SM*A*S*H

Standard Model * Axion * See-saw * Hidden scalar inflation

Andreas Ringwald (DESY)

12th Patras Workshop on Axions, WIMPs and WISPs Jeju Island, South Korea 20 – 24 June 2016

[Guillermo Ballesteros, Javier Redondo, AR, Carlos Tamarit, arXiv:1606.nnnn]

Discovery of Higgs boson marks completion of SM particle content

[wikipedia]

- Discovery of Higgs boson marks completion of SM particle content
- Observations in particle physics, astrophysics and cosmology point to existence of BSM particles
 - Inflation
 - Baryon asymmetry
 - Dark matter
 - 4. Neutrino flavour oscillations
 - 5. Non-observation of strong CP violation

[wikipedia]

- Discovery of Higgs boson marks completion of SM particle content
- Observations in particle physics, astrophysics and cosmology point to existence of BSM particles
 - Inflation
 - 2. Baryon asymmetry
 - 3. Dark matter
 - 4. Neutrino flavour oscillations
 - 5. Non-observation of strong CP violation

Problems 1 4 solved in AMSM: [M. Shaposhnikov, *Phil. Trans. R. Soc. A* **373** (2014) 0038]

$$\hbox{Minimal SM extension by light right-} \quad \mathcal{L} \supset - \left[F_{ij} L_i \epsilon H N_j + \frac{1}{2} M_{ij} N_i N_j + h.c. \right]$$
 handed singlet neutrinos [Asaka, Shaposhnikov `05]

126 GeV

Higgs

spin 0

- Discovery of Higgs boson marks completion of SM particle content
- Observations in particle physics, astrophysics and cosmology point to existence of BSM particles
 - Inflation
 - Baryon asymmetry
 - Dark matter
 - Neutrino flavour oscillations
 - Non-observation of strong CP violation

[M. Shaposhnikov, *Phil. Trans. R. Soc. A* **373** (2014) 0038]

- > Problems 1.-4, solved in νMSM :
 - Minimal SM extension by light righthanded singlet neutrinos [Asaka, Shaposhnikov '05]
 - Allowing for (very large, $\xi_H \sim 10^5 \sqrt{\lambda_H}$) non-minimally coupling of Higgs to Ricci [Bezrukov, Shaposhnikov '08] scalar

$$S \supset -\int d^4x \sqrt{-g} \,\xi_H \,H^\dagger H \,R$$

Higgs

spin 0

- > Success of inflation in ν MSM threatened:
 - For $\xi_H \sim 10^4$, perturbative unitarity breaks down during inflation or, at the very least, during reheating, rendering predictions unreliable

[Barbon, Espinosa 09; Burgess et al. 09; Kehagias et al. 14]

- > Success of inflation in ν MSM threatened:
 - For $\xi_H \sim 10^4$, perturbative unitarity breaks down during inflation or, at the very least, during reheating, rendering predictions unreliable

[Barbon, Espinosa 09; Burgess et al. 09; Kehagias et al. 14]

• Higgs inflation cannot be realised if Higgs quartic coupling λ_H runs negative 10 at large (Planckian) field values

[Degrassi et al. 12;...; Bezrukov et al. 12; Bednyakov et al. 15]

[Ballesteros, Redondo, AR, Tamarit, arXiv:1606.nnnn]

- > Success of inflation in ν MSM threatened:
 - For $\xi_H \sim 10^4$, perturbative unitarity breaks down during inflation or, at the very least, during reheating, rendering predictions unreliable

[Barbon, Espinosa 09; Burgess et al. 09; Kehagias et al. 14]

• Higgs inflation cannot be realised if Higgs quartic coupling λ_H runs negative 10 at large (Planckian) field values

[Degrassi et al. 12;..; Bezrukov et al. 12; Bednyakov et al. 15]

Can be avoided by introducing hidden complex scalar charged under new global U(1) symmetry that is spontaneously broken

