Parameter Estimation Part A
The Likelihood Method

Christoph Rosemann

DESY

November 2014
Parameter estimation

Common task

- Determine from measurements with uncertainties the best values of (physical) parameters
- Estimation is a mathematical procedure (!)
- Any parameter makes sense only within a model
- The model is encoded in the pdf of the parameters
- Wrong models deliver wrong answers!
- Uncertainties must be known: Variances and Covariances
- Distinguish between:
 - Statistical uncertainties
 - Systematic uncertainties
Parameter estimation

Fundamental properties of estimators

Estimators can be characterized as *good* or *bad*

The characterization classes are:

- **Consistency**: the true value and the estimated value are equivalent
 \[
 \lim_{n \to \infty} \hat{a} = a
 \]

- **Bias**: the expectation value is equivalent to true value
 \[
 \langle \hat{a} \rangle = a
 \]

- **Efficiency**: small variance

The inherent accuracy of an estimator is limited!
Consistency

- Parameters are estimated from limited samples
- Any sample exhibits statistical fluctuations
- For large samples, the effect of fluctuations lessens
- If the difference between the true value and the estimated value vanishes, the estimator is consistent

Formal definition

An estimator is consistent, if it tends to the true value as the number of data tends to infinity:

\[
\lim_{{n \to \infty}} \hat{a} = a
\]
For finite amounts of data the estimated parameter is unlikely to have the true value.

A good estimator has the equal chances of over- and underestimation of the true value.

Such an estimator is unbiased.

This can be expressed in terms of the expectation value of the estimator.

Formal definition

An estimator is unbiased, if its expectation value is the same as the true value:

\[\langle \hat{a} \rangle = a \]
Efficiency

- The estimated value depends on the given data sample
- The fluctuations of the sample influence the estimator
- An efficient estimator exhibits a small fluctuation or spread
- The spread is measured in terms of the variance of the estimator

Formal definition

An estimator is efficient if its variance is small.
(Without proof) There is a lower bound on the variance of an estimator!

* There are different names for this:
 - Cramér-Rao bound (or inequality), Fréchet inequality, MVB, CRLB
 - It uses the (in the simple/unbiased form) the Likelihood function \mathcal{L}:
 $$\sigma_{\hat{a}}^2 \leq \frac{1}{\langle (d\mathcal{L}/da)^2 \rangle}$$

* An estimator is efficient, if its variance is equal to the MVB
Characterization of Maximum Likelihood

Most important parameter estimation method

- Maximum Likelihood estimators are (usually) consistent
- Maximum Likelihood are biased (!) for small N
 for large N it becomes unbiased
- It is usually the optimal estimation in terms of the Minimum Variance Bound

Warning

- Maximum Likelihood is (usually) consistent, but biased!
- Maximum Likelihood estimators invariant under parameter transformations!:

\[\hat{f}(\hat{a}) = f(\hat{a}) \quad \text{e.g.} : \hat{\sigma}^2 = (\hat{\sigma})^2 \]
Bias example

Consider a symmetric pdf around a_0, let \hat{a} be an unbiased estimator

Equal chances that \hat{a} is either 10% too large or too small

- Equally possible:

 $\hat{a} = 1.1a_0$ \quad $\hat{a} = 0.9a_0$

- Now consider (non-linear) transformation $y : x \rightarrow x^2$, then

 $\hat{a}^2 = 1.21a_0^2$ \quad $\hat{a}^2 = 0.81a_0^2$

- Probability content doesn’t change, equal chances that \hat{a}^2 is 21% larger or 19% smaller than a_0^2

- In short: the pdf becomes asymmetric and therefore biased
The maximum Likelihood method

Requirements

- Data, e.g. n measurements x_i
- A model, e.g. a pdf $f(x; a)$
- The function has to be normalized for all a:

$$\int f(x; a)dx = 1$$

The formula

Maximize the product of all functions at the given measurements:

$$\mathcal{L}(\bar{x}; a) = f(x_1; a) \cdot f(x_2; a)\ldots f(x_n; a) = \prod_{i}^{n} f(x_i; a)$$

to obtain the best estimator for the parameter(s).
Maximization

Finding the maximum is straightforward

- For a single parameter a
 \[
 \frac{d\mathcal{L}(\vec{x}; a)}{da} = 0
 \]

