazdu UV-1650PC 

spectrophotometer (Shimadzu, Colombia, MD).  

2.2.9. PD-10 

PD-10 desalting columns (GE Healthcare) were used to buffer exchange a protein.  

The columns were equilibrated with 25 mL of buffer prior to loading a 2.5 mL aliquot 

of protein onto the column.  The protein was eluted with 3.5 mL of buffer according 

to the manual.  The column was re-equilibrated with 25 mL of buffer before the re-

use if more protein was to be used.   
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2.2.10. Centricon 

Protein was concentrated in YM-30 or YM-10 devices (Millipore, Bedford, MA).  

Approximately 2 mL of protein solution was added to the Centricon device and 

centrifuged for 20 min at 7,000 rpm and 4 °C using a Thermo Fisher IEC Multi RF 

centrifuge.  More protein was added and the centrifugation was repeated until all the 

protein had been added to the device, then the Centricon was inverted and centrifuged 

for 1 min to collect the concentrated protein at a desired volume.   

2.2.11. Crystallization 

For crystallization, proteins were concentrated to 150 mg/mL for MurA enzymes 

and to 10 mg/mL for CDK2.  All proteins were crystallized using the hanging-drop 

vapor-diffusion method.  The VDX 24 well plate (Hampton Research) and 22 mm 

siliconized glass coverslides (Hampton Research) were used for crystallization.  

Micro-seeding was performed on the droplets without crystal growth after overnight 

incubation at 19 °C.  The plates were checked at intervals of 1, 2, and 4 days and 1, 2, 

and 4 weeks.  After four weeks, the plates were moved to room temperature and 

checked monthly thereafter.   

2.2.11.1.  Hanging-Drop method 

In the reservoir, 500 μL of crystallization or equilibrium solution was placed.  A 

few microliters (2 μL unless otherwise mentioned) of protein solution was mixed 

with the same amount of crystallization solution on a glass coverslide.  The glass 

slide was placed on the top of the reservoir and the plate was incubated at 19 °C.  
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2.2.11.2.  Micro-Seeding method 

Crystal seeds were prepared by crushing a harvested crystal and diluting the 

pieces to harvesting buffers.  A micro-capillary tube was used to seed the drops, 

which crystal growth had not been observed.  The tube was soaked in the seeding 

solution and placed in the center of the crystallization drop briefly.  The coverslides 

were placed back on the reservoir and the plate was incubated at 19 °C. 

2.2.12. Data Collection 

The crystals with proper sizes were used for data collection, and soaked into cryo-

protectant solutions briefly.  A cryo-loop was used to take the crystal out from the 

solution and it was mounted on the goniometer to be flash-frozen in the cryo stream.  

The crystal was centered by adjusting the position of goniometer.  Data collections 

were performed in two places, the University of Kansas (Lawrence, KS) and H. Lee 

Moffitt Cancer Center (Tampa, FL).  The equipment at the University of Kansas is a 

Raxis IV++ imaging plate (MSC) with CuKα X-rays generated by a Rigaku rotating 

anode (RU300), and focused by Osmic mirror optics (MSC) with CrystalClear 

(Rigaku, The Woodlands, TX) software.  The facility in H. Lee Moffitt Cancer Center 

is a Raxis HTC imaging plate with CuKα X-rays generated by a Rigaku rotating 

anode with Collect (Rigaku) software.  General conditions for data collection were 

following: 0.5° frame width for 180° of phi axis rotation, 100–180 mm distance, and 

2 to 10 min of exposure time.     
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2.2.13. Data Reduction and Structure Refinement 

Collected data sets were indexed and scaled with XDS134 or HKL-2000135.  The 

structures have been solved by the molecular replacement method.  Molecular 

replacements and refinements were performed with the CNS136 program package.  

Diffraction data were limited to low resolution reflections 20.0 – 4.0 Å in the cross-

rotation and translation search.  Refinements were performed using data for the 

highest resolution with no σ cut-off applied.  Several rounds of minimization, 

simulated annealing and restrained individual B factor refinement were carried out.  

The resulting electron density maps (Fo-Fc, 2Fo-Fc) were evaluated with O137.  Solvent 

molecules were added to the model at chemically reasonable positions (2.0 Å ≤ d ≤ 

3.2 Å) from other oxygen or nitrogen atom where the difference density was observed 

clearly.   

Ligand molecules, if necessary, were drawn with Sybyl 7.1 (Tripos Association, 

St. Louis, MO) or Maestro 8.0 (Schrödinger, New York, NY) and saved as the PDB 

formats.  The texts of the PDB files were edited to have proper atom names and 

hydrogen atoms were eliminated.  The edited structures were run for xplo2d 138 to 

acquire parameter and topology files.  The numbers of hydrogen atoms in topology 

files were fixed before use.  The PDB files of ligands were called on O, moved to fit 

to electron densities, and the final coordinates were saved for further refinements.  

After the final cycle of refinements, figures were prepared with Molscript139 or 

PyMol (DeLano Scientific, Palo Alto, CA). 
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2.3. E. cloacae and mutant MurA enzymes  

2.3.1.  DNA 

E. cloacae MurA was in a pET9d derived vector, with a stop codon before the C-

terminal His-tag. 

2.3.2.  Primers 

Primers for site-directed mutagenesis were synthesized by MWG Biotech AG, 

and diluted to 100 pmol/μL with dd H2O and stored at -20 °C.  

 

Arg120Ala MurA #1 5’-gcc att ggc gcg gct cct gtt gac ctg-3’ 

Arg120Ala MurA #2 5’-cag gtc aac agg agc cgc gcc aat ggc-3’ 

Lys248Asp MurA #1 5'-gcc att tct ggc ggc aac att gtt tgc cgt aat gcg-3’ 

Lys248Asp MurA #2 5'-cgc att acg gca aac aat gtt gcc gcc aga aat ggc-3’ 

Trp71Val MurA #1   5'-cgt aat ggc tcc gtc gtg atc gat gcc agc aac-3’ 

Trp71Val MurA #2   5'-gtt gct ggc atc gat cac gac gga gcc att acg-3’ 

 

2.3.3.  Site-directed Mutagenesis of E. cloacae MurA 

Site-directed mutagenesis of WT E. cloacae MurA vector was performed using 

Quik change site-directed mutagenesis kit (Stratagene). 

The mutagenesis of Asp123Ala and Arg91Lys were performed by Dr. Andreas 

Becker. 
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2.3.4.  Over-expression of WT and Mutant E. cloacae MurA Enzymes 

Large-scale over-expression was carried out using the following protocol:  an 

overnight culture was prepared in which 50 μL of the glycerol stock was added to 50 

mL of LB-kan and incubated at 37 °C overnight.  A 5 mL aliquot of the overnight 

culture was added to each of 6 flasks containing 500 mL of LB-kan and 1 drop of 

antifoam.  When the optical density measured at 600 nm (OD600) of the cell culture 

reached 0.4 – 0.8, cells were induced by adding IPTG to a final concentration of 

0.5 μM.  After induction, the cells were allowed to grow at 37 °C for 4 – 6 h with 

shaking at 250 rpm.  The cells were then harvested by centrifugation at 6,000 rpm for 

10 min using a Beckman J2-21 centrifuge.  The supernatant was discarded, and the 

cell pellets were collected and stored at   -80 °C till future use.      

2.3.5.  Purification of WT and Mutant E. cloacae MurA Enzymes 

MurA was purified using an ÄKTA FPLC and pre-packed columns (GE 

Healthcare).  The cell pellets were suspended in 8–10 mL extraction buffer (50 mM 

Tris, 1 mM DTT, 1 mM EDTA, 0.1 M NaCl, 0.1% Triton X-100, pH 8.0) / 1 g of 

cells plus 1 mg lysozyme / 1 g of cells by stirring for 1 h at 4 °C.  The solution was 

sonicated on ice for 2×30 sec and centrifuged for 30 min at 14,000 rpm using a 

Beckman J2-21 centrifuge, and then the supernatant was collected.  The combined 

supernatants were subjected to a 25 % (NH4)2SO4 precipitation for 1 h.  The amount 

of (NH4)2SO4 added for this precipitation was calculated using the following 

equation: 
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X

X
27.0100

515 L 1for  SO)(NHg 424 −
= , Equation 1 

where X is the desired percentage of (NH4)2SO4.     

After the (NH4)2SO4 precipitation, the solution was centrifuged at 4 °C for 1 h at 

18,000 rpm using a Beckman J2-21 centrifuge to remove the precipitates.  The 

supernatant from this centrifugation was purified using the phenyl sepharose (P-seph) 

26/10 column (GE healthcare), a hydrophobic interaction based column.  The column 

was pre-equilibrated with Buffer A + 1 M (NH4)2SO4, the supernatant was loaded 

onto the column and the protein was eluted from the column by decreasing the salt 

concentration in the mobile phase via a gradient of Buffer A + 1 M (NH4)2SO4  to 

Buffer A over 10 column volumes (CV).  Every third fraction was evaluated on SDS-

PAGE and the results were compared with the chromatograph.  Fractions containing 

MurA were combined, desalted, and concentrated to < 50 mL using an Amicon 

ultrafiltration device with a 30 kD Millipore filter (Fisher Scientific).  Desalting was 

accomplished by adding Buffer A until the conductivity readings were below 

5 μS / cm2 on a Corning Checkmate II conductivity meter (Fisher Scientific).  The 

desalted and concentrated MurA was then loaded onto a Q-seph 26/10 column (GE 

healthcare) and eluted from the column by increasing the salt concentration in the 

mobile phase via a gradient of Buffer A to Buffer A + 0.4 M NaCl over 10 CV.  

Fractions analyzed on SDS-PAGE were combined, desalted, and concentrated in the 

same manner as for the P-seph column. 
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After the concentration, the fractions were aliquoted into micro centrifuge tubes 

and stored at -80 °C.  

2.3.6.  Kinetic analysis of WT and Mutant E. cloacae MurA Enzymes 

2.3.6.1.   High-throughput Screening (HTS) of MurA 

High-throughput screening (HTS) with about 50,000 compounds had been 

performed by Dr. Melanie A. Priestman.  Since then, 50,000 more compounds were 

purchased through the HTS facility at the University of Kansas.  These newly 

purchased compounds included compounds selected from ChemDiv (San Diego, CA) 

and natural products from MicroSource (Gaylordville, CT). 

The condition for MurA screening on a 384-well plate was varied a little from the 

previous screening.  The first trial with previously used conditions did not work very 

well due to a low signal to noise ratio.  Thus, the enzymatic reaction condition for 

HTS was modified.  Originally, the assay was performed using 60 μL reaction 

volume: 20 μL compound, 20 μL MurA (0.1 μg final reaction concentration of 2.2 

nM) in buffer (50 mM HEPES pH 7.0, 2 mM DTT, and 50 mM KCl), and 20 μL of 

the solution containing 0.3 mM PEP and 0.3 mM UNAG in buffer (final reaction 

concentration of 0.1 mM for both substrates).  The reaction solution was incubated at 

room temperature for 5 to 30 min, followed by the addition of 40 μL of Lanzetta 

reagent.  This condition was tested for the reproducibility.  Although the reaction 

showed a linear correlation with time, the OD650 of the final solution was not more 

than 0.2 after the reading of negative control was fixed to zero.  To increase the OD 
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readings, higher concentrations of MurA and both substrates, UNAG and PEP, were 

used for this enzymatic reaction.  Thus, the final condition for HTS has been changed 

to 60 μL reaction volume: 20 μL compound, 20 μL MurA (0.2 μg final reaction 

concentration of 4.4 nM) in buffer (50 mM HEPES pH 7.0, 2 mM DTT, and 50 mM 

KCl), and 20 μL of the solution containing 0.45 mM PEP and 0.45 mM UNAG in 

buffer (final concentration of 0.15 mM).  At the same time, negative control reaction 

was set up without MurA addition.  Under this condition, the linearity of the reaction 

by time has also been tested over 30 minutes, and the graph of optical density (OD) 

vs. reaction time showed a linear correlation.  

The HTS assays were performed by the addition of the above solutions to a well 

in a 384-well plate by a Biomek FX Liquid Handling Workstation.  In the 384-well 

plates, the compounds in 2.5 % DMSO had been plated and stored at -20 °C.  After 

thawing the compound solutions in the plates, each plate was centrifuged at 2,000 

rpm for 1 min.  20 μL of MurA was then added to the wells, and the reaction started 

by the addition of 20 μL of PEP and UNAG mixture.  The plates were centrifuged 

one more time after the addition of MurA and substrates, to make sure that none of 

the reaction components remained on the walls of the well.  The reaction was allowed 

to proceed for 30 min before 40 μL of the Lanzetta reagent was added.  The optical 

density was then promptly measured at 650 nm using a SpectraMax 340PC 384 

Absorbance.  Each plate had one column that had no compounds (positive control 

with no inhibition), as well as one column containing no MurA (negative control with 
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no reaction).  The reproducibility of the screening was ensured by checking negative 

and positive controls on each plate.  

IC50 determination was carried out for the compounds that initially showed 

greater than 40 % inhibition of MurA.  The compounds were picked up from mother 

plates, aliquoted to new 384 well plates. After serial dilution to vary their 

concentration, assays were carried out at the HTS facilities using procedure described 

above.  Data were fit to the equation 2 to derive IC50 values. 
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where v is the initial velocity, Vmax is the maximum velocity, Vmin is the minimum 

velocity, [I] is the concentration of inhibitor and n is the hill slope. 

2.3.6.2.  Inhibition Study of HTS Leads 

Thorough studies of HTS hits were performed by testing the activity of MurA 

with two different methods: determination of Pi concentration with Lanzetta reagent 

and by measurement of the amount of EP-UNAG using MurA–MurB coupled assay.   

HTS1-1, HTS3-1, and HTS4-1 were studied by Dr. Melanie A. Priestman.  

The modes of action of HTS2-2, HTS7-1, and HTS8-1 were thoroughly 

determined by MurA–MurB coupled assay.  The ANS fluorescence assay was 

performed for HTS2-2.  Ki values of inhibitors were determined by detecting the 

amount of product, EP-UNAG, using MurA–MurB coupled assay.   The enzyme 

reaction was performed in the following condition: 1 mL of 50 mM HEPES (pH 7.5), 
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50 mM KCl, 20 mM glucose, 20 U glucose oxidase, 1 mM PEP, 0.1 – 4 mM UNAG, 

0–20 μM inhibitor, 0.2 mM NADPH, 20 μg MurB, and 10 μg MurA.  Before the 

addition of NADPH, MurB, and MurA, the absorbance of the mixture was auto-

zeroed at 340 nm. The absorbance was fixed to between 1.1 and 1.2 OD by the 

addition of 0.2 mM NADPH.  20 μg of MurB was then added to the reaction mixture, 

and the absorbance reading was performed.  After about 30 seconds time course 

reading, the reaction was initiated by the addition of MurA.  The decrease in NADPH 

absorbance was recorded at 340 nm, and the control reaction was conducted without 

MurA at each inhibitor concentration.  Specific activity was calculated from the slope 

of the time-course curve of each reaction.  The data were fit to equation 3 (the 

Michaelis-Menten equation): 
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where v is the initial velocity, Vmax(obs) is the observed maximum velocity, Km(obs) is 

the observed Michaelis constant, and [S] is the substrate concentration.   

The Ki values were determined by linear regression of the replot of the Km(obs) 

values versus the concentration of the inhibitor and the data were fit to equation 4.  
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Then, the K'i values were determined by linear regression of the replot of the 

1/Vmax(obs) values versus the concentration of the inhibitor and the data were fit to 

equation 5. 
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where Vmax(obs) is the observed maximum velocity, K'i is the inhibitor constant with 

respect to Vmax, Vmax is the true maximum velocity, and [I] is the inhibitor 

concentration. 

The dissociation constant of HTS2-2 was measured by fluorescence experiments 

with ANS.  Fluorescence was detected with Varian Cary Eclipse fluorescence 

spectrometer.  The buffer used for all measurements was 50 mM sodium/potassium 

phosphate (pH 6.9) with 2 mM DTT with a final concentration of 125 μg/mL MurA.  

Fluorescence of ANS was excited at 366 nm, and emission spectra were recorded 

between 400 and 600 nm.  The buffer in the quartz cuvette was used for auto-zero, 

then 100 μM ANS was added and scanned.  After the addition of MurA into the 

solution, the emission spectrum was read again.  Various concentrations of HTS2-2 

(2.5 – 100 μM) were then mixed in the solution and the fluorescence recorded.  For 

the data evaluation, ANS emission spectra in buffer were subtracted from the 

corresponding ANS/MurA or ANS/MurA/HTS2-2 spectra, thereby giving the 

fluorescence intensities as a function of the UNAG concentrations.  The highest 

points of the emission spectra were selected in between 470 and 480 nm and the 

intensities were read.  Then, 1–FL/FO (where FL is the intensity when a ligand is 

added and FO is the intensity without the ligand) was calculated and the graph, 1–

FL/FO vs. [HTS2-2], was fitted to the Michaelis-Menten equation to derive Kd value 

for HTS2-2. 
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2.3.6.3.  Structure-Activity Relationships (SAR) of HTS 1 and HTS 2 on WT 

MurA 

Compounds with HTS 1 and HTS 2 scaffolds were purchased from IBS 

(InterBioScreen, Moscow, Russia), ChemBridge, and ChemDiv to study structure-

activity relationships (SAR) for WT E. cloacae MurA.  Purchased compounds were 

dissolved in 100 % DMSO at 100 mM concentration.  Inhibitory activity of the 

compounds was tested by detecting the amount of Pi produced by MurA enzyme 

reaction.  Assays were performed in 100 μL of 50 mM HEPES, 2mM DTT, 1mM 

PEP, 1 mM UNAG, and 1 mM final concentration of each compound.  By the 

addition of 22nM of WT MurA, the enzyme reactions were started.  Reactions were 

incubated for 3 min at room temperature and stopped by the addition of 800 μL of 

Lanzetta reagent.  After an additional 5 min for color development, 100 μL of 34 % 

(w/v) sodium citrate was added to stop the color change.  The absorbance was then 

measured at 660 nm with Shimazu UV-1650PC spectrometer.  A negative control 

reaction was performed without MurA to eliminate the auto-hydrolysis effect of PEP, 

and a positive control reaction was carried out without inhibitor.  The inhibition 

activity was recorded as relative activity against the positive control.  For the HTS 2 

scaffold compounds, the activity was measured daily until the inhibition was 

observed up to 2 weeks. 
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2.3.6.4.  Inhibition study of known inhibitors  

Peptide inhibitor, HESFWYLPHQSY, was synthesized at the University of 

Kansas Structural Biology Center.  The activity of this peptide was tested by 

detecting the amount of Pi produced by MurA enzyme reaction.  Assays were 

performed in 100 μL of 50 mM HEPES, 2mM DTT, 1mM PEP, 1 mM UNAG, and 1 

mM final concentration of the peptide.  The reaction condition was the same as the 

reactions of HTS 1 and 2 compounds, described in the section 2.3.6.3. 

