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— Fundamental High-Field Science . . . - 1
Free Electron Lasers in X-Ray Band

e New insights into natural and life sciences
e May possibly allow also for high-field science applications:

— Envisage focusing down to diffraction limit, o > A.,, ~ 0.1 nm
= Very strong electric fields and accelerations in reach,

P 17 V P 172 /0.1 nm
E = poc—— = 1.1-10 —
wo? m \1TW o
e& og M P 172 /0.1 nm
a = =1.9-107 —
M s2 \1TW o

much larger than obtainable with optical laser of same peak power P
= X-ray FELs may be employed possibly as vacuum boilers
[Chen,Pellegrini '98; AR '01; . . . ]
= X-ray FELs may be employed possibly as violent accelerators

[Chen, Tajima '99]
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Outline:

1. Boiling the Vacuum with Lasers
2. Violent Acceleration — Unruh Effect

3. Conclusions
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1. Boiling the Vacuum with Lasers

e Spontaneous pair creation from vacuum, induced by an external
field, was first proposed in the context of eTe™ pair creation in static,
Spatia"y uniform electric field [Sauter (1931); Heisenberg,Euler (1936); Schwinger (1951); . . . ]

One of the most intriguing non-linear phenomena in quantum field theory

— Theoretically important: beyond perturbation theory
— Eventual experimental observation: probes theory in domain of very
strong fields

e Mechanism applied to many problems in contemporary physics:

— Quantum evaporation of black holes [Hawking (1975); Damour,Ruffini (1976); . . .|
— ete™ creation in vicinity of charged black holes [Damour,Ruffini “75; . . . |
— Particle production in early universe [Parker (1969); . . . ]
— Particle production in hadronic collisions [Casher, Neuberger, Nussinov (1979); . . . |
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e Vacuum in QED unstable in a static, spatially uniform electric back-
ground field:

= Sparks with spontaneous emission of eTe™ pairs
— Observable rate requires extraordinary strong electric field strength, of

order
2 2 3
M C mZc
Ee=—=—2-=13-10"° —
c e X eh m
[Sauter (1931); Heisenberg, Euler (1936)]
such that .
work of field rest energy
on unit charge e ~ of ete™ pair

over Compton wavelength X,

eX. &, — Me ¢
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positive
o For¢& < gc: [Schwinger (1951)] levels
.

— Pair creation: tunneling

— Rate exponentially suppressed: - P;.}qil,ve
d4 'n,e_|_e_ SC mz CS
A3z dt P17 ¢ P P

e No human-made macroscopic static fields of order £. accessible
e In early 1970's:

— Critical fields in nuclear collisions with 7; + 75 ~ 1/a?
[Zel'dovich, Popov (1971); Miiller, Rafelski, Greiner (1972)]
— Critical fields at focus' or at overlap of crossed! intense optical
lasers? [Bunkin, Tugov (1969); Brezin, ltzykson (1970); Popov (1971);...; Fried et al. (2001)]

1

INo pair creation in plane wave.
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e Cleanest experimental setup: Two crossed laser beams = standing
electromagnetic wave = pair creation in the antinode,

E(t) = (0,0, & cos(wt)) , B(t) = (0,0,0), N\ = 20°

e Assume that for realistic lasers

m?2 ¢ 5
: hw <K mec
eh

= Rate of spontaneous eTe™ creation calculable in semi-classical manner
[Brezin,ltzykson (1970); Popov (1971);...]

EKE =

e [ he ratio

hw hw & mecw _ &,

nzegke:mecﬁg_ e &£

independent of /7 and plays role of an adiabaticity parameter
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e The laser frequency w enters in the semi-classical formulae only through
the adiabaticity parameter 1. For limiting cases:

_ &} : 1

w:d4ne+e_N C ...eXp|: 7Tg 9 . ?7<< )

T A3z dt _471'3Xe4 Z m02°°'n_2n > 1,
n>2 hew

n < 1: Adiabatic high-field, low-frequency limit agrees with non-perturbative
Schwinger result for a static, spatially uniform field.

n > 1: Non-adiabatic low-field, high-frequency limit resembles perturbative
result: corresponds to > n-th order perturbation theory, n being
the minimum number of quanta required to create an ete™ pair:

n>2mec?/(hw) > 1
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e Non-perturbative Schwinger

pair creation from vacuum P+ e
as er posmron N2, N3
already observed at SLAC o- Y/I M
. pulse EC37 —-C
experiment E-1447 / Scattered ZECAtGGGeVe
[Burke et al. (1997); Melissinos (1998)] dump magnet