- For multiple parameters $\vec{a} = a_1, \ldots, a_m$:
 \[
 \frac{\partial \mathcal{L}(\vec{a})}{\partial a_k} = 0 \quad \forall k = 1, \ldots, m
 \]
Log Likelihood

Different formulation

- Often: too much data to calculate L accurately
- Take logarithm of $L \implies \ln L$
- Use negative value in order to use only one numerical routine for minimization (like for χ^2 minimization)

Formula

$$\ell(\tilde{x}; a) = -\ln L(\tilde{x}; a)$$
Important reminder:

- One needs to know the underlying pdf
- Wrong pdf will yield a wrong or non-sensical result
- Always check the result:
 - Do the found parameters describe the data (at all!?)
 - Parameter at boundary of parameter space?
 This is always trouble
- There is no consistency check inherent to the method
Consider (once again) a radioactive source; \(n \) measurements are taken under the same conditions, counted are the number of decays \(r_i \) in a given, constant time interval. What's the mean number of decays?

- **Naive (?):** Simply take the arithmetic mean

\[
\mu = \frac{1}{n} \sum_{i}^{n} r_i
\]

- **Wrong (!):** Take the weighted mean

- **Maximum Likelihood**
Estimation via ML

\(r_i \) follows a Poisson distribution:

\[
P(r_i; \mu) = \frac{\mu^{r_i} e^{-\mu}}{r_i!}
\]

The Likelihood function is therefore

\[
\mathcal{L}(\mu) = \prod_{i} P(r_i; \mu) = \prod_{i} \frac{\mu^{r_i} e^{-\mu}}{r_i!}
\]

Negative logarithm:

\[
\ell(\mu) = -\ln \mathcal{L}(\mu) = - \sum_{i} \ln \frac{\mu^{r_i} e^{-\mu}}{r_i!} = \sum_{i} (-r_i \ln \mu + \mu + \ln r_i!)
\]
Likelihood estimation of mean III

Estimation via ML

Differentiate for the parameter μ:

$$\frac{d}{d\mu} \ell(\mu) = \frac{d}{d\mu} \sum_{i}^{n} (-r_i \ln \mu + \mu + \ln r_i!) = \sum_{i}^{n} \left(-r_i \frac{1}{\mu} + 1 \right)$$

set to zero:

$$0 = \sum_{i}^{n} \left(-r_i \frac{1}{\mu} + 1 \right) = n - \frac{1}{\mu} \sum_{i}^{n} r_i$$

$$\implies \mu = \frac{1}{n} \sum_{i}^{n} r_i$$

This yields the same result as the naive expectation.
What is the uncertainty of the estimation?

Consider the following statements (without proof):
- In the limit of $n \to \infty$ the likelihood function L is approximately Gaussian,
- the mean μ of this distribution is the true mean value of the parameter and
- the variance goes to zero $\sigma \to 0$

(we will formalize this a little later.)

Intuitive explanation:
If you sample from a certain population that follows a certain distribution, the best estimator for a parameter is itself a random variable.

Now evolve the likelihood function around the best estimator.
Series evolution of the likelihood function

With

\[\frac{d}{da} \ell(a) \bigg|_{a=\hat{a}} = 0 \]

this is

\[\ell(a) = \ell(\hat{a}) + \frac{1}{2} (a - \hat{a})^2 \frac{d^2 \ell(a)}{da^2} \bigg|_{a=\hat{a}} + \ldots \]

For the likelihood function \(\mathcal{L} \) this is

\[\mathcal{L} \approx \text{const} \cdot e^{-\frac{1}{2} \left\{ (a-\hat{a})^2 \frac{d^2 \ell(a)}{da^2} \bigg|_{\hat{a}} \right\}} \]

From this expression the variance can be identified:

\[\sigma_a^2 = \left(\frac{d^2 \ell(a)}{da^2} \bigg|_{\hat{a}} \right)^{-1} \]
What is the uncertainty of the estimation of the mean number of decays?