   The inhibition activity of cnicin was determined by MurA–MurB coupled assay.  

The inhibitor was incubated with MurA and with or without UNAG (0, 0.01, and 

1 mM) for various times (0–10 min).  In the incubation mixture, 10 μg of MurA was 

used at various concentration of cnicin (0–10 mM) in a volume of 25 μL at room 

temperature.  The reaction mixture contained 50 mM HEPES (pH 7.5), 50 mM KCl, 

20 mM glucose, 20 U glucose oxidase, 1 mM PEP, and 1, 0.99, or 0 mM UNAG in 

945 μL of total volume.  Before the addition of NADPH, MurB, and the incubation 

mixture, the absorbance of the mixture was auto-zeroed at 340 nm.  The absorbance 

was fixed to between 1.1 and 1.2 OD by the addition of 0.2 mM NADPH (10 μL of 

20 mM stock solution).  20 μg of MurB (a volume of 20 μL) was then added to the 

reaction mixture, and the absorbance reading was performed.  After about 30 seconds 

time course reading, the reaction was initiated by the addition of the incubated 

solution (MurA + cnicin ± UNAG).  The decrease in NADPH absorbance was 

recorded at 340 nm.  Specific activity was calculated from the slope on time-course 
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curve of each reaction.  The graph of specific activity vs. incubation time (sec) were 

plotted at various inhibitor concentrations and fitted to equation 6, 
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where A is enzyme activity, k' is the rate constant at equilibrium, and F1 and F2 are 

the fractions of activity at zero time (F1=1) and infinite time (after equilibrium has 

been established, F2).   

Determined k' values at various inhibition concentrations were used to determine 

Ki of cnicin.  The graph of k' vs. [inhibitor] were plotted and fitted to the equation 7, 

 ][11obs Ikkkk +==′ − . Equation 7 

The Ki value was calculated using the values of k1 and k–1 fitted to the equation 8, 

 
][
]][[K

1

1
i ∗

− ==
EI

IE
k
k

. Equation 8 

2.3.6.5.  WT, Asp123Ala, and Arg91Lys E. cloacae MurA  

The activity of MurA was measured using an end-point assay in 100 μL of 

50 mM HEPES (pH 7.5) and 2 mM DTT at room temperature by determining the 

amount of Pi produced in the reaction for primary test.  The final concentrations of 

WT, Asp123Ala, and Arg91Lys MurA were 0.025, 0.025, and 1.7 mg/mL, 

respectively.  Assays were performed with a final concentration of 1 mM PEP and 

varied concentrations of UNAG (0.010–10 mM).  Every reaction was started with the 

addition of MurA.  The reactions were allowed for 3 min prior to the addition of 

800 μL of Lanzetta reagent to stop the reactions and develop the color change by Pi.  
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After additional 5 min, 100 μL of 34 % (w/v) sodium citrate was added to stop the 

color change.  The absorbance was measured at 660 nm with Shimazu UV-1650PC 

spectrometer and the amount of Pi was determined in comparison with phosphate 

standards, and the enzyme activity was expressed as U/mg.  Control reactions were 

used without MurA as blanks to eliminate the auto-hydrolysis effect of PEP.  The 

approximate values of Km and Vmax were determined by fitting the kinetic data to the 

Michaelis-Menten equation (equation 3).  The Km and Vmax values from Lanzetta 

assay were used to determine the range of the concentrations of substrates for MurA–

MurB coupled assays. 

For thorough characterizations, MurA–MurB coupled assays were performed for 

WT, Asp123Ala, and Arg91Lys MurA.  The activities of these MurAs were tested in 

950 μL of 50 mM HEPES (pH 7.5) + 2 mM DTT + 50 mM KCl with 20 mM glucose 

and 20 U GOX at room temperature.  The final concentration of one substrate was 

varied from 0.01 to 5 mM when the other was fixed to 1 mM.  After the addition of 

PEP and UNAG, the absorbance of the mixture was auto-zeroed at 340 nm.  The 

absorbance was fixed to between 1.1 and 1.2 OD by the addition of 0.2 mM NADPH.  

Then, the final concentration of 0.02 mg/mL of MurB was added to the reaction 

mixture, and the absorbance reading was started.  After about 30 seconds time course 

reading, the reaction was started by the addition of MurA.  The final MurA 

concentrations were 0.01 mg/mL for both WT and Asp123Ala MurA, and 

0.68 mg/mL for Arg91Lys.  The absorbance was recorded until no more NADPH 

consumption was detected.  Specific activities of each of the reactions were 
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determined, based on initial slopes of each time course curve.  The graph of specific 

activity vs. [substrate] was plotted and fitted to equation 3 to derive Km values of each 

substrate. 

The inhibition study by fosfomycin was performed for WT and Asp123Ala MurA 

using Lanzetta assay.  The assay was performed in 100 μL of 50 mM HEPES 

(pH 7.5) + 2 mM DTT.  Concentrations of fosfomycin varied from 20 nM to 200 μM 

were incubated in buffer with 0.025 mg/mL WT or Asp123Ala MurA and 1 mM 

UNAG at room temperature for 5 min.  The reaction was initiated by the addition of 

1 mM PEP to the mixture and was allowed to proceed for 3 min at room temperature 

before 800 μL Lanzetta reagent was added to the solution.  After 5 min of color 

development, 100 μL of 34 % (w/v) sodium citrate solution was added and the 

absorbance was measured at 660 nm.  Negative and positive controls were carried out 

without enzyme and without fosfomycin, respectively.  IC50 values were derived from 

equation 2.  

Before the ANS fluorescence assay, WT, Asp123Ala and Arg91Lys MurA 

enzymes in the HEPES buffer (50 mM HEPES (pH 7.5) + 2 mM DTT) were 

incubated with 0.5 mM UNAG for 1 hour at room temperature.  The UNAG in the 

solution was then removed by PD-10 with 50 mM HEPES (pH 7.5) + 2 mM DTT.   

Each enzyme concentration was measured with Bradford assay. 

Fluorescence experiments were performed using Varian Cary Eclipse 

fluorescence spectrometer.  The buffer used for all measurements was 50 mM 

sodium/potassium phosphate (pH 6.9) with 2 mM DTT.  The final concentration of 
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MurA enzymes was 125 μg/mL.  Fluorescence of ANS was excited at 366 nm, and 

emission spectra were recorded between 400 and 600 nm.  The buffer in the quartz 

cuvette was used for auto-zero, then 100 μM ANS was added and scanned.  After the 

addition of MurA into the solution, the emission spectrum was scanned. Various 

concentrations of UNAG (5 – 500 μM) were added to the solution and the emission 

spectra were measured once again.  For the data evaluation, ANS emission spectra in 

buffer were subtracted from the corresponding ANS/MurA or ANS/MurA/UNAG 

spectra, thereby giving the fluorescence intensities as a function of the UNAG 

concentrations.  The highest points of the emission spectra were selected in between 

470 and 480 nm and the intensities were read.  Then, the 1–FL/FO was calculated and 

the graph, 1–FL/FO vs. [UNAG], was fitted to the Michaelis-Menten equation to 

derive UNAG Kd values.   

2.3.6.6.  Arg120Ala E. cloacae MurA 

The activity test of Arg120Ala MurA was performed with His-tagged enzyme to 

eliminate the effect of genomic E. coli MurA.  His-tagged Arg120Ala MurA was 

prepared by Martha L. Healy-Fried.  

To determine if Arg120Ala MurA is capable of catalyzing the conversion of 

UNAG and PEP to EP-UNAG and Pi, but is unable to release the products (i.e. a 

single-turnover), urea was used to establish if the trapped products could be detected 

after denaturation of the enzyme•ligand complex.  This was performed by incubating 

a reaction mixture containing 50 mM Tris (pH 8.0), 50 mM KCl, 2 mM DTT, 5 mM 
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UNAG, 5mM PEP, and 40 mg/mL His-tagged Arg120Ala MurA (0.9 mM), in a final 

volume of 400 μL at room temperature for 5 min.  To stop the reaction and denature 

Arg120Ala MurA, a final concentration of 6.0 M urea was added and incubated at 

4 ˚C for 16 hr.  To measure the product EP-UNAG, the coupled assays with 50 mM 

Tris (pH 8.0), 50 mM KCl, 2 mM DTT, 20 mM glucose, 20 U glucose oxidase, 

0.20 mM NADPH, and various concentrations of the denaturation mixture (0.4–

2.9 mg / 0.01–0.07 mM), were employed.  An OD340 reading was stabilized prior to 

the start of the reaction by the addition of 40 μg of MurB, and the decrease in 

NADPH absorbance was recorded.  Control experiments were conducted throughout 

with Arg120Ala MurA treated in the same way, but omitting PEP during the assay. 

2.3.6.7.  Cys115Asp E. cloacae MurA 

MurA–MurB coupled assays were performed to determine PEP Km for 

Cys115Asp MurA.  The activity of Cys115Asp MurA was tested in 950 μL of 50 mM 

HEPES (pH 7.5) + 2 mM DTT + 50 mM KCl with 20 mM glucose and 20 U GOX at 

room temperature.  The final concentration of UNAG was 1 mM and PEP was varied 

from 1 to 500 μM.  After the addition of PEP and UNAG, the absorbance of the 

mixture was auto-zeroed at 340 nm.  The absorbance was then fixed to between 1.1 

and 1.2 OD340 by the addition of 0.2 mM NADPH.  The final concentration of 

0.02 mg/mL of MurB was added to the reaction mixture, and the absorbance reading 

was started.  After about 30 seconds time course reading, the reaction was started by 

the addition of Cys115Asp MurA.  The final concentration of Cys115Asp MurA was 
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0.01 mg/mL.  The reading was recorded until time course curve was observed to be 

flat.  Specific activities of each reaction were calculated from the slope of respective 

time course curve.  The graph of specific activity vs. [PEP] was plotted and fitted to 

Michaelis-Menten equation to determine PEP Km value of Cys115Asp MurA. 

Fluorescence assay with ANS was applied to determine Kd value of UNAG for 

Cys115Asp MurA.  The buffer used for this assay was 50 mM sodium/potassium 

phosphate (pH 6.9) with 2 mM DTT.  The final concentration of Cys115Asp MurA 

enzyme was 125 μg/mL.  The excitation wavelength of ANS was 366 nm, and 

emission spectra were recorded between 400 and 600 nm.  Buffer in the quartz 

cuvette was used for auto-zero, and 100 μM ANS was added and scanned.  After the 

addition of MurA into the solution, the scanning was done again, then various 

concentrations of UNAG (5 – 1000 μM) were added to the solution and the 

fluorescence measured.  For the data evaluation, ANS emission spectra in buffer were 

subtracted from the corresponding ANS/MurA or ANS/MurA/UNAG spectra, 

thereby giving the fluorescence intensities as a function of the UNAG concentrations.  

The highest points of the emission spectra were selected in between 470 and 480 nm 

and the intensities were read.  Then, the 1–FL/FO was calculated and the graph, 1–

FL/FO vs. [UNAG], was fitted to Michaelis-Menten equation to derive UNAG Kd 

values.   
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2.3.7. Crystallization of E. cloacae MurA Enzymes 

2.3.7.1.   Asp123Ala and Arg91Lys MurA 

The crystallization of open forms of Asp123Ala MurA was attempted with 

PEG20K conditions (Table 8).  Three microliters of Asp123Ala MurA (3.5 mg/mL) 

in HEPES buffer (50 mM HEPES (pH 7.5) + 2 mM DTT) was mixed to 3 μL of 

crystallization solutions.  500 μL of 0.5 M MES (pH 6.1) was added to the reservoir.  

Crystals were obtained after overnight incubation at 19 °C.  Crystals from PEG20K-

11 condition were harvested in 200 mM MES (pH 6.1) + 12.5 % PEG20K.  The 

harvested crystal was soaked into the cyro-protectant solution (200 mM MES (pH 

6.1) + 12.5 % PEG20K + 25 % glycerol) prior to data collection.  Data collection was 

accomplished at the Structural Biology Center of the University of Kansas. 

The open form crystal of Arg91Lys MurA was setup with PEG20K conditions.  

Three microliters of Arg91Lys MurA (75 mg/mL) in HEPES buffer (50 mM HEPES 

(pH 7.5) + 2 mM DTT) was mixed with 3 μL of crystallization solutions.  In the 

reservoir, 500 μL of 0.5 M MES (pH 6.1) was added.  The crystal growth was not 

detected after 24 hour incubation at 19 °C.  Thus, microseeding method with a 

harvested Asp123Ala MurA crystal from the previous experiment was applied to the 

drops.  The crystals in PEG20K-1 condition were formed after seeding and harvested 

on the next day.  Harvesting buffer was composed with 50 mM MES (pH 6.1) and 

12.5 % PEG20K.  The harvested crystal was transferred to the cryo-protectant 

solution (50 mM MES (pH 6.1) + 12.5 % PEG20K + 25 % glycerol).  After a brief 
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soaking, the crystal was mounted on goniometer for data collection.  This crystal was 

measured at the Structural Biology Center of the University of Kansas.  

2.3.7.2.   Arg120Ala MurA 

The crystallization of the closed form of Arg120Ala MurA was attempted with 

the variations of Hampton 1-41 condition (Table 9).  Two microliters of the mixture 

of 84 mg/mL of Arg120Ala MurA in Tris buffer (50 mM Tris, pH 8.5, 2mM DTT, 

and 1 mM EDTA) with 10 mM UNAG and 10 mM PEP was added to 2 μL of 

reservoir solution (H4-41-8 in Table 9). The crystal grew to a good size after the 

incubation for 3 days.  

The harvesting conditions for this crystal could not be optimized due to the 

fragility of the crystal.  Thus, the crystal was directly soaked into the cryo-protectant 

solution (20 % ethylene glycol, 0.1 M HEPES (pH 7.5), 25 % PEG4000, 1 mM 

UNAG, and 1 mM PEP).  After the brief soaking in the cryo-protectant solution, the 

crystal was flash-frozen in the cryo stream.  Data collection was performed at the 

University of Kansas Structural Biology Center.   

2.3.7.3.   Cys115Asp MurA 

The crystallization of the open form Cys115Asp MurA was attempted with the 

variations of PEG20K condition (Table 8).  Three microliters of 33 mg/mL of 

Cys115Asp MurA in phosphate buffer (50 mM Na/K phosphate (pH 6.9), 2mM DTT) 

was mixed with 2 μL of crystallization solution (PEG20K-3).  500 μL of 0.5 M MES 

(pH 6.1) was placed in the reservoir.  Crystal growth was observed instantly, and 
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reached to a proper size in one hour.  The crystal was soaked into the cryo protectant 

solution (25 mM MES (pH 6.1), 8% PEG20K, and 25 % glycerol).  The crystal on a 

cryo-loop was then transferred to the goniometer and flash-frozen in the cryo stream.  

Data collection was performed at H. Lee Moffitt Cancer Center. 

2.3.7.4.   MurA with HTS2-2 

Initial crystallization screening of MurA with HTS2-2 was performed with 

Hampton 1 and 2 and Wizard 1 and 2 screens.  Highly concentrated WT MurA was 

prepared in 50 mM HEPES (pH 7.5) + 2 mM DTT.  MurA was diluted to 25 mg/mL 

and 50 mg/mL and prepared for crystallization by mixing with 10 mM of HTS2-2 

(from a 100 mM stock solution in DMSO).  Small crystals were found in H1-18 

(0.1 M Na cacodylate (pH 6.5), 0.1 M magnesium acetate, and 20 % PEG8000) 

condition at 50 mg/mL MurA concentration.  To get an optimized crystal for the data 

collection, H1-18 condition was varied on pH and the concentration of buffer, salt, 

and precipitant as well as the concentration of MurA (Table 7).  The Na cacodylate 

(buffer) was varied from 0.05 to 0.2 M with pH from 6.0 to 7.0, the concentration of 

Mg(OAc)2 was increased up to 0.4 M, and PEG8000 was changed from 20 % to 

15 %.  New drops were setup with varied H1-18 conditions at 60 mg/mL and 

100 mg/mL MurA concentration.  The largest crystals were formed at H1-18-15 

(0.1 M Na cacodylate (pH 7.0), 0.1 M magnesium acetate, 15 % PEG8000), and 

harvested in the solution of 0.05 M Mg(OAc)2, 0.05 M Na cacodylate (pH 7.0), and 

15 % PEG8000.  The data collection was performed at the Structural Biology Center 

of the University of Kansas. 
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2.3.7.5.   MurA with HTS1-1 

HTS1-1 (1 mM of final concentration) was incubated with WT MurA (10 mg/mL 

in 50 mM HEPES and 2 mM DTT) at room temperature for 2 hours.  Incubated 

solution with the inhibitor was applied to PD-10 for buffer exchange into 50 mM 

HEPES, 2 mM DTT for the removal of DMSO.  The eluted protein solution still had 

orange color from HTS1-1, indicating that the inhibitor bound to protein even after 

the buffer exchange, and it was concentrated up to 65 mg/mL with a Centricon YM-

30 device.  