[Ballesteros, Redondo, AR, Tamarit, arXiv:1606.nnnn]

$$V(H,\sigma) = \lambda_H \left(H^{\dagger}H - \frac{v^2}{2} \right)^2 + \lambda_{\sigma} \left(|\sigma|^2 - \frac{v_{\sigma}^2}{2} \right)^2 + 2\lambda_{H\sigma} \left(H^{\dagger}H - \frac{v^2}{2} \right) \left(|\sigma|^2 - \frac{v_{\sigma}^2}{2} \right)$$

$$V(H,\sigma) = \lambda_H \left(H^{\dagger}H - \frac{v^2}{2} \right)^2 + \lambda_{\sigma} \left(|\sigma|^2 - \frac{v_{\sigma}^2}{2} \right)^2 + 2\lambda_{H\sigma} \left(H^{\dagger}H - \frac{v^2}{2} \right) \left(|\sigma|^2 - \frac{v_{\sigma}^2}{2} \right)$$

- > Role of the inflaton can now be played by $|\sigma|=\rho/\sqrt{2}$ or a mixture with the modulus of the Higgs
 - Required non-minimal coupling $\xi_\sigma \sim 10^5 \sqrt{\lambda_\sigma}$ to fit amplitude of CMB temperature fluctuations can be of order unity, for $\lambda_\sigma \sim 10^{-10}$, raising scale of unitarity violation to M_P

$$V(H,\sigma) = \lambda_H \left(H^{\dagger}H - \frac{v^2}{2} \right)^2 + \lambda_{\sigma} \left(|\sigma|^2 - \frac{v_{\sigma}^2}{2} \right)^2 + 2\lambda_{H\sigma} \left(H^{\dagger}H - \frac{v^2}{2} \right) \left(|\sigma|^2 - \frac{v_{\sigma}^2}{2} \right)$$

- > Role of the inflaton can now be played by $|\sigma|=\rho/\sqrt{2}$ or a mixture with the modulus of the Higgs
 - Required non-minimal coupling $\xi_\sigma \sim 10^5 \sqrt{\lambda_\sigma}$ to fit amplitude of CMB temperature fluctuations can be of order unity, for $\lambda_\sigma \sim 10^{-10}$, raising scale of unitarity violation to M_P
- Hidden scalar stabilizes scalar potential through Higgs portal coupling
 - Gives extra positive contribution to beta function of Higgs quartic

[Gonderinger et al. 10]

• Generates tree-level threshold effect on Higgs quartic coupling that can make potential absolutely stable if $v_{\sigma} < \Lambda_I \sim 10^{11}\,\mathrm{GeV}$

[Lebedev 12; Elias-Miro et al. 12]

$$V(H,\sigma) = \lambda_H \left(H^{\dagger}H - \frac{v^2}{2} \right)^2 + \lambda_{\sigma} \left(|\sigma|^2 - \frac{v_{\sigma}^2}{2} \right)^2 + 2\lambda_{H\sigma} \left(H^{\dagger}H - \frac{v^2}{2} \right) \left(|\sigma|^2 - \frac{v_{\sigma}^2}{2} \right)$$

- > Role of the inflaton can now be played by $|\sigma|=\rho/\sqrt{2}$ or a mixture with the modulus of the Higgs
 - Required non-minimal coupling $\xi_\sigma \sim 10^5 \sqrt{\lambda_\sigma}$ to fit amplitude of CMB temperature fluctuations can be of order unity, for $\lambda_\sigma \sim 10^{-10}$, raising scale of unitarity violation to M_P
- Hidden scalar stabilizes scalar potential through Higgs portal coupling
 - Gives extra positive contribution to beta function of Higgs quartic
 [Gonderinger et al. 10]
 - Generates tree-level threshold effect on Higgs quartic coupling that can make potential absolutely stable if $v_{\sigma} < \Lambda_I \sim 10^{11}\,\mathrm{GeV}$

[Lebedev 12; Elias-Miro et al. 12]

- Angular scalar excitation:
 - NG boson J Andreas Ringwald SM A*S*H*, 12th Patras Workshop on Axions,