The best estimator was the arithmetic mean:

\[
\mu = \frac{1}{n} \sum_{i} r_i
\]

Now calculate the variance of \(\mu \), take the second derivative at \(\mu = \hat{\mu} \):

\[
\left. \frac{d^2 \ell(\mu)}{d\mu^2} \right|_{\mu=\hat{\mu}} = \frac{1}{\hat{\mu}} \sum_{i} r_i = \frac{1}{\hat{\mu}^2} \hat{\mu} n = \frac{n}{\hat{\mu}} = \frac{1}{\sigma^2_{\mu}}
\]

\[\implies \sigma^2_{\mu} = \frac{\hat{\mu}}{n}\]

If the true value \(\mu \) is not known, then the variance is calculated from the best estimation.
Numerical example

A set of rate measurements at fixed intervals of a radioactive source yielded

\[r_i = [1, 1, 5, 4, 2, 0, 3, 2, 4, 1, 2, 1, 0, 1, 1, 2, 1] \]

Assume a Poisson distribution

Better check: histogram the values and compare it with a Poisson. The estimated, best value for the mean is \(\mu = \frac{1}{n} \sum_i^n r_i = 1.78 \) the estimated uncertainty from this is \(\sigma_\mu = \sqrt{\mu/n} = 0.31 \)

Looks OK!
Often the likelihood function $\ell = -\ln L$ can be approximated by a parabola in the direct vicinity of the minimum:

$$\ell(\mu) \approx \ell(\hat{\mu}) + \frac{1}{2} \frac{(\mu - \hat{\mu})^2}{\sigma^2_\mu}$$

From $\mu = \hat{\mu} + \sigma_\mu$ can be then deduced, that the standard deviation can be determined implicitly from the points of intersection of the parabola with the constant

$$\ell_{\text{min}} + \frac{1}{2}$$
In almost all cases, the second derivative of $\ell(a)$ can’t be calculated (accurately) – how is the uncertainty determined then?

The relation still holds:

$$\ell(\hat{\mu} \pm \sigma_\mu) = \ell_{\text{min}} + \frac{1}{2}$$

- In the parabolic approximation is $\mathcal{L}(a) = e^{-\ell(a)}$ a Gaussian distribution around the true value $\hat{\mu}$
- What if the approximation is not very good?
Uncertainty estimation: general solution

If the symmetric Gauss function isn’t a good description, asymmetric errors σ_l and σ_r can be derived from

$$\ell(\hat{\mu} - \sigma_l) = \ell(\hat{\mu} + \sigma_r) = \ell_{\text{min}} + \frac{1}{2}$$

- In principle it’s always possible to transform the parameter a with $b(a)$, so that $\ell(b(a))$ becomes parabolic.
- One doesn’t even need to know the transformation, the probability content in an interval is always conserved!

\Rightarrow This interval always contains the central 68% probability.

The result can then be written as

$$\mu_{-\sigma_l}^{+\sigma_r}$$
Continue numerical example

- Estimated mean is $\mu = \frac{1}{n} \sum_{i}^{n} r_i = 1.78$
- In the parabolic approximation the uncertainty is $\sigma_{\mu} = \sqrt{\mu/n} = 0.31$
- For finding the true parameter uncertainty, solve the actual Likelihood function for the intersection points with $\ell_{\text{min}} + \frac{1}{2}$:

The result is either

$$\mu = 1.78 \pm 0.31$$

or

$$\mu = 1.78^{+0.33}_{-0.30}$$
The intervals that contain k standard deviations can be determined likewise:

$$\ell(\hat{a} - k\sigma_I) = \ell(\hat{a} + k\sigma_r) = \ell_{\text{min}} + \frac{k^2}{2}$$

The amount of probability is the same as for the Gaussian distribution.

E.g. 2σ are in $\ell_{\text{min}} + 2$ and corresponds to 95% probability.

3σ are defined by $\ell_{\text{min}} + \frac{9}{2}$, corresponding to 99%, etc.
Binned Likelihood

The task

- \(J \) number of bins, each with \(n_j \) entries
- Fit pdf \(f(x; a) \) to the number of entries in each bin
- Obtain the best value for \(a \) using the data

Consider the number of bin entries \(n_j \) as random variables

- Underlying pdf is Poisson with mean value \(\mu_j \):

\[
P(n_j; \mu_j) = \frac{\mu_j^{n_j} e^{-\mu_j}}{n_j!}
\]

- The mean value \(\mu_j \) depends on the fit parameter \(a \): \(\mu_j(a) \)
- The Poissonian describes the distribution of entries in each bin
How to obtain $\mu_j(a)$?