The crystallization of WT MurA with HTS1-1 in 50 mM HEPES and 2 mM DTT 

was screened with Hampton 1 and 2, and Wizard 1 and 2 screening solutions.  Plate 

shaped crystals were found in H1-41 condition (0.1 M HEPES (pH 7.5), 10 % 

2-propanol, and 20 % PEG4000) after the incubation at 19 °C for a month.  The 

crystal setup with the same protein was performed with the various H1-41 conditions 

(Table 9).  The best crystals were detected in the H1-41-8 and H1-41-19 conditions.  

Since these crystals were very unstable, no harvesting condition could be identified.  

The crystals were transferred to cryo-protectant solutions including glycerol, ethylene 

glycol, MPD, PEG200, PEG400, sucrose, or xylitol.  Most of the crystals dissolved in 

these cryo-protectant solutions, hense no harvesting conditions could be identified.  

Although some crystals survived in the cryo-protectant solutions for a short time, 

none of them diffracted well. 
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2.3.8. Further Studies with HTS2-2 

2.3.8.1.  Kinetic Study of Trp71Val and Lys248Asp MurA 

Mutation and purification of Trp71Val and Lys248Asp were accomplished to 

investigate the effects of HTS2-2 on WT MurA.  

The Km value of UNAG was measured in 100 μL of 50 mM HEPES (pH 8.0) + 

2 mM DTT at room temperature using the Lanzetta assay.  The final concentration of 

both Trp71Val and Lys248Asp MurA was 220 nM.  Assays were performed with a 

final concentration of 1 mM PEP and various concentrations of UNAG (0.025–

5 mM).  All assays were started with the addition of MurA.  The enzyme and 

substrates were allowed to react for 3 min prior to the quenching of the reaction with 

800 μL of the Lanzetta reagent.  After an additional 5 min, 100 μL of 34 % (w/v) 

sodium citrate was added to stop the color development by inorganic phosphate.  The 

absorbance was then measured at 660 nm and the amount of Pi was determined by 

comparison with phosphate standards.  Enzyme activity was expressed as U/mg.  

Control samples without MurA were used as an auto-zero to eliminate an increase in 

the absorbance due to hydrolysis of Pi from PEP.  The Km values were determined by 

fitting the kinetic data to the Michaelis-Menten equation.  

Inhibitory activities of HTS2-2 against Trp71Val and Lys248Asp mutant MurAs 

were measured using the same way of UNAG Km determination.  The final 

concentrations of PEP and UNAG were 0.5 mM each, and the concentration of 

 91



HTS2-2 was varied from 5 to 500 μM.  The IC50 values were determined by fitting 

the data to equation 2. 

2.3.8.2.  MurA Oligomerization by HTS2-2 

Superdex 75 column (GE Healthcare) on ÄKTA FPLC was used to identify the 

oligomerization effect of HTS2-2 on WT MurA.  Prior to the experiment, the column 

was calibrated with standards.  Blue Dextran 200 (GE Healthcare) was diluted to 1 

mg/mL in 50 mM HEPES and 2 mM DTT, and loaded to measure the void volume of 

the column, then the mixture of ribonuclease A (MW: 13700), chymotrypsinogen A 

(MW: 25000), ovalbumin (MW: 43000), and albumin (MW: 67000) was loaded.  Kav 

(gel-phase distribution coefficient, equation 9) values for each protein were calculated 

and Kav vs. log MW graph was plotted.  

 
0
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where V0, Ve, and Vc represent void volume, elution volume, and geometric column 

volume, respectively. 

One milliliter of WT MurA (15 mg/mL) in 50 mM HEPES + 2 mM DTT with 

10 mM HTS2-2 in DMSO was loaded to the column at flow rate of 0.5 mL/min.  One 

CV of 50 mM HEPES + 2 mM DTT solution was eluted with the same flow rate.  

The molecular weight that each peak represents was calculated from the calibration 

curves. 

 

 92



2.4. Cyclin-Dependent Kinase 2 

2.4.1. DNA 

Recombinant GST fusion human CDK2 (GST-hCDK2) plasmid in pGEX6p1 

vector was prepared by Katinka Bahr. 

2.4.2. Over-expression of CDK2 

The GST-hCDK2 plasmid was transformed to RIL E. coli competent cell and 

glycerol stock was prepared.  An overnight culture was prepared in which 50 μL of 

the glycerol stock was added to 50 mL LB with 0.1 mg/mL ampilcillin (amp) and 

incubated at 37 °C overnight.  A 5 mL aliquot of the overnight culture was added to 

each of 6 flasks containing 500 mL each of LB-amp and 1 drop of antifoam.  When 

the OD600 reached 0.4–0.6, the temperature of the incubator was lowered to 16 °C.  

When the temperature was stabilized, cells were induced with 0.01mM IPTG.  After 

24 hr culture at 16 °C, cells were centrifuged at 6,000 rpm for 10 min using a 

Beckman J2-21 centrifuge.  The supernatant was discarded, and the cell pellets 

collected, combined, and frozen at   -80 °C.    

2.4.3. Purification of CDK2 

CDK2 was purified at 4 °C using an ÄKTA FPLC (GE Healthcare).  The cell 

pellets were resuspended with lysis buffer: 50 mM HEPES (pH 7.5), 150 mM NaCl, 

1 mM EGTA, 10 mM MgCl2, 2mM DTT, and 1 mg lysozyme/1 g of cell.  After 

2×30s sonications, the lysate was clarified by centrifugation.  The GST-affinity 
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column was pre-equilibrated with Buffer A (CDK2-GST 1), the supernatant was 

loaded onto the column and the protein was eluted from the column by increasing the 

glutathione (reduced) concentration from Buffer A (CDK2-GST 1) to Buffer A 

(CDK2-GST 1) + glutathione (10 mM glutathione included).  Fractions 

corresponding to the peak were run for SDS-PAGE and the results were compared 

with the chromatograph.  Fractions containing GST-hCDK2 were combined, and 

GST-prescission protease (20:1 ratio) was added to the solution to cleave GST.  

During the GST cleavage reaction, the buffer was exchanged to Buffer A (CDK2-

GST 2) and total volume was decreased to 150 mL.  The sample was loaded to the 

second GST column eluting from Buffer A (CDK2-GST 2) to Buffer A (CDK2-

GST 2) + glutathione to remove cleaved GST-tag and GST-prescission.  The fractions 

corresponding to flow-through were run for SDS-PAGE and combined.  The 

combined CDK2 was concentrated until the total volume was less than 15 mL.  The 

solution was further purified with Superdex 200 column to eliminate aggregated 

CDK2.  The size exclusion column was eluted with Buffer A (CDK2-GST 2) for 

1 CV.  The fractions corresponding to the peak of monomeric CDK2 (Ve ~ 240 mL) 

were run for SDS-PAGE, then combined and concentrated.  The buffer of highly 

purified CDK2 was exchanged to 100 mM sodium/potassium phosphate (pH 6.2) 

with 2 mM DTT using a PD-10 column, and concentrated to about 10 mg/mL with a 

Centricon YM-10 device.  

 94



2.4.4. Crystallization of CDK2 with inhibitors 

The co-crystals of CDK2-inhibitor were grown by vapor diffusion using the 

hanging drop method.  Two microliters of 10 mg/mL CDK2 in phosphate buffer (100 

mM Na/K phosphate (pH 6.2) + 2 mM DTT) was added to 2 μL of reservoir solution 

(0.1 M HEPES (pH 7.5) and 10 % PEG3350).  The final concentration of inhibitors 

was 1.5 mM in the drops.  Crystals were formed after 1–2 days at 19 °C.  

The crystals were immersed briefly in the cryo protectant solution, 50 mM 

HEPES (pH 7.5), 50 mM Na/K phosphate (pH 6.2), 15 % PEG3350, 0.5 mM 

inhibitor, and 22 % ethylene glycol, and then flash-frozen in the cryo stream.  

Complete diffraction data were collected at the Structural Biology Center of the 

University of Kansas or at H. Lee Moffitt Cancer Center.  Data reduction and scaling 

were performed with XDS or HKL-2000.  Molecular replacement and refinement 

were performed with the CNS program package.  1HCK (PDB ID) was used as the 

model structure for the molecular replacement.   

2.4.5. Molecular docking of CDK2 

Glide 4.5140, which is a part of Maestro 8.0, was used in molecular docking 

studies. The PDB files of co-crystallized CDK2 structures were used for molecular 

docking after inhibitor molecules and alternative conformations had been removed.  

All water molecules were removed and hydrogen atoms were generated by the 

Protein Preparation Wizard.  The structures of ligands were built and their ionization 

states, tautomers and ring conformations were varied with LigPrep in Maestro.  The 
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receptor grid box with 8.0 Å on each side was generated at the ATP binding site of 

CDK2, and the constraints of the key hydrogen bonds, i.e. the carbonyl oxygen of 

Glu81 and Leu83 as hydrogen bond acceptors, and the backbone nitrogen of Leu83 as 

a hydrogen bond donor, were included in the grid file.  The prepared ligands were 

docked into CDK2 using the prepared grid file with the extra precision (XP) mode.  

The default values for energy-minimization, scaling of van der Waals radii, and 

output settings were maintained.  The outputs were saved as the Maestro-format pose 

viewer files (.mae).  The pose viewer files were opened with the Glide Pose Viewer 

panel.  The CDK2 structure was displayed with docked structures, and the ligand files 

with good contacts were saved for figures.  The figures were prepared with PyMol. 
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3. Results and Discussion 
3.1. Structure and Mechanism of MurA 

MurA catalyzes the transfer of the enolpyruvyl moiety of phosphoenolpyruvate 

(PEP) to the 3'-OH group of UDP-N-acetyl-glucosamine (UNAG), producing 

enolpyruvyl-UDP-N-acetyl-glucosamine (EP-UNAG) and inorganic phosphate (Pi).  

In this enzymatic reaction, the C-O bond of PEP is cleaved rather than the P-O bond, 

which is normally favored in most chemical reactions ofo PEP and in other PEP-

utilizing enzyme reactions.  Due to this chemically unfavorable enzyme reaction by 

MurA, there have been many studies of the enzymatic mechanism of MurA.  

The enzyme undergoes a large conformational change upon UNAG binding in the 

active site before PEP binds to its binding site.  The structures of both conformational 

states, open and closed, were revealed by crystallography.  This induced-fit 

mechanism is the structural proof to the ordered substrate binding mode assessed for 

the enolpyruvyl transfer reaction in which UNAG interacts with the free enzyme prior 

to the binding of PEP. 

3.1.1. The Role of Arg91 and Asp123 in E. cloacae MurA 

Site-directed mutagenesis and protein purification were performed by Dr. Andreas 

Becker.  Kinetic analysis and crystallization were accomplished by Huijong Han.  

Structure refinement was done by Prof. Ernst Schönbrunn and Huijong Han.  

Arg91 is located close to the loop of MurA and conserved through most species of 

MurA30.  Thus, it was thought that Arg91 is one of the crucial residues in the 
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regulating the loop conformational change of the MurA reaction.  The structural and 

kinetic studies of Arg91Lys MurA were performed to evaluate the function of Arg91 

in the conformational change and the enzymatic activity of MurA.   

The mutation of Arg91 to Lys resulted in complete loss of the enzymatic activity 

(data not shown).  The fluorescence study with ANS suggested that the inactivity of 

this mutant is due to the loss of 

the conformational changes 

required for catalysis.  Even at 

high concentrations of UNAG 

(up to 2.5 mM) almost no 

change in the emission spectra 

of ANS was observed, 

implying that the open form 

state of the mutant MurA with 

ANS was not affected by the 

presence of UNAG (Figure 23).  This infers that Arg91 is an essential residue for the 

open-closed conformational changes.   

Further studies of the mutant enzyme were performed by crystallography.  The 

un-liganded structure, the open form, of Arg91Lys E. cloacae MurA was solved to 

2.0 Å resolution.  The conformation of the mutant enzyme was the same as WT 

MurA including the conformation of the flexible large loop (Figure 24A).  The only 

 
 
Figure 23. Emission spectra of ANS study with 

Arg91Lys mutant MurA.  The spectra were 
measured at various UNAG concentration 
but almost no change was observed even at 
very high concentration of UNAG (2.5 mM). 
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       (A)                                                                     (B) 

 
       (C)                                                                     (D) 

 
Figure 24.  (A) Overlap figure of overall structures of WT (dark blue) and Arg91Lys (light 

blue) MurAs. The loops (Pro112 – Pro121) are represented with red (WT) and green 
(Arg91Lys) colors.   
(B) Overlap figure of position 91 of WT (dark blue) and Arg91Lys (light blue) 
MurAs. Arg91 of WT is shown as a pink colored residue, and Lys 91 of mutant 
enzyme is a green colored residue. 
(C) Interactions of Arg91 in the open form WT MurA. Arg91 is shown as pink 
colored sticks. Arg91 has hydrogen bonds (red dashed lines) with Gly113 directly 
and with Val87, Lys88 and Gly114 through water molecules (cyan colored spheres) 
in the open form of WT MurA. 
(D) Interactions of Lys91 in the open form Arg91Lys MurA. Lys91 is shown as 
green colored sticks. Lys91 has hydrogen bonds (red dashed lines) with Gly114 
directly and with Gly113 through a water molecule (cyan colored sphere) in the open 
status of Arg91Lys mutant MurA. 
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difference between the mutant and WT MurA was the side chains of arginine and 

lysine at the 91 position (Figure 24B):  The guanidinium group of Arg91 in WT 

MurA has hydrogen bonds with the backbone carbonyl oxygen atom of Gly113 and 

three water molecules, and the water molecules form hydrogen bonds with backbone 

carbonyls of Val87, Lys88 and Gly114 (Figure 24C).  The side chain of Lys91 has 

hydrogen bonds with the backbone carbonyl of Gly114 and a water molecule 

interacting with the backbone carbonyl oxygen of Gly113 (Figure 24D).  Except for 

the difference in the conformation and hydrogen bond interactions of side chains 

between Arg91 and Lys91, the backbone conformations of each structure are the 

same.  This suggests that the mutation of Arg91 to Lys does not affect the open status 

of MurA. 

The role of Arg91 was analyzed based on the binary structure, the closed form, of 

WT MurA because the closed form of the Arg91Lys mutant enzyme does not form..  

It was shown 

that the multiple 

hydrogen bond 

donors of the 

guanidinium 

group of 

arginine are 

required to hold 

the loop in the 

 
Figure 25.  A stereoview of the loop region of the binary structure of 

WT MurA.  The side chain of Arg91 has hydrogen bonds (red 
dashed lines) with Gly113 and Arg120 located on the flexible 
loop (purple color) in the closed form of WT MurA with 
UNAG (yellow).  
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closed status (Figure 25):  The side chain of Arg91 has hydrogen bonds with the 

backbone carbonyl oxygen atoms of Gly113 and Arg129.  Although Lys91 of the 

mutant enzyme has a hydrogen bond donor, one amine group is not enough to keep 

the hydrogen bonds with two residues as strong as a guanidinium group.  Also, the 

side chain of Lys is shorter than of Arg and cannot reach to the acceptor residues.  

These hydrogen bonds are possibly key interactions at abilizing the closed form of the 

loop. 

 The location of Asp123 on MurA is close to the loop, and Asp123 is found in 

87.1 % of 163 known MurA forms30.  The only observed variation of this residue is 

Gln.  In order to evaluate the function of Asp123 in MurA, kinetic and structural 

studies of the mutant MurA, Asp123Ala, were performed.   

Compared to E. cloacae WT MurA, the Asp123Ala mutant enzyme has similar 

(A)             (B) 

 
 

Figure 26.  (A) Determination of Km and Vmax of UNAG for WT (○) and Asp123Ala (●) 
MurAs.  
Vmax was measured to 2.04±0.03 U/mg and Km was 64.94±4.23 μM for WT MurA.  
Vmax was 1.98±0.08 U/mg and Km was 871.41±92.65 μM for Asp123Ala MurA. 

 (B) Determination of Kd of UNAG for WT (○) and Asp123Ala (●) MurAs. 
Kd values were measured to 72.9±6.7 μM for WT, and 517.8±53.4 μM for 
Asp123Ala MurA. 
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full enzymatic activity but lower UNAG affinity, showing similar Vmax and higher Km 

values for UNAG.  The values are 1.98 U/mg of Vmax(UNAG) and 0.87 mM of 

Km(UNAG) (Figure 26A).  The ANS study of Asp123Ala mutant enzyme also 

indicates the binding affinity of UNAG is significantly lower than WT (Figure 26B), 

i.e. the derived dissociation constant (Kd) of UNAG for Asp123Ala mutant is 7 times 

higher than for WT.  Thus, it is assumed that Asp123 is involved in the enzymatic 

activity by alternating the binding affinity of UNAG to MurA.  