Add vector-like quark with chiral charge assignment under hidden U(1), rendering the latter to a Peccei-Quinn symmetry as in KSVZ axion model

$$\mathcal{L} \supset -\left[Y_{uij}q_i\epsilon Hu_j + Y_{dij}q_iH^{\dagger}d_j + y\,\tilde{Q}\sigma Q + y_{Q_{d}i}\sigma Qd_i + h.c.\right],$$

electron

q	u		-	•	
1/2	-1/2	-1/2	-1/2	-1/2	1

Add vector-like quark with chiral charge assignment under hidden U(1), rendering the latter to a Peccei-Quinn symmetry as in KSVZ axion model

$$\mathcal{L} \supset -\left[Y_{uij}q_i\epsilon Hu_j + Y_{dij}q_iH^{\dagger}d_j + y\,\tilde{Q}\sigma Q + y_{Q_{d}i}\sigma Qd_i + h.c.\right],$$

- > VEV $v_{\sigma} \sim 10^{11} \, {\rm GeV}$:
 - gives also mass to Q

q	u	d		$ ilde{Q}$	
1/2	-1/2	-1/2	-1/2	-1/2	1

Add vector-like quark with chiral charge assignment under hidden U(1), rendering the latter to a Peccei-Quinn symmetry as in KSVZ axion model

$$\mathcal{L} \supset -\left[Y_{uij}q_i\epsilon Hu_j + Y_{dij}q_iH^{\dagger}d_j + y\,\tilde{Q}\sigma Q + y_{Q_{d}i}\sigma Qd_i + h.c.\right],$$

- > VEV $v_{\sigma} \sim 10^{11} \, {\rm GeV}$:
 - gives also mass to Q
- Angular scalar excitation:
 - NG boson A/J has coupling $\mathcal{L}_A \supset -\frac{\alpha_s}{8\pi} \, \frac{A}{v_-} \, G^c_{\mu\nu} \tilde{G}^{c,\mu\nu}$
 - Strong CP problem solved!
 - A/J decay constant: $f_A = v_\sigma$
 - Mass $m_A \sim f_\pi m_\pi/f_A$

q	u	d	Q	$ ilde{Q}$	σ
1/2	-1/2	-1/2	-1/2	-1/2	1

 $\sim 10^9\,{
m GeV}$

126 GeV

Η

spin 0

Y

weak

weak

Add vector-like quark with chiral charge assignment under hidden U(1), rendering the latter to a Peccei-Quinn symmetry as in KSVZ axion model

$$\mathcal{L} \supset -\left[Y_{uij}q_i\epsilon Hu_j + Y_{dij}q_iH^{\dagger}d_j + y\,\tilde{Q}\sigma Q + y_{Q_{d}i}\sigma Qd_i + h.c.\right],$$

- > VEV $v_{\sigma} \sim 10^{11} \, {\rm GeV}$:
 - gives also mass to Q
- Angular scalar excitation:
 - NG boson A/J has coupling $\mathcal{L}_A \supset -\frac{\alpha_s}{8\pi}\,\frac{A}{v_{\tau}}\,G^c_{\mu\nu}\tilde{G}^{c,\mu\nu}$
 - Strong CP problem solved!
 - A/J decay constant: $f_A = v_\sigma$
 - Mass $m_A \sim f_\pi m_\pi/f_A$
- Axion cold DM plus sterile neutrino warm DM

q	u	d	Q	$ ilde{Q}$	σ
1/2	-1/2	-1/2	-1/2	-1/2	$\boxed{1}$

three generations

weak

Unify PQ U(1) symmetry with lepton symmetry: give also the SM leptons and the right-handed neutrinos PQ charges [Dias et al. `14]

$$\mathcal{L} \supset -\left[Y_{uij}q_{i}\epsilon H u_{j} + Y_{dij}q_{i}H^{\dagger}d_{j} + G_{ij}L_{i}H^{\dagger}E_{j} + F_{ij}L_{i}\epsilon H N_{j} + \frac{1}{2}Y_{ij}\sigma N_{i}N_{j}\right] + y\tilde{Q}\sigma Q + y_{Qd}{}_{i}\sigma Q d_{i} + h.c.$$

q	u						$ ilde{Q}$	
1/2	-1/2	-1/2	1/2	-1/2	-1/2	-1/2	-1/2	1

Unify PQ U(1) symmetry with lepton symmetry: give also the SM leptons and the right-handed neutrinos PQ charges [Dias et al. `14]

$$\mathcal{L} \supset -\left[Y_{uij}q_{i}\epsilon Hu_{j} + Y_{dij}q_{i}H^{\dagger}d_{j} + G_{ij}L_{i}H^{\dagger}E_{j} + F_{ij}L_{i}\epsilon HN_{j} + \frac{1}{2}Y_{ij}\sigma N_{i}N_{j} + y\,\tilde{Q}\sigma Q + y_{Qd}{}_{i}\sigma Qd_{i} + h.c.\right]$$