[Burke et al. (1997)]

< ete™ pair production in col-
lision of 46.6 GeV /c electrons
with TW optical laser pulses
= in the rest frame of the

no of positrons / no of Compton scatiers

Incident electrons 07 e
g g 5 * 1017 V/m’ /]7 ~J 3 m-m;

= Perturbative, multi-photon 0l . _
regime, but not far away from =1 at laser focus

Schwinger regime
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e Minimum necessary power for observable effect: [AR (2001)]
| | A | g | At ” Phin | Smin | Emin |
Focused XFEL: 0.lnm | 0lnm | 01ps || 25TW | 7.8-10" w/m? | 1.7-10"7 V/m
(~ “aim") 0lnm | 0lnm | 01fs || 45TW | 1.4-1032w/m? | 2.3.1017 v/m
Focused XFEL: 0.lnm | 20nm | 01ps || 38Pw | 3.0-1031 w/m? | 1.1-101" v/m
(~ “state-of-art”) 0.1 nm 20 nm 0.1fs 55 PW 4.3-1031 W/m2 1.3 - 1017 V/m
Focused optical laser: 1 um 1 pum 10 ps 49 EW 1.6 - 10°7 W/m2 7.7 1010 V/m
diffraction limit 1 pum 1pum | 1006 || ssEW | 1.8-1031 w/m? | 8.3.1016 v/m

e Need tens of EW optical laser or TW X-ray FEL

< Power densities and electric fiels that can be reached with presently
available techniques far too small for observable effect (cf. extra table)

e Conceivable improvements in XFEL technology:
— X-ray optics, in order to come closer to diffraction limit o > A

— Energy extraction, in order to increase power

e Hard to predict whether this goal will be reached before the
commissioning of EW-ZW optical lasers ( > 20207).
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Laser parameter

Optical XFEL
focus: design focus: focus:
diffraction limit SASE 5 state-of-art aim
wavelength A 1 pum 0.4 nm 0.4 nm 0.15 nm
photon energy hw = % 1.2 eV 3.1 keV 3.1 keV 8.3 keV
max. power P 1 PW 110 GW 1.1 GW 5TW
spot radius (rms) o 1 pum 26 pum 21 nm 0.15 nm
coherent spike length (rms) At 500 fs + 20 ps 0.04 fs 0.04 fs 0.08 ps
derived quantities
max. power density =L, 31020 W 5-1019 W | g.1023 W | 7.7031 W
TOo m m m m
max. electric field E = \/:“0 cS 4.10%4 % 1.1011 % 2.1013 % 2.1017 %
max. electric field/critical field — £/&c 3.10"4 1-1077 1.107° 0.1
photon energy/e-rest energy hw2 2.1076 0.006 0.006 0.02
mecC

Adiabaticity parameter n = e?,'c;re 9.1073 6104 5102 0.1
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e Minimum necessary power for observable effect: [AR (2001)]
| | A | g | At ” Phin | Smin | Emin |
Focused XFEL: 0.lnm | 0lnm | 01ps || 25TW | 7.8-10" w/m? | 1.7-10"7 V/m
(~ “aim") 0lnm | 0lnm | 01fs || 45TW | 1.4-1032w/m? | 2.3.1017 v/m
Focused XFEL: 0.lnm | 20nm | 01ps || 38Pw | 3.0-1031 w/m? | 1.1-101" v/m
(~ “state-of-art”) 0.1 nm 20 nm 0.1fs 55 PW 4.3-1031 W/m2 1.3 - 1017 V/m
Focused optical laser: 1 um 1 pum 10 ps 49 EW 1.6 - 10°7 W/m2 7.7 1010 V/m
diffraction limit 1 pum 1pum | 1006 || ssEW | 1.8-1031 w/m? | 8.3.1016 v/m

e Need tens of EW optical laser or TW X-ray FEL

< Power densities and electric fiels that can be reached with presently
available techniques far too small for observable effect (cf. extra table)

e Conceivable improvements in XFEL technology:
— X-ray optics, in order to come closer to diffraction limit o > A