The un-liganded structure, the open status of Asp123Ala mutant MurA was 

solved to 2.35 Å resolution with two monomers in one unit cell.  The two monomers 

show different 

conformations of 

the loop structure, 

i.e. the loop struc-

ture of the mono-

mer A adopts a 

partial α-helix 

while the loop of 

monomer B does 

not have any 

distinct secondary 

structure.  The 

variation of the 

(A)                                                    (B) 

 
Figure 27. (A) Overlapped structures of WT (dark blue) and 

monomer A of Asp123Ala (light blue) MurA.  
  (B) Overlapped structures  of WT (dark blue) and 

monomer B of Asp123Ala (light blue) MurA.  
The loop conformations of the two monomers are different. 
See the text for details. The purple-colored structure denotes 
the loop of WT, and the pink-colored structure is the loop of 
Asp123Ala.  Green-colored residue represents Asp123 while 
yellow-colored residue shows Ala123 of the mutant enzyme. 
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conformation of the loop is possibly due to differenct crystal lattice contacts because 

the loop of both monomers contacts the neighboring monomeric structure.  Not only 

are the loop conformations of these two monomers different, they also show the 

conformational change compared to the structure of WT (Figure 27).  This difference 

and variation of the loop conformation is probably due to the lack of the carboxylate 

group on Ala123, which acts as a hydrogen bond acceptor. 

In the open form structure of WT MurA, Asp123 has several hydrogen bonds, 

which may define the conformation of the loop, i.e. the carboxylate has hydrogen 

bonds with the backbone nitrogen atoms of Gly118, His125, and Ile126 as well as 

hydrogen bonds with water molecules bridging the side chain and backbone atoms of 

Arg120 (Figure 28A).  In particular, hydrogen bonds of Asp123 with Gly118 and 

Arg120 are likely to induce more rigidity in the loop.  The mutation of Asp123 to 

alanine eliminates these hydrogen bonds, thus allowing the loop to move to a new 

position.   

The weak binding affinity of UNAG to Asp123Ala mutant MurA is explained by 

the interaction of Asp123 with UNAG in WT MurA (Figure 28B).  In the binary 

structure of WT MurA, a couple of hydrogen bonds between Asp123 and UNAG 

were observed.  The carboxylate of Asp123 has a hydrogen bond with N3 of the 

uracil moiety of UNAG, and the backbone nitrogen of Asp123 interacts with O4 of 

the uracil through a hydrogen bond.  However, Ala123 in the mutant enzyme cannot 

maintain the hydrogen bond with N3 of the uracil due to the lack of a hydrogen bond 

acceptor.   
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As expected from the structures of the open and closed forms of WT MurA, 

Arg91 is involved in the open-closed conformational changes, and the Asp123 

residue affects the binding affinity for UNAG, confirmed by kinetic and structural 

studies.  Specifically, Arg91 showed a very strong effect on the loop conformational 

change resulting in loss of enzymatic activity.  Based on this, it was concluded that 

Arg91 is an essential residue for the open-closed transition of MurA.  Although 

(A) 

 
(B) 

 
 
Figure 28.  (A) A stereoview of the loop region of the open form WT MurA structure. 

Asp123 (green) has hydrogen bonds with Gly118, Arg120, His125, and Ile126. 
Some of the hydrogen bonds (red dashed lines) are via water molecules (cyan-
colored spheres).  

   (B) A stereoview of UNAG binding site of the closed form WT MurA structure. 
Asp123 (green) interacts with UNAG (yellow) by hydrogen bonds (red dashed 
lines). Purple-colored structure is the loop (Pro112 – Pro121). 



 105

Asp123 is not a critical residue for the enzymatic activity, it affects the UNAG 

binding on MurA:  It was observed that the loss of the hydrogen bonds of Asp123 

with UNAG in the closed form lowered the UNAG affinity to the enzyme.  Mutation 

studies of other highly conserved residues (Table 1) on the loop such as Pro112, 

Gly113, Gly114, Ala116, Ile117, Gly118, and Pro121 would help to further 

understand the induced-fit mechanism of MurA. 

3.1.2. Arg120 in E. cloacae MurA and Enzymatic Mechanism 

Site-directed mutagenesis, protein purification, and kinetic analysis of his-tagged 

Arg120Ala MurA were performed by Martha L. Healy-Fried.  Protein purification, 

crystallization and structure refinement of native Arg120Ala MurA were done by 

Huijong Han.  

The active site of WT E. cloacae MurA contains several charged residues: Lys22, 

Arg91, Arg120, Arg331, Arg371, and Arg397, which are thought to be involved in 

proton transfers during the enzyme reaction of MurA23.  Thus, mutational studies of 

these residues could potentially provide details of the enzymatic mechanism of MurA. 

Mutagenesis of Arg120 in E. cloacae MurA to an alanine residue results in an 

inactive enzyme (data not shown).  The inactivity of Arg120Ala mutant MurA was 

also proved by the co-crystal structure of Arg120Ala MurA with UNAG and PEP, 

solved to 1.90 Å resolution (Figure 29).  Both substrates were bound in the active site 

in a closed conformation of the mutant MurA.  The active site of the mutant enzyme 

has more space available because of the smaller amino acid alanine compared to 

arginine.  This creates a conformational change of the loop in addition to a stretching 
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of the side chain of Arg91 into 

the active site.  As described in 

section 3.1.1, Arg91 in WT 

MurA is involved in the open-

closed conformational changes 

by keeping the loop position in 

the closed form through several 

hydrogen bonds with the 

backbone carbonyl oxygen atoms 

of Gly113 and Arg120 (Figure 

25).  It is observed that Arg91 is 

still involved in maintaining the 

loop conformation in the closed 

form of Arg120Ala mutant MurA.  However, the interactions of Arg91 have changed, 

i.e. the guanidinium group of Arg91 now forms hydrogen bonds with the backbone 

carbonyls of Cys115, Gly118, and Ala119 instead of Gly113 and Arg120, due to the 

positional change of the side chain of Arg91 in the mutant enzyme (Figure 30A).  It 

was also found that Arg91 establishes hydrogen bonds with the phosphate group of 

PEP covalently bound to Cys115.  The Arg120 residue forms a couple of hydrogen 

bonds with UNAG in the binary structure of MurA, while it is the side chain of Arg91 

interacting with the UNAG molecule through a bridging water molecule in 

Arg120Ala MurA.  In WT MurA, the side chains of Arg91 and Arg120 interacts each 

 
Figure 29.  Overall structure of Arg120Ala MurA 

complexed with UNAG and PEP.   
Orange color represents the loop region, 
cyan-colored residue is Cys115, yellow 
colored molecule denotes UNAG, and 
green colored molecule is PEP. 
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(A) 

 
(B) 

 

 
 

Figure 30.  (A) A stereoview of the interactions of Arg91 in Arg120Ala MurA.  
Arg91 is a green-colored residue while Cys115, Gly118, Ala119, and Ala120 are 
colored with light grey on the purple-colored loop. Arg91 has hydrogen bonds (red 
dashed lines) with Cys115, Gly118, Ala119, phosphate of Cys115-PEP adduct, and 
UNAG through a water molecule.  
(B) Stereoviews of the active sites of Arg120Ala (up) and WT (bottom) MurA.  
In each figure, grey colored residue is Arg91, and yellow colored molecule denotes 
UNAG.  It is clearly shown that PEP (green) in Arg120Ala MurA (up) forms 
covalent bonding with Cys115 (cyan) supporting the thio-ketal intermediate in the 
MurA enzyme reaction mechanism. 



 108

other via hydrophobic interactions.  The disruption of this hydrophobic interaction in 

the mutant enzyme induces the conformational change of the side chain of Arg91, 

thus Arg91 undertakes   the functions of Arg120 seen in WT, i.e. filling the space of 

Arg120 and interacting with UNAG.  

The most interesting feature of the structure of Arg120Ala MurA is the covalent 

bonding between PEP and Cys115 (Figure 30B).  Although earlier studies had 

suggested the existence of a hemi thio-ketal intermediate between PEP and Cys115 

during the MurA enzyme reaction, it has been visualized for the first time in this 

study.  These findings indicate that the enzymatic mechanism may occur via the 

formation of the thio-ketal tetrahedral intermediate (Figure 31).  In this mechanism, 

the stronger nucleophile, i.e. the thiol group of Cys115, in comparison to the 3'-OH of 

UNAG, attacks the C-2 of PEP and the PEP-Cys115 hemi thio-ketal intermediate is 

Enz-B-H

Enz-A:

Cys115

A2-1

Enz-B or C:

Cys115

U
N

AG

A2-2

Arg120
 

 
Figure 31.  The first step reaction of the proposed enzymatic mechanism of MurA based on 

the studies of Arg120Ala mutant.  A proton is added to phosphoenol pyruvate 
yielding PEP oxocarbenium ion and sulfhydryl of Cys115 is deprotonated by an 
amino acid (A2-1), followed by a nucleophilic attack of the sulfanion on the C2 atom 
of the PEP oxocarbenium ion leading to a thio-ketal intermediate (A2-2).  The target 
hydroxyl group of UNAG attacks C2 of PEP in thio-ketal intermediate aided by a 
base residue (Enz-B or C), and sulfur atom is re-protonated by Arg120 and Cys115 is 
released. The next step is consistent with the original mechanism shown in Figure 3. 
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formed.  The 3'-OH of UNAG then attacks the reaction center, C-2 of the PEP-

Cys115 tetrahedral intermediate, and Cys115 is released.  In this reaction step, the 

sulfur atom of Cys115 needs to receive a proton because the pKa value of a thiol 

group is around 8.7.  The proton required in this step can be supplied from the 

positively charged guanidinium group of the Arg120 residue.  From the binary 

structure of WT E. cloacae MurA, the distance between the sulfur atom of Cys115 

and NH1 of Arg120 is 3.6 Å.  Considering that the van der Waals radius of a sulfur 

atom is 1.85 Å compared to 1.4 and 1.45 Å of oxygen and nitrogen, respectively, and 

also arginine being a flexible residue, 3.6 Å is within the distance range that the 

proton transfer can occur between Arg120 and Cys115.   

In this proposed mechanism, one of the roles of Cys115 in WT MurA is the 

formation of the first tetrahedral intermediate (PEP–Cys115), and the benefit of this 

mechanism is lowering the activation energy (Ea).  In general, a thiol group is a better 

nucleophile than a hydroxyl group, and the PEP-Cys115 tetrahedral intermediate is 

less sterically hindered because the Cβ of cystein is a secondary carbon while the 

3'-OH of UNAG is attached to the tertiary carbon.  Thus, MurA can lower the 

activation energy by the formation of a thio-ketal intermediate at the first step of the 

mechanism, thereby accelerating the reaction.   

The thio-ketal intermediate was stabilized and hence observed in the co-crystal 

structure of Arg120Ala mutant MurA with UNAG and PEP.  We suggest that this 

trapped thio-ketal intermediate is due to the lack of a proton source, the guanidinium 

group of Arg120.  To further confirm this proposed mechanism, the retaining of 
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enzymatic activity of Cys115Asp MurA, which does not have a thiol functional group 

in the active site, is explained in the next section (3.1.3).  The study of the double 

mutant Cys115Asp/Arg120Ala of MurA is also currently underway in Prof. 

Schönbrunn’s laboratory. 

3.1.3.  The Role of Cys115 in the Enzymatic Mechanism of MurA  

Cys115 is the most studied residue in MurA to date, because the mutation of 

Cys115 to an Asp residue is known as one of the fosfomycin resistance mechanisms.  

This mutation has been found in some pathogenic species, such as Mycobacterium 

tuberculosis and Chlamydia.  Previously, several studies with Cys115Asp E. cloacae 

MurA have been performed in Prof. Schönbrunn’s research group.  The IC50 value of 

fosfomycin for the Cys115Asp mutant enzyme was measured to be 2.5 mM while it is 

less than 1 μM for WT141.  

Since the complex structure of Arg120Ala MurA with UNAG and PEP showed 

the evidence of the thio-ketal tetrahedral intermediate, the mechanistic role of the 

Cys115 residue has received more attention.  Although the new mechanism can lower 

the activation energy of the enzyme reaction, the same mechanism is not likely to 

happen in Cys115Asp MurA because the carboxylate in the Asp residue is much 

weaker nucleophile compared to the Cys residue.  Therefore, the enzymatic 

mechanism of Cys115Asp MurA cannot include the thio-ketal intermediate, but the 

3'-OH of UNAG directly attacks PEP creating a PEP-UNAG tetrahedral intermediate.  

It is considered that the activation energy of Cys115Asp MurA is higher than WT as a 

result of the direct attack of the 3'-OH of UNAG.  To test this hypothesis, the 
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activities of both WT and 

Cys115Asp MurAs were 

measured at 5, 15, and 

25 °C, and the activity 

ratios at different 

temperatures were 

calculated to derive 

activation energy values (Table 10).  Although the values of Ea differ at various 

temperatures in one enzyme, the data clearly demonstrate that the activation energy of 

Cys115Asp MurA is higher than WT.  

Cys115 in E. cloacae MurA is located in a flexible loop that undergoes a large 

conformational change upon UNAG binding.  Thus it was thought that the mutation 

of Cys115 to other amino acid residues would affect the conformation of the loop.  

The un-liganded structure of Cys115Asp MurA was solved to 1.95 Å resolution 

(Figure 32).  Although this crystal was formed under the same conditions as the WT 

crystal, it had a different crystal lattice.  The loop conformation of the open form of 

Cys115Asp MurA is different from WT, however this does not affect UNAG binding.  

From a previous kinetic study by Dr. Melanie Priestman141, the Km value of UNAG 

for the mutant enzyme is similar to WT at pH 6, and the values are even lower than 

WT at pH 7 and 8, implying that UNAG binds to the mutant enzyme with better 

affinity at physiological pH.  This was also confirmed by the determination of the 

dissociation constant (Kd) of UNAG (Figure 33A).  The Kd value of UNAG for 

Table 10.  Activity ratio and calculated activation energy of 
WT and Cys115Asp MurAs. 

 
Activity Ratio 25 °C/5 °C 25 °C/15 °C 15 °C/5 °C 

WT 3.6 1.5 2.4 

Cys115Asp 9.1 2.0 4.6 

Ea (Kcal/mol) 25 °C/5 °C 25 °C/15 °C 15 °C/5 °C 

WT 11.0 7.2 14.4 

Cys115Asp 18.7 12.0 25.1 
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Cys115Asp is 70.8 μM, and 72.9 μM for WT, indicating that the Cys115 mutation 

does not influence UNAG binding.   

However, the mutation of Cys115 to Asp alters the binding of PEP.  For WT 

MurA, the Km value of PEP is too low to measure (less than 0.1 μM), whereas it was 

measured for Cys115Asp MurA to be 30 μM (Figure 33B).  Although Cys115Asp 

MurA needs a higher concentration of PEP to obtain the full velocity of the enzyme 

reaction (Vmax), it is still in the range of the physiological concentration of PEP, 

0.2 mM142.  Thus, MurA in those species that have aspartate instead of cysteine at the 

(A)          (B) 

 
 
Figure 32.  (A) Overlapped structures of the open form WT (dark blue) and Cys115Asp 

(light blue) MurAs.  The loop structures are shown as purple and pink colors in WT 
and Cys115Asp, respectively. 

  (B) Differences of the loop conformation between WT (purple) and Cys115Asp 
(pink) MurAs.  The orange-colored residue is Cys115 in WT and the green-colored 
residue denotes Asp115 in Cys115Asp MurA.  
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115 position is still as active as the other species that contain cysteine, but they are 

not inhibited by fosfomycin. 

The ideal molecular mode of action of MurA inhibitor is binding in the UNAG 

binding site and preventing the conformational changes.  This mechanistic-based 

inhibitor would also inhibit Cys115Asp mutant MurA, which is resistant to 

fosfomycin.  To design this kind of inhibitor, the detailed information of enzymatic 

mechanism of MurA is required.  Thus, the mechanistic studies of MurA described in 

this thesis will be used as critical information to design the inhibitors deriving the 

open-closed conformational changes.  

(A)          (B) 

 
Figure 33.  Kinetic analysis of Cys115Asp MurA. 

(A) Kd determination of UNAG for WT (○) and Cys115Asp (●) MurAs.  
Kd (UNAG) is 70.8 μM for Cys115Asp while it is 72.9 μM for WT.  
(B) Km determination of PEP for Cys115Asp MurA. 
Km (PEP) for Cys115Asp was measured to 30 μM.  
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3.2. Identification and Characterization of MurA Inhibitors 

Although MurA is a proven antibiotic drug target, very few inhibitors have been 

identified.  To date, fosfomycin, the active ingredient of Monurol®, is the only 

marketed drug targeting MurA. Several resistant mechanisms against fosfomycin 

were revealed, thus, there is a need for the discovery of new inhibitors of MurA.  

3.2.1.  Study of Known MurA Inhibitors  

0B3.2.1.1.  Peptide Inhibitors 

Kinetic evaluations of known inhibitors from the literatures have been performed.  

The peptide inhibitor, HESFWYLPHQSY, identified from phage display libraries63 

was synthesized at the University of Kansas.  No inhibitory activity of the peptide on 

WT E. cloacae MurA was found at 1 mM concentration even though the peptide was 

reported to inhibit Pseudomonas aeruginosa MurA with an IC50 value of 200 μM.  

Notably, a protein of viral origin, A2 maturation factor (420 amino acids), was 

recently reported as a potent MurA inhibitor, inducing bacterial lysis64.  The A2 

maturation factor was cloned and the studies to produce the protein in a large-scale 

are currently underway in Prof. Schönbrunn’s laboratory. 