- Get the probability "amount" by integrating the pdf $f(x; a)$ for the bin j

$$p_j = \int_{bin_j} f(x; a) \, dx$$

- This can be approximated (mean value theorem of integration), with x_c the bin center position and Δx the interval width

$$p_j \approx f(x_c; a) \Delta x$$

- The expected mean number of entries is obtained by multiplying with the total number of entries n, so

$$\mu_j(a) = np_j \approx nf(x_c; a) \Delta x$$
Binned Likelihood function

Master formula for binned Likelihood

\[F(a) = - \sum_{j}^{J} \ln \left(\frac{\mu_j^{n_j} e^{-\mu_j}}{n_j!} \right) = - \sum_{j}^{J} n_j \ln \mu_j + \sum_{j}^{J} \mu_j + \sum_{j}^{J} \ln(n_j!) \]

- This is the formula to use for Poisson distributed variables (since it’s unbiased)
- It’s also valid if the \(n_j \) are small or even zero (!)
- The last term doesn’t play any role in the minimization, since it’s constant for given data
- It’s directly related to the binned \(\chi^2 \) formula (not shown here)
Multi-dimensional parameters

The generalization to more than parameter $\vec{a} = a_1, \ldots, a_m$ leads to the Likelihood function for n measurements:

$$\mathcal{L}(\vec{a}) = \prod_{i}^{n} f(x_i; \vec{a})$$

- The minimization procedure is the same
- What’s with the uncertainties of the parameters? And Correlations? Answer (as so often): evolve the Likelihood function in a Taylor series
Taylor series evolution of $\ell(\vec{a})$

Evolve $\ell(\vec{a}) = -\ln \mathcal{L}(\vec{a})$ around the true values $\hat{\vec{a}}$:

$$
\ell(\vec{a}) = \ell(\hat{\vec{a}}) + \frac{1}{2} \sum_{i} \sum_{j} (a_i - \hat{a}_i)(a_j - \hat{a}_j) \frac{\partial^2 \ell(\vec{a})}{\partial a_i \partial a_j} + \ldots
$$

$$
= \ell(\hat{\vec{a}}) + \frac{1}{2} \sum_{i} \sum_{j} (a_i - \hat{a}_i)(a_j - \hat{a}_j) G_{ij} + \ldots
$$

The Likelihood function will become Gaussian for $n \to \infty$. Comparing

$$
\mathcal{L}(\vec{a}) = e^{-\ell(\vec{a})}
$$

yields the identification of the inverse covariance matrix

$$
G = V^{-1}
$$

with the Hesse Matrix $G_{ij} = \frac{\partial^2 \ell(\vec{a})}{\partial^2 \vec{a}}$
Probability contents

Also in the case of more than one dimension all results can be taken from the integrated Gaussian distribution.

- The 1σ contour is defined by $\ell(\hat{a}) + \frac{1}{2}$
- The 2σ contour is defined by $\ell(\hat{a}) + 2$
- etc.

The probability contents can be calculated with integrating the Gauss function.

Likelihood for two parameters

- The probability to find a pair within the 1σ contour is 39%
- In the parabolic approximation the contour is an ellipsis in the a_1, a_2 plane
- In the general case the curves are asymmetric but contain the same amount of probability
Uncertainty of parameters

The uncertainty of a parameter is determined by minimizing w.r.t. all other parameters. The minimum of this function ℓ' serves as reference for ℓ_{min}.

Example:

- This is the 1σ contour for two parameters a, b
- Parabolic approximation doesn’t fit
- Still within contour area with 39% probability

Blue curve: to find uncertainty on a, $\ell(a, b)$ must be minimized w.r.t b for fixed value of a.
Parameter Estimation is a well defined mathematical procedure
- Presented method: Maximum Likelihood
- Uncertainties and Covariances are also extract-able
- No consistency check method – check plausibility of results
- Even more carefully check the pdfs/the model
- The results can still be ill-defined: crap in, crap out