— Energy extraction, in order to increase power

e Hard to predict whether this goal will be reached before the
commissioning of EW-ZW optical lasers ( > 20207).
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Geometrical optics: Focusing limit

/DESY

o f L
il
D 5
Abhé equation for the resolution limit Parameters
&= spot diameter (Airy disc)
s_L224_ 1224, A S i iaveiengn
. - MA = numerical aperture
NA LELILZ2 D n = refractive index (~1 for =-rays)
FEL sources:
Beams are highly collimated = fisoptics-sample distance (~10-100 crm)
= Dis small {(~mm) even at large distance
F=10cm, D=1mm: A= 10nm = &, ~ 24 um B. Lengeler, JSR B, 1155(99);
A= 1nm = &, ~ 240 nm FWWHW Of gaussian beam
A=01nm = &, ~ 24nm =244 =075
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e Minimum necessary power for observable effect: [AR (2001)]
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Focused optical laser: 1 um 1 pum 10 ps 49 EW 1.6 - 10°7 W/m2 7.7 1010 V/m
diffraction limit 1 pum 1pum | 1006 || ssEW | 1.8-1031 w/m? | 8.3.1016 v/m

e Need tens of EW optical laser or TW X-ray FEL

< Power densities and electric fiels that can be reached with presently
available techniques far too small for observable effect (cf. extra table)

e Conceivable improvements in XFEL technology:
— X-ray optics, in order to come closer to diffraction limit o > A

— Energy extraction, in order to increase power

e Hard to predict whether this goal will be reached before the
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2. Violent Acceleration — Unruh Effect

e \What is the Unruh effect? [unrunh (1976)]

— An accelerated observers sees the

vacuum fluctuations as a heat
bath,

ha

2mck

_921 a
TUnruh — =4-10 K (

1 m/s2

— Similar situation for an observer
in the vicinity of a black hole.

h Kk
27k

—8
THaWking - =6-10 K (

e Why interesting?

)

EVENT HORIZONS: From Black Holes to Acceleration

Event Horizon
Stationary
Observer

Black Hole

Hawking j

Radiation

Event Horizon

Accelerating
Observer
in Vacuum
e >

Unruh 3
Radiation

A stationary observer outside
the black hole would see the
thermal Hawking radiation.

— Unruh radiation similar to Hawking radiation
— Possibility to study the physics of black holes in the laboratory

A. Ringwald/DESY

An accelerating observer in vacuum
would see a similar Hawking-like
radiation called Unruh radiation.

[P. Chen/SLAC]

[Hawking (1975)]
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e Experimental detection possibilities discussed: [Rosu (1996)]
— Hydrodynamical analogon to Schwarzschild-metric [Unruh (1981)]
— Depolarisation of electrons in storage rings [Bell, Leinaas (1983--87)]

T =~ 1200 K at LEP/CERN; but: circular vs. linear Unruh effect? Thermal interpretation?
— Crystall-“channeling” [Darbinian et al. (1989)]
a ~ 1031 m/s2 for ultra-relativistic particles, v ~ 108; bremsstrahlungs background problematic
— Centripetal acceleration [Darbinian et al. (1990)]

need B ~ 5 - 10" G, v~ 10?2, in order to overcome synchrotron background

— Linear acceleration at the focus of an ultra-intensive laser
[Chen, Tajima (1999)]
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e Accelerate electron in standing laser
wave, a ~ 10%% m/s?

— Modified zero-point fluctuations

4R (a/c)?
ned Y sinh?(ar/2c)

(By(~7/2)Bj(+7/2)) =

= Additional jittering in the electron
movement

= Modified emitted radiation, in
addition to classical Larmor radiation
x tilted thermal spectrum
x characteristic angular dependence

A. Ringwald/DESY
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e

\ B Accelerating /
Electron
Background
! <" Radiation
Unruh
Radiation
A~
= /——-_______ Folarization
Filter
Detector

Schematic Diagram for Detecting Unruh Radiation

[P. Chen/SLAC]
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3. Conclusions

e Have considered the possibility to study non-perturbative spontaneous
ete™ pair creation from vacuum for the first time in the laboratory

e Still considerable improvement in X-ray FEL technology over presently
considered design parameters necessary

e Although achievement of such demanding goal slow and laborious,
rewards that may be gained in this unique regime of high power
densities are extraordinary and well worth the effort
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