1B3.2.1.2.  Cnicin 

A natural product, cnicin was recently reported as an irreversible inhibitor by 

preliminary kinetic studies60 and the co-crystal structure with E. coli MurA was 

solved by the same research group143 (Figure 34A).  Cnicin is a sesquiterpene lactone, 
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(A) 

 
 
(B) 

 
(C) 

 
 
Figure 34.  (A) The co-crystal structure of cnicin with MurA and UNAG.  A covalent adduct 

of cnicin and UNAG is bound in the MurA active site. 
  (B) A proposed mechanism of action of cnicin in the literature.  UNAG attacks 

Cα of the carbonyl, then the ring portion of cnicin is removed by hydrolysis. The 
vicinal diol group of cnicin mimicks the phosphate group of PEP. 

  (C) A newly proposed mechanism of action of cnicin.  The mechanism step of the 
green colored box in B) is revised. The fused ring of cnicin induces the 
conformational changes of MurA, and then Cys115 makes a covalent bond with 
cnicin. The hydrolysis occurs, and the conformation of MurA changes back to the 
open state.  UNAG binds to MurA and induces the conformational changes and the 
3'-OH of UNAG attacks the carbon center of cnicin with releasing Cys115. 
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and its α,β-unsaturated carbonyl  group is thought to be electrophilic.  The solved 

structure revealed the formation of a covalent adduct between cnicin and UNAG.  It 

shows that cnicin acts as a non-covalent suicide inhibitor (Figure 34B).   

We purchased cnicin and tested its inhibitory potential on E. cloacae MurA.  The 

measured inhibitory potency was much lower (Ki value of 3.4 mM) than the reported 

value (IC50 value of ~10 μM).  The mode of action found in our kinetic study of 

A)             B) 

   
 
   C) 

 
Figure 35. Ki determination of cnicin on E. cloacae MurA.  

A) Plots of 3 component exponential decrease curves (equation 6) at various cnicin 
concentrations of 10 (●), 4 (○), 2 (▼) and 1 (Δ) mM.  Cnicin is identified as one-step 
slow-binding inhibitor to MurA. 

B) Plots of relative activity at various UNAG concentrations (0(●), 0.01(○), and 1.0(▼) 
mM). The MurA inhibition by cnicin shows a competitive pattern against UNAG.  

C) Replot of inhibitor concentration vs. k (obtained from exponential decrease curves).  
The determined Ki value is 3.4 mM.
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cnicin indicated a one-step slow-binding inhibition (Figure 35A).  In addition, the 

inhibition of cnicin was competitive to UNAG (Figure 35B), contrary to the mode of 

action reported in the literature.  Although Cys115Asp mutant MurA is reportedly not 

inhibited by cnicin, the authors proposed the molecular mode of action of cnicin did 

not involve Cys115 (Figure 34B).  However, based on our preliminary studies and 

findings that Cys115 covalently attaches to PEP, we propose a different mode of 

action of cnicin (Figure 34C):  First, cnicin binds to the UNAG binding site of MurA 

and induces the conformational changes.  In the closed form, Cys115 make a covalent 

bond with cnicin, and then the hydrolysis of cnicin occurs, releasing the fused ring 

system.  Once the conformation of MurA goes back to the open state, UNAG binds to 

its binding site and induces the conformational changes again.  The 3'-OH group of 

UNAG then attacks the Cys115-cnicin adduct and replaces Cys115, producing the 

UNAG-cnicin complex, found in the structure.  This newly proposed mechanism 

seems more rational because it includes the role of Cys115, and the mechanism of 

action proposed in the literature indicates that cnicin is a non-specific group-specific 

inhibitor.  To provide further confirmation, thorough kinetic and structural studies are 

currently ongoing. 

3.2.2.  Identification and Characterization of Novel MurA Inhibitors  

From a previous high-throughput screening (HTS) campaign with 50,000 

compounds from ChemBridge, four new chemical scaffolds of MurA inhibitors were 

identified141.  Representative compounds from each scaffold were studied thoroughly 

(Figure 36).  Initial kinetic studies indicated that freshly dissolved HTS 2 compounds 
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in DMSO did not display inhibitory potential to MurA, while the ‘aged’ (incubated in 

DMSO or MeOH at room temperature) solutions showed inhibition.  Color changes 

of DMSO and MeOH solutions, from light to dark, were detected as well.  These 

results imply that there is an unidentified reaction of HTS 2 compounds in DMSO or 

MeOH, and the product of this reaction is the active component as the MurA 

inhibitor.  Black-colored solid precipitated out from HTS2-2 solution in MeOH with 

time. Although the product was identified as the active ingredient, the attempt to 

identify the chemical structure of this compound by NMR and mass spectra was not 

successful (data not shown).  

Inhibition kinetics were performed with HTS2-2 to understand its molecular 

mode of action on MurA.  HTS2-2 was identified as a mixed inhibitor with respect to 

UNAG (Figure 37).  The Ki for HTS2-2, with respect to alteration of the affinity for 

UNAG, is 6.8 μM, whereas the Ki', with respect to changes in maximal velocity of 

MurA, is 42 μM.  The dissociation constant of HTS2-2 was measured by the ANS  

 
 
Figure 36.  Representative compounds from 1st HTS of MurA.  The Ki values of each 

compound are shown.   
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Figure 37. Ki determination of HTS2-2.  

A) Michaelis-Menton curves of MurA activity as a function of UNAG concentration for 
various HTS2-2concentrations. 

B) Lineweaver-Burk presentation of MurA activity as a function of reciprocal UNAG 
concentration for HTS2-2 concentrations. 

C) Replot of the observed Km from B) as a function of HTS2-2 concentration yielding Ki of 
6.83 ± 0.89 μM. 

D) Replot of the observed Vmax from B) as a function of HTS2-2 concentration yielding Ki' 
of 42.07 ± 3.90 μM.  



 120

fluorescence assay, and the Kd value for HTS2-2 is 51 μM (Figure 38) indicating that 

this inhibitor binds in the loop region of MurA.  These results of the kinetic and 

fluorescence studies suggest that HTS2-2 binds in the vicinity of the UNAG binding 

site, but cannot cause the conformational change from the open to the closed state.  

Therefore, we propose that HTS2-2 inhibits MurA in a similar way to T6362, the 

Aventis inhibitor (compound 9 in Figure 9), i.e. bind in the loop region of the open 

state MurA and inhibit the conformational changes. 

Intense efforts were made to obtain co-crystal structures of MurA with the HTS 

inhibitors.  HTS2-2 was co-crystallized with MurA, and the structure was refined to 

2.3 Å resolution.  Although clear electron density of HTS2-2 was visible in the 

solved structure, the binding site was opposite to the active site of MurA 

(Figure 39A).  A close look of the binding site demonstrates that the binding of 
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Figure 38.  (A) Fluorescence scans from 400-600 nm with excitation at 366 nm.  

ANS spectra show a decremental change with increasing concentrations of HTS2-2, 
as labeled on the graph. 
(B) Replot of HTS2-2 ANS fluorescence data as a function of HTS2-2 
concentration.  
The Kd value of HTS2-2 was determined to 50.9 ± 1.7μM. 
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HTS2-2 with MurA is mostly from hydrophobic interactions (Figure 39B), i.e. 

cyclopentene ring of HTS2-2 interacts with Lys248 and Val250, and the aromatic 

ring is in a range of a π-π stacking interaction with Trp71.  Only the nitro group of 

HTS2-2 has a hydrogen bond with the backbone nitrogen of Asp15.  The structural 

(A) 

 
(B) 

 
 
Figure 39.  (A) The co-crystal structure of HTS2-2 with WT E. cloacae MurA.  Grey color 

represents MurA and red-colored residues are Trp71 and Asp248 interacting with 
HTS2-2, which is a green-colored molecule. 
(B) A stereoview of the HTS2-2 binding site on MurA.  Orange-colored residue is 
Trp71, and Asp15, Lys248, and Val250 are shown as cyan-colored sticks. A yellow-
colored molecule is HTS2-2. 
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data do not corroborate with the inhibition kinetics, the latter suggesting that HTS2-2 

binds to the loop containing Cys115 in the open form of MurA. 

Because of the unexpected binding of HTS2-2 observed in the crystal structure, 

further studies with HTS2-2 were performed.  A mixed solution of MurA containing 

HTS2-2 was subjected to a size exclusion chromatography to investigate possible 

oligomerization of MurA induced by the inhibition..  The elution profile of the 

mixture of MurA with HTS2-2 is consistent with mixture of monomer, dimer and 

tetramer, whereas un-liganded MurA under the same experimental condition is 

clearly monomeric.  These results confirmed that HTS2-2 indeed induces 

oligomerization of MurA (Figure 40A). 

The hydrophobic interactions of HTS2-2 with Trp71 and Lys248 were eliminated 

by mutations to Val and Asp, respectively.  Val and Asp were chosen because they 
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Figure 40.  (A) Elution profile of size exclusion column with MurA + HTS2-2 (blue) and 

MurA only (black).   
The elution profile for MurA shows monomeric state, while the one with HTS2-2 
represents tetramer and dimer as well as monomer. 
(B) IC50 determination of WT(●, black), Lys248Asp(○, blue), and Trp71Val(▼, 
red) MurAs.  The IC50 values are 19.1, 19.5 and 13.6 μM, respectively.  The graph 
of WT is almost overlapped with the one of Lys248Asp. 
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are found in the equivalent position in other MurAs.  The enzymatic activities of 

these mutant enzymes were similar to WT, and the inhibitions by HTS2-2 were also 

retained (Figure 40B).  If the dimerization of MurA by HTS2-2, found in the co-

crystal structure, is the inhibitory mechanism, HTS2-2 should be ineffective against 

these mutant enzymes.  Thus, the inhibitory activity of HTS2-2 against Trp71Val and 

Lys248Asp MurA infers that the co-crystal structure is an artifact of crystallization, 

and the MurA dimerization via hydrophobic interactions with Trp71 and Lys248 is 

not the inhibitory mechanism by HTS2-2.  Crystallization trials of these mutant 

enzymes with HTS2-2 using the same condition as with WT enzyme failed to 

produce crystals, suggesting that HTS2-2 promotes crystallization of only the WT 

enzyme in this particular crystal lattice.  In other words, HTS2-2 can be considered as 

a mere crystallization additive under this condition. 

Co-crystallization of HTS1-1 with WT MurA was attempted and crystals were 

formed in the presence of iso-propanol (H1-41 conditions in Table 9).  The crystals 

are not X-ray graded yet, and refining the crystallization conditions is currently 

underway.   

To study structure-activity relationships (SAR) of scaffolds HTS 1 and 2, 35 and 

51 analogs of each scaffold were tested with WT E. cloacae MurA (Tables 11 and 

12).  For the HTS 1 scaffold, the carboxylic acid functional group at the R2 position 

was essential as well as a chloride or hydroxyl group at R3 for inhibitory activity.  

When the pyrrole ring was changed to a pyrrolidine ring or succinimide, the 

inhibitory activity was significantly decreased while the variation of the 5-membered 
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ring to maleimide retained the inhibitory activity.  For the HTS 2 scaffold, the 

carboxylic acid group at the R1 or R2 position was essential for their inhibitory 

activity.  Notably, when R2 was a carboxylic acid, aromaticity was required at the R1 

position.  Freshly made solutions of HTS 2 compounds in DMSO were not active on 

MurA.  However, the compounds became active after the incubation at room 

temperature, although the incubation time varied for different compounds.  Thus, the 

activity of the compounds in this scaffold was measured until they showed inhibition, 

up to two weeks.  As shown on the Table 12, most compounds inhibited MurA after 

the incubation.  Thus, the SAR evaluation of the HTS 2 scaffold was not possible 

although it was clear that the carboxylic acid group is required at the R1 or R2 

position.  It is probably due to the fact that unknown reaction of the compounds 

occurs in the solution and the product is the active component.  Thereafter, it is 

proposed that the unknown reaction depends on the existence of the carboxylic acid 

group at the R1 or R2 position. 

 

Table 11. SAR table of the HTS 1 scaffold. 
 
        
        
        
        
        
        
                

ID R1 R2 R3 R4 R5 R6 
Remaining activity 

at 500 μM (%) IC50 (μM) 
H1-1 H CO2H Cl H H H  27.2 ± 2.7 
H1-2 H CO2H OH H H H 10 ~190 
H1-3 H CO2H OH H Me Me 14 82.6 ± 2.1 
H1-4 H CO2H Cl H Ph Me 129  

N

R3
R2

R1

R4

R6 R5
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H1-5 H CO2H Cl H Me Me 100   
H1-6 Cl CO2H H H H H 102   
H1-7 H CO2H H H Ph Me 147  
H1-8 H CO2H H H Me Me 106   
H1-9 H CO2H H CO2H Me Me 95   
H1-10 Me CO2H H H Me Me 110  
H1-11 H CO2H CO2H H Me Me 95   
H1-12 H CO2H H H Ph CH2CH2CO2H 129  

H1-13 H CO2H H H 

 

CH2CH2CO2H 158   

H1-14 H CO2H H H 

 

CH2CH2CO2H 139  

H1-15 H CO2H H H 

 

CH2CH2CO2H 137   

H1-16 H CO2H H H 

 

CH2CH2CO2H 171  

H1-17 H CO2H H H 

 

CH2CH2CO2H 169   

H1-18 H CO2H H H 

 

CH2CH2CO2H 140   
H1-19 Me H H CO2H H H 100   
H1-20 OH H H CO2H Me Me 97  
H1-21 Me H H CO2H Me Me 91   
H1-22 Cl H H CO2H Me Me 93  
H1-23 H  CO2Me Cl H H H 104   
H1-24 H NO2 Cl H H H 116  
H1-25 H CONMe2 Cl H H H 101   
H1-26 H CH2CO2H H H H H 106  
H1-27 H Cl CO2H H H H 107   
H1-28 H Cl CO2H H Me Me 108   
H1-29 H OH CO2H H H H 101  
H1-30 NO2 H CO2H H H H 70   
H1-31 OH H CO2H H H H 103   

H1-32 H H OH H H H 93   

H1-33   

 

   56  

H1-34     

 

      97   

H1-35     

 

      13 30.1 ± 1.7 
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S
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Table 12. SAR table of the HTS 2 scaffold. 
 

 
       
       
       
       
       

              

ID R1 R2 R3 R4 R5 

Remaining 
activity at 500 μM 

(%) IC50 (μM) 
H2-1 CO2H OH H Cl NO2 5  
H2-2 CO2H H Me H Me 7   
H2-3 CO2H H H NO2 H 8 46.8 ± 2.0 
H2-4 CO2H H H Br H 8 28.9 ± 1.9 
H2-5 CO2H CF3 H H H 8 39.7 ± 2.0 
H2-6 CO2H I H Me H 8 41.8 ± 0.4 
H2-7 CO2H H H COO(CH2)3CH3 H 9   
H2-8 CO2H CONH2 H H H 9   

H2-9 CO2H H H 

 

H 11  
H2-10 CO2H Me Cl H H 12   
H2-11 CO2H CO2H H H H 12 13.5 ± 0.4 
H2-12 CO2H H H SO2NH2 H 14   
H2-13 CO2H H H acetyl H 14  

H2-14 CO2H OMe  H H H 15   

H2-15 CO2H H H CO2H H 15 8.5 ± 0.7 
H2-16 CO2H H H CO2Et H 17 58.0 ± 4.0 
H2-17 CO2H H H COOCH2CH(CH3)2 H 16  
H2-18 CO2H H H Me H 19   
H2-19 CO2H OH H H H 21  

H2-20 CO2H 

 

H H H 24   

H2-21 CO2H H H 

 

H 24  
H2-22 CO2H CF3 H H Cl 28   
H2-23 CO2H Me H I H 32  

H2-24 CO2H H H 

 

H 40   

H2-25 CO2H H H 

 

H 44  

H2-26 CO2H H H 

 

H 44   

N
H

R1
R2
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R4
R5

O

O

O O

O

O

O

O

O

Cl

Cl

O

N
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H2-27 CO2H 

 

H H H 66  
H2-28 CO2H CO2H H H NO2 78   
H2-29 CO2H Me H NO2 H 90  
H2-30 CO2Et H H NO2 H 90   
H2-31 CO2Et Me CO2H H H 112  
H2-32 H CO2H H H NO2 102   
H2-33 propyl CO2H H H NO2 117  

H2-34 

 

CO2H H H NO2 106   
H2-35 Ph CO2H H H NO2 47   

H2-36 

 

CO2H H H H 16  

H2-37 

 

CO2H H H H 16   

H2-38 

 

CO2H H H H 17  

H2-39 

 

CO2H H H H 20   

H2-40 

 

CO2H H H H 22  

H2-41 

 

CO2H H H H 25   

H2-42 

 

CO2H H H H 25  

H2-43 
 

CO2H H H H 26   

H2-44 

 

CO2H H H NO2 28  

H2-45 

 

CO2H H H H 52   

H2-46 

 

CO2H H H NO2 54  

H2-47 

 

CO2H H H H 109   
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H H SO2NH2 H 95   
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H2-50 

  

H H H 98  

H2-51 

 

CO2Me H H H 105   

 

In addition to the previous high-throughput screening of 50,000 compounds, 

50,000 more compounds from ChemDiv and MicroSource were screened.  The IC50 

values were determined for the compounds showing less than 40 % remaining activity 

against WT E. cloacae MurA.  As a result, 49 new compounds were found with IC50 

values in a range of 5 μM to 50 μM.  11 compounds belong to scaffolds HTS 2, 3, 4, 

or 5, and the others were categorized into 3 new scaffolds and natural products (NP). 

(Figure 41)  Representative compounds of each group (HTS6-1, HTS7-1, HTS8-1, 

and NP-1, -2, and -3) were purchased and tested to confirm their inhibitory activity.  

Inhibitory activity of HTS6-1 was not observed while the other compounds also 

showed less inhibitory potency compared to the values from HTS under the same 

condition.  None of the compound showed time-dependent inhibition characteristics. 

To understand the modes of action on MurA, inhibition kinetics of HTS7-1 and 

HTS8-1 were conducted.  HTS7-1 showed non-competitive inhibition regarding 

UNAG.  The Ki' was determined to 56.9 μM (Figure 42A1-C1).  HTS8-1 is a mixed 

inhibitor with respect to UNAG.  The Ki for HTS8-1, regarding alteration of the 

affinity for UNAG, is 19.6 μM, whereas the Ki', with respect to changes in maximal 

velocity of MurA, is 40.1 μM (Figure 42A2-C2).  The efforts to obtain co-crystal 

structures of HTS7-1 or HTS8-1 with MurA have not succeeded to date.   

Br N
O

O

Cl

Cl
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The verifications of the HTS hits were not successful with commercially obtained 

compounds.  One possible explanation for this is that the compounds in the HTS 

library did undergo chemical modifications, e.g. oxidation, radical reactions.  We 

conclude that the best strategy for now is to repeat the HTS campaign with newer and 

possibly more diverse compound libraries. 
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Figure 41.  Chemical structures and IC50 values of HTS hit compounds. 
Blue colored structures in the first row are the common structure of each scaffold.  
The values in parentheses were measured in HTS facility and the values outside the 
parentheses were measured in the laboratory. HTS6-1 did not show inhibitory 
activity, and other inhibitors exhibited less potency than measured in HTS facility.  A 
few natural products showed inhibition to MurA (NP-1 to -3).
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A1)    B1)         C1) 

 
 
 
A2)    B2)         C2) 

 
 
Figure 42. Ki determinations of HTS7-1 (A1, B1, and C1) and HTS8-1 (A2, B2, and C2). 

A1) MurA activities as a function of UNAG concentration for various HTS7-1 concentrations. 
B1) Double-reciprocal plot of data from A1). 
C1) Replot of the observed Vmax from B1) as a function of HTS7-1 concentration yielding Ki ' 

of 56.9 μM. 
A2) MurA activities as a function of UNAG concentration for various HTS8-1 concentrations. 
B2) Double-reciprocal plot of data from A2). 
C2) Replot of the observed Km from B2) as a function of HTS8-1 concentration yielding Ki of 

19.6 μM. 
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3.3. Inhibitors of Cyclin-dependent Kinase 2 

High-throughput screening (HTS) was performed by Dr. Rawle Francis in the 

HTS facility of the University of Kansas, and kinetic analysis of CDK2 was 

performed by Dr. Andreas Becker.  The synthesized analogs were provided by the 

laboratory of Dr. Gunda Georg at the University of Minnesota. 

Cyclin-dependent kinases (CDKs) are key enzymes in the regulation of the cell 

cycle, and abnormal over-expression of CDKs is often observed in human cancer 

cells.  Thus, intense efforts to discover anti-cancer drugs that inhibit CDKs have been 

made for the last two decades.  Although a number of small molecule CDK inhibitors 

have been identified, assisted by expanded structural information about CDK2, they 

frequently lack adequate potency and/or specificity.  It is clear that improved 

selectivity will be required for the next generation of CDK inhibitors. 

HTS was conducted with about 100,000 compounds resulting in the identification 

of 62 compounds demonstrating more than 60 % inhibition of CDK2 at 8.3 μg/mL 

concentration.  These hits were categorized into six different scaffolds and the 

representatives of each scaffold are shown in Figure 43 with their Ki values.  Four of 

the representative compounds were co-crystallized with CDK2 and they were all seen 

to occupy the ATP binding pocket of CDK2.  The co-crystallized compounds were 

named Lead 1 (L1) to Lead 4 (L4).  More compounds with scaffolds L1 – L4 were 

purchased or synthesized, and inhibitory potencies were measured for structure 
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activity relationship (SAR) studies.  The detailed molecular modes of action of 

several analogs were analyzed by crystallographic studies. 

Prior to the study with the lead compounds, efforts to understand the ATP binding 

site of CDK were performed with the co-crystal structure of ADP on CDK2 

(Figure 44). The interactions of ADP with CDK2 were almost the same as with the 

ATP binding although the electron density of the β-phosphate group of ADP was too 

weak to refine its conformation of the phosphate group.  In addition, the co-crystal 

structures of CDK2 with two known inhibitors, aloisine A and NU6027 (chemical 

structures are shown in Figure 15), were solved to 1.75 and 1.85 Å resolution, 

respectively.  Aloisine A bound to the ATP binding site has two hydrogen bonds with 

the backbone carbonyl oxygen and nitrogen atoms of Leu83.  The phenyl ring 

 
 
Figure 43.  Six scaffolds of CDK2 inhibitors identified by HTS. 

Ki values of each scaffold are shown.  
The molecular modes of action of L1-L4 were identified by structural and SAR 
studies while investigations of H9 and H10 are currently undergoing.  
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ADP 

 
Aloisine A 

 
NU6027 

 
Figure 44.  Stereoviews of the co-crystal structures of ADP, aloisine A, and NU6027 with 

CDK2.  Light grey-colored structures are active site residues of CDK2 and green 
molecules are ligand structures.  A water molecule is shown as a cyan-colored sphere.  
Blue dashed lines denote hydrogen bonds while orange dashed lines represent van der 
Waals interactions. 
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maintains hydrophobic forces with Ile10 and Gln85.  NU6027 forms three hydrogen 

bonds between the pyrimidine ring and the backbone atoms of Glu81 and Leu83.  The 

5-nitroso group of NU6027 has hydrogen bonds with the backbone nitrogen of 

Asp145 and a water molecule, which interacts with the backbone carbonyl of Gln131.   

From these preliminary structural studies, it was confirmed that the hydrogen 

bonds with the backbone atoms of Glu81 and Leu83 are propably important for the 

binding because they are present in every ligand bound CDK2 structures including 

ADP, aloisine A and NU6027.  In addition to these hydrogen bonds, the hydrophobic 

interactions with Ala31 and Leu134 were consistently observed in the structures.   

3.3.1. Lead 1 and its analogs 

Lead 1 (L1, 5-nitro-2-(pyridine-3-ylmethylamino)benzamide), identified by HTS, 

showed a Ki value of 2.3 μM for CDK2/cyclinA.  The crystal structure of L1 with 

CDK2 was solved to 1.85 Å (Figure 45A).  L1 was bound in the ATP binding pocket 

containing three key hydrogen bonds with the backbone carbonyl oxygen atoms of 

Glu81 and Leu83 and the backbone nitrogen of Leu83: the amide group on C1 forms 

hydrogen bonds with the backbone carbonyl oxygen atom of Glu81 and the backbone 

amide nitrogen of Leu83, and the amino group on C2 interacts with the backbone 

carbonyl of Leu83.  The nitro group on C5 forms a salt bridge with the side chain 

amine of Lys33.  The benzene ring of L1 has hydrophobic interactions with Ile10, 

Val18, Ala31, and Leu134.  Ile10 is also close enough to the pyridine ring of L1 to 

make hydrophobic interactions (Figure 45B).  
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(A) 
 L1 

 
(B)      (C) 

 
 
Figure 45.  (A) A stereoview of the co-crystal structure of L1 with CDK2.  Light grey-colored 

structures are active site residues of CDK2 and the green molecule is L1. Blue dashed 
lines denote hydrogen bonds while orange dashed lines represent van der Waals 
interactions. 
(B) A schematic diagram of L1 binding in the CDK2 active site.  Residues in the 
active site interacting with L1 are shown. Van der Waals interactions are shown as 
blue colored arches and green dashed lines represent hydrogen bonds with their 
distances. 
(C) SAR strategy for the L1 scaffold.  The pharmacophore of the L1 scaffold is 
shown as red colored structure. Green colored structures are part of the molecule, 
which need to be modified for better inhibitory potency.  The blue colored circle 
indicates a space available in the active site.  The atoms of the pharmacophore, 2-
aminobenzamide, are numbered.  
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The pharmacophore of L1 was proposed as the aminobenzamide moiety from 

structural information obtained from the co-crystal structure of L1 bound to CDK2.  

Spaces for elongations from the core structure were available on the 3 and 4 positions 

of the aminobenzamide ring (Figure 45C), thus the investigations of the derivatives 

with various groups on those sites were needed.  The variation of the pyridine ring to 

other aromatic ring systems or aliphatic chains and the modification of the nitro group 

to other hydrogen bond acceptor groups, e.g. carboxylate, were proposed.  Several 

compounds satisfying the above conditions were commercially obtained as well as 

synthesized, and tested against CDK2/cyclinA (Tables 13 and 14).   

The amide group of the L1 scaffold was confirmed to be critical by kinetic 

analysis of several L1 derivatives.  Compounds with a carboxylate group instead of 

an amide on the C1 position of the benzene ring, L1-KVR-1-38, -42, -43, -46, 

and -52, lost their inhibitory activity. 

The IC50 values of L1 analogs also indicated that the inhibitory potency of L1 

depended on the presence of a methylene-aromatic ring moiety connected to the 

amino nitrogen of aminobenzamide (R1 group): all the compounds without the 

methylene-aromatic ring were inactive against CDK2/cyclinA.  Inhibition was not 

observed for the compounds without the ring system, L1-3, L1-4, and L1-13.  The 

compounds with saturated rings, L1-9, L1-11, and L1-KVR-1-25, did not show 

inhibitory activity.  Although the R1 substituents include aromatic rings, it was 

observed when the length of the carbon linker between the 2-amino group and the 
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ring was not one carbon, the inhibitory activities significantly decreased (e.g. L1-5 

(two-carbon linker), L1-KVR-1-22 (no carbon)).   

L1 analogs with variations at the position of the nitrogen atom on the pyridine 

ring of R1 group, 2-position (L1-KVR-1-9), 4-position (L1-KVR-1-45), and 2, 5-

positions (L1-KVR-1-67) have been tested and their activities did not differ from the 

parent compound, L1 (3-position).  Even the compound without the nitrogen atom on 

the aromatic ring (L1-10) had an IC50 that was not much different than the value of 

the pyridine ring system (L1).  This result was consistent with the information from 

structural data, where no specific interaction of the pyridyl nitrogen and CDK2 

residues existed.  The co-crystal structure of L1-KVR-1-9 with CDK2 was also 

solved to 1.95 Å (Figure 46).  The interaction of the pharmacophore of the inhibitor 

with the receptor was the same as L1.  The orientation of the pyridine ring was 

rotated a little compared to L1.  However, the electron density of this part of the 

molecule was poor, showing high temperature factors (B-factors).  This implied that 

L1-KVR-1-9 

 
Figure 46.  A stereoview of the co-crystal structure of L1-KVR-1-9 with CDK2. Light grey-

colored structures are active site residues of CDK2 and green molecule is L1-KVR-
1-9. Blue dashed lines denote hydrogen bonds while orange dashed lines represent 
van der Waals interactions. 
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Table 13.  SAR table of the L1 scaffold (1).  Blue shaded compounds were co-crystallized with 
CDK2. 
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 the R1 group of L1 analogs was flexible and did not have critical interactions with 

CDK2, thus it needs to be modified to have specific binding in the active site.  One 

suggestion is a substitution on the phenyl ring with hydrogen bond acceptors and/or 

donor groups because Lys, Asp and Glu residues are located near the phenyl group 

binds.  The R1 group is also open to solvent exposed space, thus it possibly stabilizes 

the binding of the ligand on CDK2. 

The attempt to increase inhibitory potency was carried out by varying the 

electronic character of the aromatic ring of R1.  Analogs with the substitutions on the 

phenyl ring with p-methoxy (L1-KVR-1-5), p-methyl (L1-KVR-1-6), p-chloride 

(L1-KVR-1-7), p-fluoride (L1-KVR-1-8), 2,3-difluoro (L1-KVR-1-12), 3,4-difluoro 

Table 14. SAR tables of the L1 scaffold (2). 
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(L1-KVR-1-13), p-trifluoromethyl (L1-KVR-1-15), and 3,4-dichloro (L1-KVR-1-

32) were synthesized and their inhibitory activities were tested.  As a result, none of 

the analog compounds with substituents on the aromatic ring had significantly better 

potencies.  Compounds, L1-KVR-1-12, -15, and -32, showed even considerably less 

activities than L1-10 (no substitution on the phenyl ring).  Thus, it was assumed that 

the electronic properties of the aromatic ring did not affect the interaction of the L1 

analogs with CDK2.  In addition to the hydrophobic substitutions on the phenyl ring, 

a couple of hydrophilic derivatives, p-carboxylic acid (L1-KVR-1-74), p-

aminomethyl (L1-KVR-1-75) were synthesized to enhance solvent contacts as well 

as possible hydrogen bonds.  However, both analogs exhibited similar potency 

compared to L1-10, suggesting that neither p-carboxylate nor p-aminomethyl groups 

involve the binding to CDK2.  Thus may result because the substitutions are not on 

the right position or they are too small groups to have interactions with CDK2.  Thus, 

future studies should probably include substitution on different positions of the 

phenyl ring with large hydrophilic functional groups such as sulfonamides. 

The variation of the R2 group with chloride, L1-KVR-1-55, L1-KVR-1-56, and 

L1-KVR-1-78, showed 3-fold increased inhibitory potency compared to the analogs 

without chloride, L1-KVR-1-9, L1-KVR-1-45, and L1.  From the structures of L1 

and L1-KVR-1-9, it was not possible to explain the increased inhibition because the 

space for R2 substitution is widely open and the chloride atom does not seem to have 

interactions with any residues.  Thus, the attempt to obtain the structures of the R2-

chloride substituted analogs with CDK2 is currently ongoing.  L1-KVR-1-55-2 (R2: 
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pyridinyl-2-methylamino group) was not active against CDK2/cyclinA, possibly 

because R2 is too large, thus causing steric clash.  Further investigation with various 

substituents of R2 needs to be performed as well as the modification of the nitro 

group on R3. 

3.3.2. Lead 2 and its analogs 

Lead compound 2 (L2, 2-(4,6-diamino-1,3,5-triazin-2-yl)phenol) inhibits CDK2 

reversibly and competitively with respect to ATP with a Ki value of 7.8 μM.  The 

crystal structure of human CDK2 liganded with L2 was determined at 2.0 Å 

resolution (Figure 47A).  L2 has hydrogen bonds with the backbone carbonyl oxygen 

and the backbone nitrogen of Leu83 in the adenine binding pocket.  In addition to the 

key hydrogen bonds, the amine on C4′ of the triazine ring interacts with the backbone 

carbonyl of Ile10 via a hydrogen bond.  The side chain of Ile10 is within a distance of 

van der Waals interaction (3.3 Å < d < 3.8 Å) with the triazine ring of L2.  The 

phenol ring is located in the hydrophobic pocket of Ala31, Leu134, and Val18 

(Figure 47B).   

The analysis of the co-crystal structure of L2 with CDK2 suggested that the 

pharmacophore of L2 is L2 itself (Figure 47C), although the 3′-positioned nitrogen 

atom of the triazine ring might be replaced by a carbon atom since the nitrogen atom 

does not have any specific interactions with CDK2.  A substitution on C6 of the 

phenol ring with a functional group containing a hydrogen bond donor is able to 

increase the inhibitory potency through an additional hydrogen bond with the 

backbone carbonyl of Glu81.  However, modifications on the R1 group are almost not 
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(A) 
 L2 

 
(B)      (C) 

 
 
Figure 47.  (A) A stereoview of the co-crystal structure of L2 with CDK2. Light grey-colored 

structures are active site residues of CDK2 and the green molecule is L2.  Blue 
dashed lines denote hydrogen bonds while orange dashed lines represent van der 
Waals interactions. 
(B) A schematic diagram of L2 binding in the CDK2 active site. Residues in the 
active site are shown. Van der Waals interactions are shown as blue colored arches 
and hydrogen bonds are denoted with green dashed lines with the distances between 
the atoms. 
(C) SAR strategy for the L2 scaffold. The pharmacophore of the L2 scaffold is 
shown as red colored structure.  The blue colored circles indicate spaces available in 
the active site.  The atoms of the pharmacophore are numbered.  
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possible due to the limited space: the distance between C6 of the phenol ring and the 

backbone oxygen atom of Glu81 is 3.3 Å.  The space available for substituents on C5 

of the phenol ring is not large, thus the variations on the R2 group were proposed 

with small substituents either to increase hydrophobic forces with neighboring Phe80 

and Val64 or to have interactions with π-electrons of the side chain of Phe80.  The 

distances from C4 of the phenol ring to Lys33 and Asp145 are 4.3 and 4.8 Å, 

respectively.  The addition of a functional group for the ionic interaction with either 

Lys33 or Asp145 was suggested.  Substitutions of R4, R5, and R6 with large groups 

seem to be possible based on the structural information obtained from L2 bound 

CDK2. 

Commercially available or synthesized derivatives of L2 were tested for the 

CDK2/cylinA inhibition using steady-state kinetics (Tables 15 and 16).  It was 

suggested that the 2-OH group of the phenol ring was critical for the inhibitory 

activity of the L2 analog by the co-crystal structure of L2 with CDK2, and this idea 

was supported by activity tests of L2 derivatives once again.  The elimination of the 

hydroxyl group of the phenol ring, L2-JWS-6-1, L2-JWS-6-14, L2-JWS-6-16, L2-

JWS-6-22, L2-JWS-6-24, L2-JWS-6-38, L2-JWS-6-44, and L2-JWS-6-46, resulted 

in significant decreases of the inhibitory activity.  The role of the 4′ amine group of 

the triazine ring was confirmed to be essential from the results that the compounds, 

L2-10 and L2-11, without the amine group on the 4′-position of the triazine ring 

show no inhibitory potency up to 140 μM.   
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Table 15.  SAR tables of the L2 scaffold (1).  Blue shaded compounds were co-crystallized with 
CDK2. 

 

 
 
 



 145

L2 analogs with variations of the R2 group, L2-JWS-6-50 (methoxy) and L2-

JWS-6-106 (chloride), were tested.  The methoxy group on C5 of the phenol ring was 

still tolerable, but decreased the inhibitory potency by more than 10-fold, implying 

the methoxy group was too large a substituent on R2.  The chloride derivative, L2-

JWS-6-106, exhibited even lower inhibitory potency (IC50 = 350 μM) than the 

methoxy derivative (IC50 = 83 μM).  The electronic character of methoxy and chloride 

groups might be the explanation for the difference on their inhibitory potencies 

despite their similar sizes.  The methoxy group, an electron-donating group, is 

partially positive-charged on the phenol ring, while the chloride group has an 

electron-withdrawing character, and it is thus partially negative-charged.  The side 

chain of Phe80 is located in the binding pocket of R2 group.  Thereafter, the methoxy 

Table 16. SAR table of the L2 scaffold (2). 
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group is able to involve a π-cation interaction with Phe80, while the chloride group 

cannot.  A protonated or partially positive-charged small group (e.g. amine or 

hydroxyl) is expected to participate in a π-cation interaction with the benzene ring of 

Phe80, and thus enhance the binding affinity of the L2 analogs to CDK2. 

Several different modifications of R3 were made.  The substitution of R3 to a 

chlorine atom, L2-5, demonstrated a two to three-fold increase of inhibitory potency, 

while the modifications with methoxy (L2-JWS-6-48), hydroxyl (L2-JWS-6-52), 

fluoride (L2-JWS-6-76), and methyl (L2-JWS-6-78) did not show a gain in potency.  

Several variations of the compound L2-5 were carried out on the 4′-amino group of 

the triazine ring to various aliphatic and aromatic groups.  Most of them showed up to 

2-fold increased activity, e.g. L2-7 with a Ki value of 1.0 μM, than L2-5.  However, 

when it was changed to a p-halophenyl group, L2-20 and L2-21, the inhibitory 

activity was considerably decreased.  It is considered that the para-substituted phenyl 

ring as the R5 group with an electron-withdrawing group loses the inhibitory potency.  

The co-crystallization studies of L2-20 and L2-21 are ongoing.  

The crystal structure of CDK2 liganded with L2-3 was determined to 2.1 Å 

resolution (Figure 48).  The chlorine atom on C4 of the phenol ring is close to 

Asp145 (d = 3.5 Å) and induces conformational changes of residues “above” the 

inhibitor binding site, Thr14, Tyr15, Lys129, and Asp127.  It appears that these 

structural changes provide space for the binding of a phosphate ion that is present in 

the crystallization buffer.  The repulsive forces between the chlorine atom of L2-3 

and Asp145 slightly shift the inhibitor molecule towards the backbone of residues 
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Leu83 and His84, resulting in shorter and presumably stronger hydrogen bonding 

interactions.  The bulky methoxy phenyl group on the C4′ position of the triazine ring 

is relatively loosely bound to the enzyme.  The co-crystal structures with L2-6 and 

L2-3 

 
L2-6 

 
Figure 48.   Stereoviews of the co-crystal structures of L2 analogs: L2-3 and L2-6 with 

CDK2.  Light grey-colored structures are active site residues of CDK2 and green 
molecules are inhibitor structures.  Blue dashed lines denote hydrogen bonds while 
orange dashed lines represent van der Waals interactions. 
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L2-JWS6-52 

 
L2-JWS6-76 

 
L2-JWS6-48 

 
Figure 49.  Stereoviews of the co-crystal structures of L2 analogs: L2-JWS6-52, L2-JWS6-

76, and L2-JWS6-48 with CDK2.  Light grey-colored structures are active site 
residues of CDK2 and green molecules are inhibitor structures. Blue dashed lines 
denote hydrogen bonds while orange dashed lines represent van der Waals 
interactions. 
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L2-8 with CDK2 were solved (Figures 48 and 50).  The binding modes of L2-6 and 

L2-8 were very similar to L2-3.  The conformations of the substituents on C4′ of the 

triazine ring could not be well refined because of the poor electron densities.  The co-

crystal structures of L2-JWS-6-48 and L2-JWS-6-52 were determined to 1.80 Å 

resolutions (Figure 49).  The methoxy group of L2-JWS-6-48 establishes 

hydrophobic interactions with the Cβ of Asp145 and the side chain of Phe80, and a 

phosphate ion is found at the same binding site of L2-3, L2-6, and L2-8.  The 

hydroxyl group of L2-JWS-6-52 does not establish interactions with the enzyme, and 

this explains the similar potency.  In the co-crystal structure of L2-JWS-6-76 with 

CDK2, the fluoride group interacts with the side chain of Asp145 in the same way as 

it does with the chloride group in L2-3, L2-6, and L2-8 (Figure 48).  This extra 

L2-8 

 
Figure 50.  A stereoview of the co-crystal structure L2-8 with CDK2.  Light grey-colored 

structures are active site residues of CDK2 and green molecule is L2-8.  Blue dashed 
lines denote hydrogen bonds while orange dashed lines represent van der Waals 
interactions.  A phosphate molecule is bound in the structure. 
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interaction explains the somewhat better activity of L2-JWS-6-76 than L2.  However, 

it is not as active as chloride-substituted L2 analogs.  This is probably due to the 

smaller atomic size of fluoride than chloride, thus the interaction with Asp145 is not 

strong with the fluoride as with the chloride.  

Future studies of L2 analogs will include variations on the R4 group.  The 

exchanges of the 3′- and 5′-nitrogen atoms on the triazine ring to carbon atoms will 

also be attempted for a SAR study.  The substituents of 4′-amine group tested thus far 

did not show any specific interactions with CDK2 based on the crystal structures, thus 

further modifications are ongoing.  Along with these variations, substitutions on 6′-

amine group will be added to enhance the inhibitory potencies.  The 6′-amine group 

will be elongated with large hydrophilic groups because the direction of the 6′-amine 

group is toward solvent exposure space.  The improved hydrophilicity is expected to 

increase solvent contacts and to interact with hydrophilic residues, and thereafter 

enhance the inhibitory potency of the compounds. 

3.3.3. Lead 3 and its analogs 

The compound, Lead 3 (L3, 5-tert-pentyl-4,5,6,7-tetrahydro-1H-indazole-3-

carbohydrazide), was identified as a reversible competitive inhibitor with respect to 

ATP, with a Ki value of 8.0 μM.  The crystal structure of L3 bound to human CDK2 

was determined at 1.85 Å resolution.  As expected from the kinetic data, L3 bound to 

the ATP binding site of CDK2 (Figure 51A).  L3 also made three key hydrogen 

bonds with the Glu81 backbone carbonyl, the Leu83 backbone carbonyl and nitrogen.  

Due to the large hydrophobic substituent, tert-pentyl, on the cyclohexene ring, 
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(A) 
 L3 

 
(B)      (C) 

 
 
Figure 51.  (A) A stereoview of the co-crystal structure of L3 with CDK2. Light grey-colored 

structures are active site residues of CDK2 and green molecule is L3.  Blue dashed 
lines denote hydrogen bonds while orange dashed lines represent van der Waals 
interactions. 
(B) A schematic diagram of L3 binding in the CDK2 active site.  Residues in the 
active site are shown. Van der Waals forces are shown as blue colored arches and 
repulsive forces are represented with red colored arches. Hydrogen bonds are denoted 
with green dashed lines with the distances between the atoms. 
(C) SAR strategy for the L3 scaffold. The pharmacophore of the L3 scaffold is 
shown as red colored structure. Green colored structures are part of molecule, which 
need to be modified for better inhibitory potency.  The blue colored circles indicate 
spaces available in the active site.  The atoms of the pharmacophore are numbered.  
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L3 interacted with the side chains of Ile10, Val18, Ala31, Leu134, and Ala144 

through hydrophobic forces (Figure 51B).  L3 has a chiral center at C5 of the 

cyclohexenyl ring.  However, both enantiomers could fit the electron density map 

(Figure 52).  Thus, it was not possible to determine which enantiomer was the active 

isomer in the structure with a 1.85 Å resolution, or whether both stereoisomers 

possibly inhibited CDK2.   

 

The pharmacophore of L3 was proposed as a 1H-pyrazole-3-carboxamide moiety 

from the structural information of L3 bound CDK2 (Figure 51C).  The terminal 

amine group of the carbohydrazide has been modified to various groups.  The 

cyclohexene ring and tert-pentyl group have also been investigated by using other 

ring systems and various substituents.  

A number of L3 analogs were obtained and tested for inhibitory activity against 

CDK2/cyclinA (Tables 17 and 18).  Replacing the carbohydrazide moiety of the 

parent compound with a carboxyl group eliminated inhibitory activity, evident from 

 
 
Figure 52.  A stereoview of both L3 enantiomers bound in the CDK2 active site. Both R- 

(magenta) and S- (light blue) enantiomers fit into the electron density. 
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Table 17.  SAR table of the L3 scaffold (1).  Blue shaded compounds were co-crystallized with 
CDK2. 
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Table 18.  SAR tables of the L3 scaffold (2).  Blue shaded compounds were co-crystallized with 
CDK2. 
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the results for L3-NSK-MC1-3.  Only L3-NSK-MC1-7 displayed measurable 

activity albeit considerably less than the parent compound.  Notably, replacement of 

the carbohydrazide group by amide derivatives influenced the affinity depending on 

the nature or the size of the R1 group.  L3-NSK-MC1-12 (R1: methyl) and L3-NSK-

MC1-15 (R1: ethyl) were 4-5 times more active than L3 while L3-NSK-MC1-277 

(R1: n-propyl) showed similar activity with L3.  It was suggested that two carbon 

chains extended from the amide group had interactions with the enzyme while one 

additional carbon abolished the positive effect by repulsive forces.  In addition to the 

length of the carbon chains, bulkiness of the aliphatic substituents exhibited a 

negative effect on the inhibitory potency.  Cyclohexyl (L3-NSK-MC1-14) and 

cyclopentyl (L3-NSK-MC1-13) substitutions resulted in loss of the activity and L3-

NSK-MC1-241 (R1: i-propyl) had 10 times lower activity than L3-NSK-MC1-15 

(R1: ethyl) and 2 times lower than L3-NSK-MC1-277 (R1: n-propyl).  Several 

different para-substituted benzyl groups at the R1 position were tested.  Interestingly, 

the sulfonamide group (L3-NSK-MC1-55) demonstrated the best inhibitory potency 

(IC50 = 3.7 μM) among all L3 analogs tested so far.  However, the other substituents, 

p-chloro (L3-NSK-MC1-13), p-trifluoromethyl (L3-NSK-MC1-27), and p-methoxy 

(L3-NSK-MC1-285), did not show any activity against CDK2/cyclinA.  The co-

crystallization of L3-NSK-MC1-55 with CDK2 in an attempt to visualize the effect 

of the sulfonamide on its binding, is currently underway.   

Variations on the tert-pentyl group did not show better inhibitory potency than L3. 

For example, although L3-4 differs in only one methyl group from L3, it 
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demonstrated 15-fold lower potency, implying that the additional methyl group in L3 

contributes to the proper binding of L3 to CDK2.  In addition to the replacement of 

the R2 group from tert-pentyl to tert-butyl, it has been modified to hydrogen (L3-1), 

n-propyl (L3-NSK-MC1-6), n-butyl (L3-NSK-MC1-11), phenyl (L3-NSK-MC1-5), 

and cyclohexyl (L3-NSK-MC1-9).  These analogs showed significantly reduced 

inhibitory activity against CDK2/cyclinA.  The L3 analogs with different ring 

systems, cyclopentenyl (L3-2), benzene (L3-3), and cycloheptenyl (L3-NSK-MC1-1) 

rings, as a replacement of the cyclohexenyl ring (L3-1) were evaluated.  Although 

only the benzene ring had a better potency than the compound L3-1 among these 

analogs, it exhibited an IC50 value of 130 μM.  The low inhibitory activity of the 

analog L3-3 is possibly due to its lack of a large hydrophobic group such as tert-

pentyl in L3, resulting in the loss of hydrophobic forces for binding on CDK2. 

In the current compound library of L3 scaffolds, hydrophilic functional groups as 

the R2 substituents are absent.  Since there are several hydrophilic residues, Lys33, 

Asn132, and Asp134, at the R2 binding site of CDK2, the application of hydrogen 

bond donors or acceptor groups might improve the binding affinity.  For future 

investigation, it is proposed to eliminate the stereo-center of L3 by replacing it with 

nitrogen or amide in the cyclohexenyl ring.  This variation would provide better 

solubility of the compounds as well as possible hydrogen bonds. 
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L3-3 

 
L3-4 

 
L3-NSK-MC1-6 

 
Figure 53.  Stereoviews of the co-crystal structures of L3 analogs: L3-3, L3-4, and L3-NSK-

MC1-6 with CDK2. Light grey-colored structures are active site residues of CDK2 
and green molecules are inhibitor structures. Blue dashed lines denote hydrogen 
bonds while orange dashed lines represent van der Waals interactions.  
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In addition to the crystal structure of L3 on CDK2, the co-crystal structures of 

L3-3, L3-4, and L3-NSK-MC1-6 were obtained (Figure 53).  As with the structure of 

L3, the active enantiomers of L3-4 and L3-NSK-MC1-6 were not clearly shown on 

the co-crystal structures.  Although the difference in chemical structure between L3 

and L3-4 or L3-NSK-MC1-6 is only one or two carbon atoms, the activities of these 

compounds differ by more than 6-fold.  This enourmous change of the inhibitory 

potency could not be explained even with the co-crystal structures.  The structure of 

L3-3 with CDK2 was solved to 1.80 Å.  The benzene (L3-3) as a replacement of the 

cyclohexenyl ring (L3) increased the hydrophobic interaction, specifically the π-π 

interaction with the side chain of Phe80.  It was evident that L3-3 bound in the active 

site more deeply, i.e. closer to Phe80, than L3.  Although the hydrophobic forces 

from the R2 alkyl group do not exist on L3-3, the compound maintains its binding 

affinity to the CDK2 active site due to the extra interactions with Phe80.  Thus, it is 

suggested that the substitution on the benzene ring of L3-3 would increase the 

inhibitory potency. 

3.3.4. Lead 4 and its analogs 

The lead compound 4 (L4, (2-(allylamino)-4-aminothiazol-5-yl)(phenyl) 

methanone) was identified as a competitive CDK2 inhibitor with respect to ATP, 

exhibiting a Ki value of 7.6 μM.  The co-crystal structure of CDK2 with L4, solved to 

1.95 Å resolution, confirmed the kinetic data: L4 was bound in the ATP binding 

pocket in CDK2 (Figure 54A).  The 4-amino group forms a hydrogen bond with the 

backbone carbonyl of Glu81.  The 3-nitrogen atom of the thiazole ring has a  
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(A) 
 L4 

 
(B)      (C) 

 
 

Figure 54.  (A) A stereoview of the co-crystal structure of L4 with CDK2.  Light grey-colored 
structures are active site residues of CDK2 and green molecule is L4.  A water 
molecule is shown as a cyan sphere.  Blue dashed lines denote hydrogen bonds while 
orange dashed lines represent van der Waals interactions. 
(B) A schematic diagram of L4 binding in the CDK2 active site.  Residues in the 
active site are shown. Van der Waals forces are shown as blue colored arches and 
repulsive forces are represented with red colored arches. Hydrogen bonds are denoted 
with green dashed lines with the distances between the atoms. 
(C) SAR strategy for the L4 scaffold.  The pharmacophore of the L4 scaffold is 
shown as red colored structure. Green colored structures are part of molecule, which 
need to be modified for better inhibitory potency.  The blue colored circles indicate 
spaces available in the active site.  The atoms of the pharmacophore are numbered.  
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hydrogen bond with the backbone nitrogen of Leu83 and the 2-amino group interacts 

with backbone carbonyl of Leu83.  In addition, the 5-carbonyl group of L4 interacts 

with the backbone nitrogen atom of Asp145 through a water molecule.  The thiazole 

ring interacts with the side chain of Ile10, Ala31, and Leu134, the phenyl ring with 

Gly13, Val18, and Asp145, and the allyl moiety with Ile10 (Figure 54B).  However, 

the electron density of the allyl group, as well as that of the side chain of Ile10, is 

weak; thus the interaction between those two groups does not seem to be strong.  

The pharmacophore of L4 was recognized as a 2,4-diamino thiazole group, and 

the 2-amino group can be elongated with hydrocarbon substituents, such as allyl or 

phenyl groups (Figure 54C).  The space that the 4-amino group occupies is not large 

enough to accept any substitution.  This is consistent with the lack of CDK2 

inhibition by L4-RC2-31.  The 5-carbonyl has a hydrogen bond with the backbone 

nitrogen of Asp145 via a water molecule.  However, it is necessary to examine 

whether this interaction is essential for the binding affinity.   

L4 is the most studied scaffold among the four groups to date.  Over fifty L4 

analogs with various R1 and R2 groups purchased or synthesized were tested against 

CDK2/cyclinA (Tables 19-22).  It is shown on the SAR tables of the L4 scaffold that 

the inhibitory potency of compounds generally depends on the combination of R1 and 

R2, not on any one single side substitution.  For example, L4-RC1-148 (R1: phenyl, 

R2: phenyl) showed better activity than L4 (R1: allyl, R2: phenyl), suggesting phenyl 

is a better group for the R1 position.  However, the opposite result was 



 161

Table 19.  SAR table of the L4 scaffold (1).  Blue shaded compounds were co-crystallized with 
CDK2. 
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Table 20.  SAR table of the L4 scaffold (2).  Blue shaded compounds were co-crystallized with 
CDK2. 



 163

Table 21. SAR table of the L4 scaffold (3).  
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Table 22.  SAR table of the L4 scaffold (4).  Blue shaded compounds were co-crystallized with 
CDK2. 
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demonstrated when R2 is naphthyl (L4-RC1-132 and L4-RC2-14): L4-RC1-132 

(R1: allyl, R2: naphthyl) had an IC50 value of 5 μM while L4-RC2-14 (R1: phenyl,  

R2: naphthyl) did not show any inhibitory activity up to 1 mM against CDK2/cyclinA.  

Thus, it is suggested that the flexibility of the R1 substituent allows for a larger group 

on the R2 position.   

Fourteen different R1 groups 

have been applied when R2 is 

substituted with a phenyl group.  

From the activity test of those 

compounds, phenyl (L4-RC1-

148), cyclohexyl (L4-RC1-151), 

and i-propyl (L4-RC2-26) groups 

at the R1 position increased the 

inhibitory potency of the analogs, while tert-butyl (L4-RC2-27), p-trifluoromethyl 

phenyl (L4-RC2-30), and p-nitro phenyl (L4-RC2-31) groups had adverse effects.  

Remarkably, L4-RC2-32 (R1: p-sulfonamide phenyl group) exhibited the best 

inhibition, and the same results were found throughout all different R2 variations.  

This result is consistent for oxindole with the sulfonamide (compound 7 in Figure 14) 

which is more potent than the compound without the sulfonamide, reported 

previously119.  It was also found in a SAR study of the L3 scaffold, in which the 

sulfonamide derivative at the similar position exhibited the best inhibitory potency.  

Thus, future attempts to achieve higher inhibitory potency of L4 analogs would 

Table 23. Compounds belonging to the L4 scaffold. 
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contain the p-sulfonamide or a p-N-substituted sulfonamide phenyl group at the R1 

position. 

The inhibitions of the L4 analogs with the allyl group at the R1 position were 

compared.  Among 15 of those compounds, 3-pyridyl (L4-RC1-137) and m-nitro 

phenyl (L4-RC1-135) substitutions at the R2 position enhanced the activities 

compared to L4 (phenyl), while the others had similar or lower potencies.  Moreover, 

those two substitutions had consistently exhibited good inhibitions regardless of the 

R1 groups. 

The efforts to verify SAR of the L4 analogs were conducted by the co-crystal 

structures of the compounds with CDK2.  More than 10 structures of the L4 analogs 

have been solved (Figures 55–59).  Three different R1 groups, allyl, m-fluoro phenyl, 

and p-sulfonamide phenyl, were included in those structures.  The electron densities 

for the allyl groups were very weak in the structures.  Thus it is thought that the allyl 

group at the R1 position is flexible and does not have specific interactions.  In the co-

crystal structure of L4-12, the electron density of the R1 substituent, m-fluoro phenyl, 

was found to be clearer than the allyl, and had hydrophobic interactions with the side 

chain of Phe82.  The excellent activities of the p-sulfonamide phenyl substituted L4 

analogs were explained from the co-crystal structures of those compounds with 

CDK2.  The electron densities of the p-sulfonamide phenyl groups were clearly 

defined.  In the structures, the sulfonamide group has extra interactions with CDK2 

by forming hydrogen bonds with the backbone nitrogen and the side chain 

carboxylate of Asp86.  In addition to better solubility of the sulfonamide derivatives, 
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L4-4 

 
L4-12 

 
L4-14 

 
 
Figure 55.  Stereoviews of the co-crystal structures of L4 analogs: L4-4, L4-12, and L4-14 

with CDK2.  Light grey-colored structures are active site residues of CDK2 and 
green molecules are inhibitor structures. Water molecules are shown as cyan spheres. 
Blue dashed lines denote hydrogen bonds while orange dashed lines represent van der 
Waals interactions.  
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L4-RC1-34 

 
L4-RC1-35 

 
 
Figure 56.  Stereoviews of the co-crystal structures of L4 analogs: L4-RC1-34 and L4-RC1-

35 with CDK2.  Light grey-colored structures are active site residues of CDK2 and 
green molecules are inhibitor structures. A water molecule is shown as a cyan sphere. 
Blue dashed lines denote hydrogen bonds while orange dashed lines represent van der 
Waals interactions.  



 169

L4-RC1-36 

 
L4-RC1-37 

 
L4-RC1-38 

 
 
Figure 57.  Stereoviews of the co-crystal structures of L4 analogs: L4-RC1-36, L4-RC1-37, 

and L4-RC1-38 with CDK2.  Light grey-colored structures are active site residues 
of CDK2 and green molecules are inhibitor structures. Water molecules are shown as 
cyan spheres. Blue dashed lines denote hydrogen bonds while orange dashed lines 
represent van der Waals interactions.  
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L4-RC2-35 

 
L4-RC2-36 

 
L4-RC2-37 

 
 
Figure 58.  Stereoviews of the co-crystal structures of L4 analogs: L4-RC2-35, L4-RC2-36, 

and L4-RC2-37 with CDK2.  Light grey-colored structures are active site residues 
of CDK2 and green molecules are inhibitor structures. Water molecules are shown as 
cyan spheres. Blue dashed lines denote hydrogen bonds while orange dashed lines 
represent van der Waals interactions.  
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these extra hydrogen bonds found in the crystal structures induce better binding 

affinity of the molecules to CDK2 thus increase the inhibitory potency.  The 

5-carbonyl group in all solved structures has a hydrogen bond, although two different 

ways are shown.  One is a direct interaction with the side chain of Lys33, found in the 

structures of L4-14 and L4-RC1-35, and the other is a hydrogen bond with the 

backbone nitrogen of Asp145 through a water molecule.  From the SAR studies, it 

was found that small variations of the R2 group, e.g. different positions (2-, 3- or 4- 

position of nitrogen atom (L4-RC1-38, L4-RC1-37, and L4-RC1-36)) of the same 

functional groups (pyridine ring), induced large changes in the binding affinities of 

the L4 analogs.  The co-crystal structures of L4-RC1-36, L4-RC1-37, and L4-RC1-

38 were solved to identify which structural differences induce the activity changes.  

Although all three inhibitors were found in the ATP binding site, it was impossible to 

recognize the factor that determines the inhibitory potency.  It is considered that the 

L4-RC2-38 

 
 
Figure 59.  A stereoview of the co-crystal structure of L4-RC2-38 with CDK2.  Light grey-

colored structures are active site residues of CDK2 and green molecule is L4-RC2-
38. A water molecule is shown as a cyan sphere.  Blue dashed lines denote hydrogen 
bonds while orange dashed lines represent van der Waals interactions.  
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SAR study of the R2 position needs to be performed by the structural study with 

CDK2/cyclin complex instead of CDK2 only because the residues in the space that 

R2 group binds undergoes conformational change upon cyclin binding.  Thus, the 

efforts to crystallize the CDK2/cyclinA complex are currently ongoing in Prof. 

Schönbrunn’s laboratory. 

The inhibitory activity of the L4 scaffold has increased 100-fold from the lead 

compound, L4.  The sulfonamide group provided the most enhancement of the 

inhibitory potency.  Therefore, future investigation of the L4 analogs will be 

conducted where the sulfonamide will be maintained and the elongation from the 

nitrogen of the sulfonamide will be modified with various substituents. 

3.3.5. Design of New Inhibitors and Docking Study 

Although the analysis of the kinetic and structural data is an ongoing process and 

should result in the design of substantially improved analogs of the respective parent 

compounds, it has been found that the current 4 scaffolds were reported as CDK 

inhibitors144–149.  Thus, there is a need to discover CDK inhibitors with novel 

scaffolds.   

The thorough comparison of the binding patterns of the inhibitors may allow for 

the design of novel scaffolds with CDK2-inhibitory potential.  Superposition of the 

individual binding sites of the ligands co-crystallized with CDK2 indicates that 

certain molecule sites may be combined such that new scaffolds emerge: The 

superposition of structures, CDK2-L1 and CDK2-L2-6, indicates that the free amide 

group of L1 may be well confined in a ring system (Figure 60A) and that the phenyl 
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Figure 60.  (A) Orientation of inhibitors L1 (yellow) and L2-6 (cyan) after superposition of 

the respective CDK2 ligand structures. Superposition was performed using the Cα 
atoms of all CDK2 residues (1-298) of both inhibitor complexes. 
(B) New scaffolds with potential as inhibitors as a result of recombining the 
essential features and spatial orientation of both inhibitor molecules. 
(C) Designed molecules containing 2 or 3 hydrogen bond acceptors and donors. 
These molecules were designed to have hydrogen bonds with the backbone oxygen or 
nitrogen atoms of Glu81 and Leu83. R denotes any groups. 
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ring of L1 may be combined with the triazine ring of L2.  Even three and four fused 

ring systems are conceivable as new CDK2 inhibitors resulting from the combination 

of essential features of L1 and L2 (Figure 60B).   

More molecules were designed based on the key hydrogen bonds between ligands 

and CDK2 (Figure 60C).  The designed molecules include at least two hydrogen 

bonding donors or acceptors with similar patterns as known inhibitors, thus they are 

proposed to bind in the adenine binding site of CDK2.  

The molecules of new scaffolds were docked into the ATP binding site of CDK2 

using GLIDE140.  Among these compounds, ES4, ES5, ES6, HH2, HH4, HH5, and 

ES4          ES5     ES6 

 
HH2              HH4          HH5       HH6 

 
Figure 61.  The docking results of the designed inhibitors.  Light grey-colored structures are 

active site residues of CDK2 and green molecules are docked ligand structures. Blue 
dotted lines denote hydrogen bonds while orange colored lines represent van der 
Waals interactions.   
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HH6 (Figure 61) displayed proper interactions in the ATP binding site of CDK2 by 

docking.  As proposed, the docked molecules maintain at least two hydrogen bonds as 

well as some hydrophobic interactions.  The molecules that docked into CDK2 may 

represent possible alternatives to current lead structures.  Moreover, none of the 

newly designed molecules have been identified as a CDK inhibitor, thus it is 

considered that further studies with these compounds would provide a better 

opportunity to have novel scaffolds of CDK2 inhibitors.  Efforts to produce the 

designed compounds by synthetic methods are currently ongoing at Dr. Georg’s 

laboratory at the University of Minnesota.  

3.3.6. Selectivity of CDK2 inhibitors 

Selectivity has been a key issue of CDK inhibitors due to the high similarity of 

the ATP binding sites of all kinases.  There is no CDK inhibitor that is selective for a 

single CDK.  Thus, it is expected that the difficulty in selectivity of the CDK2 

inhibitors in previous sections would also occur in the near future.   

The studies to pre-screen the selectivity of the inhibitors were attempted by 

docking studies.  Prior to the structural studies, the sequences of all CDKs were 

aligned using ClustalW2150 (Figure 62 and Table 24).  Although they are highly 

conserved, differences are still found.  Thus, it is considered that the selectivity of the 

inhibitors for a specific CDK can be achieved by changing certain functional groups 

that respectively interact with different residues from other CDKs.  Among these 

CDKs, 5 different CDK structures are known including the one of CDK2, i.e. 

CDK286, CDK5 (PDB ID: 1UNL)151, CDK6 (1BLX)152, CDK7 (1UA2)153, and 
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Figure 62.  Sequence alignments of all 11 CDKs.  The aligned sequences of 1-222 (CDK2 

numbering) residues are shown.  The yellow box corresponds to the residues involved 
in the key hydrogen bonds and the blue boxes correspond to the residues in the active 
site.  * CD2L1 is another name of CDK11. 
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CDK9 (3BLR)154.  The CDK structures were aligned to the CDK2 structure by 

superimposing secondary structures using the CCP4 program suite155.  The Cα-

RMSD values of each superimposition were 1.45, 1.83, 1.48 and 2.00 Å, respectively.  

Four lead compounds, L1–L4, docked into the CDK structures.  Several inhibitors 

were found in the ATP binding sites of other CDK structures with the same binding 

pattern  as in the co-crystal structures with CDK2, e.g. L1 in CDK7 and CDK9, L2 in 

CDK5 and CDK9, and L4 in CDK9 (Figure 64).   

 

In addition, several other kinase structures were investigated in the same way as 

CDK structures.  First, the sequence alignments of AuroraA, mitogen-activated 

protein kinase (MAPK), glycogen synthase kinase-3β (GSK3β), protein kinase A 

(PKA), and protein kinase C (PKC) were carried out using ClustalW2150 (Figure 63 

and Table 25).  The structures of AuroraA (PDB ID: 2NP8)156, MAPK (1KV1)157, 

GSK3β (1R0E), PKA (2VO3)158, and PKC (1XJD)159 were aligned and the Cα-

RMSD values were 1.97, 2.27, 2.20, 2.00 and 2.01 Å, respectively.  The docking 

studies of these kinase structures were performed with the compounds L1–L4.  

Table 24. Sequence alignment scores (in percentage) for CDKs.  The sequences of CDK1–
CDK11 were aligned with ClustalW2 

 
 CDK2 CDK3 CDK4 CDK5 CDK6 CDK7 CDK8 CDK9 CDK10 CDK11 

CDK1 65 64 43 56 46 42 38 40 40 41 

CDK2  75 44 59 48 44 37 39 43 44 

CDK3   45 61 46 44 39 38 42 44 

CDK4    44 68 36 36 34 40 39 

CDK5     46 45 36 41 43 41 

CDK6      33 30 32 35 36 

CDK7       34 35 36 35 

CDK8        29 32 33 

CDK9         34 32 

CDK10          46 
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Figure 63.  Sequence alignments of several protein kinases (Aurora A, MAPK, GSK3β, 

PKA, and PKC) with CDK2.  The yellow box corresponds to the residues involved 
in the key hydrogen bonds and the blue boxes correspond to the residues in the active 
site.  The bovine PKA sequence was used, to be consistent with the structural data.  
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L2-CDK5        L1-CDK7             L1-CDK9 

   
L2-CDK9        L4-CDK9             L2-AuroraA 

 
L3-AuroraA        L2-PKC             L3-PKC 

 
L3-GSK3β          L4-GSK3β 

 
Figure 64.  Docking results of the Lead compounds into various kinase structures. 

Light grey-colored structures are active site residues of kinases and green molecules 
are docked ligand structures. Blue dotted lines denote hydrogen bonds while orange 
colored lines represent van der Waals interactions. 
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Inhibitors, L2 and L3 were adequately docked into the AuroraA and PKC structures, 

and L3 and L4 were found in the GSK3β structure (Figure 64). 

 

The results of the docking studies with other kinase structures imply that the 

current CDK2 inhibitors might not be selective and they need to be modified to 

contain specific interactions only with CDK2 to gain the selectivity.     

From intensive SAR and structural studies, excellent inhibitory potencies, in the 

sub-micromolar range were achieved.  The selectivities of the current inhibitors are 

now known yet.  Future investigation will include the studies of the selectivity of the 

inhibitors.  

 

Table 25. Sequence alignment scores (in percentage) for protein 
kinases.  Sequences of CDK2, Aurora A, MAPK, GSK3b, 
PKA, and PKC were aligned with ClustalW2.  

 
 Aurora A MAPK GSK3b PKA PKC 

CDK2 27 37 31 23 25 

Aurora A  18 19 23 23 

MAPK   24 17 18 

GSK3b    15 15 

PKA     33 
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4. Conclusion 
 
The kinetic and structural characterizations of Arg91Lys and Asp123Ala MurA 

mutants revealed the roles of two residues in the enzymatic mechanism of MurA.  

Arg91 is a critical residue in the open-closed transition of MurA.  Asp123 is involved 

in the binding of UNAG to MurA.   

The crystallographic studies of Arg120Ala MurA provided evidence for the 

existence of a thio-ketal intermediate between Cys115 and PEP during the reaction.  

Arg120 presumably functions as a key residue in transferring PEP from Cys115 to the 

target hydroxyl of UNAG.  

The kinetic studies of cnicin, a recently reported MurA inhibitor, indicated slow 

binding inhibition.  In addition, several new inhibitors of MurA were identified by 

HTS and characterized by enzyme kinetics.  It appeared that HTS2-2 inhibits the 

enzyme by inducing oligomerization of MurA.  From the kinetic and crystallographic 

studies of the new inhibitors, we conclude that all of these compounds bind in the 

open form of the enzyme.  Future studies will focus on the identification of novel 

inhibitors, inducing the open-closed conformational changes of MurA, similar to 

UNAG.   

Six different CDK2 inhibitor scaffolds were identified by HTS.  The molecular 

modes of action of four of the representative compounds were revealed by kinetic and 

crystallographic studies.  All inhibitors are competitive with respect to ATP.  SAR 

analysis of each scaffold was conducted with various analogs.  Structural information 
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obtained from crystallographic studies provided the detailed binding modes of the 

derivatives, and allowed for the design of new analogs with improved binding 

affinities.  Excellent inhibitory potencies to CDK2 in the sub-micromolar ranges of 

IC50 values were achieved.  In addition, several new inhibitor scaffolds were designed.  

The syntheses of the new compounds are currently underway.  Selectivities of the 

inhibitors over other protein kinases are not known yet, and will be a focus in future 

investigation. 
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