- > VEV $v_{\sigma} \sim 10^{11} \, {\rm GeV}$:
 - Determines Majorana masses
 - Explains smallness of active neutrino masses by see-saw relation

$$m_{\nu} = 0.04 \,\text{eV} \left(\frac{10^{11} \,\text{GeV}}{v_{\sigma}}\right) \left(\frac{-F \, Y^{-1} \, F^{T}}{10^{-4}}\right)$$

Unify PQ U(1) symmetry with lepton symmetry: give also the SM leptons and the right-handed neutrinos PQ charges [Dias et al. `14]

$$\mathcal{L} \supset -\left[Y_{uij}q_{i}\epsilon Hu_{j} + Y_{dij}q_{i}H^{\dagger}d_{j} + G_{ij}L_{i}H^{\dagger}E_{j} + F_{ij}L_{i}\epsilon HN_{j} + \frac{1}{2}Y_{ij}\sigma N_{i}N_{j} + y\tilde{Q}\sigma Q + y_{Qd_{i}}\sigma Qd_{i} + h.c.\right]$$

$$\mathbf{SM*A*S*H}$$

- > VEV $v_{\sigma} \sim 10^{11} \, {\rm GeV}$:
 - Determines Majorana masses
 - Explains smallness of active neutrino masses by see-saw relation

$$m_{\nu} = 0.04 \,\mathrm{eV} \left(\frac{10^{11} \,\mathrm{GeV}}{v_{\sigma}}\right) \left(\frac{-F \, Y^{-1} \, F^{T}}{10^{-4}}\right)_{\mathrm{name-QQ}}^{\mathrm{name-QOS}} \, \mathrm{QQ}^{\mathrm{name-QOS}}$$

SM * Axion * See-saw * Hidden scalar inflation

[Ballesteros, Redondo, AR, Tamarit, arXiv:1606.????]

 $\sim 10^9\,{
m GeV}$

126 GeV

spin 0

weak

three generations of matter (fermions) spin 1/2 Ш mass-2.4 MeV 1.27 GeV 173.2 GeV charge → u 4.8 MeV 4.2 GeV Q down photon 91.2 GeV 0 bosons (forces) spin 1 weak 1.777 GeV 0.511 MeV 105.7 MeV 80.4 GeV leptons

Unify PQ U(1) symmetry with lepton symmetry: give also the SM leptons and the right-handed neutrinos PQ charges [Dias et al. `14]

$$\mathcal{L} \supset -\left[Y_{uij}q_{i}\epsilon H u_{j} + Y_{dij}q_{i}H^{\dagger}d_{j} + G_{ij}L_{i}H^{\dagger}E_{j} + F_{ij}L_{i}\epsilon H N_{j} + \frac{1}{2}Y_{ij}\sigma N_{i}N_{j} + y\,\tilde{Q}\sigma Q + y_{Q_{d}i}\sigma Q d_{i} + h.c.\right]$$

$$\mathbf{SM*A*S*H}$$

- > VEV $v_{\sigma} \sim 10^{11} \, {\rm GeV}$:
 - Determines Majorana masses
 - Explains smallness of active neutrino masses by see-saw relation

> Thermal leptogenesis (out of equilibrium decay of RHN)

SM * Axion * See-saw * Hidden scalar inflation

[Ballesteros, Redondo, AR, Tamarit, arXiv:1606.????]

 $\sim 10^9\,{
m GeV}$

126 GeV

spin 0

weak

weak

Unify PQ U(1) symmetry with lepton symmetry: give also the SM leptons and the right-handed neutrinos PQ charges [Dias et al. `14]

$$\mathcal{L} \supset -\left[Y_{uij}q_{i}\epsilon H u_{j} + Y_{dij}q_{i}H^{\dagger}d_{j} + G_{ij}L_{i}H^{\dagger}E_{j} + F_{ij}L_{i}\epsilon H N_{j} + \frac{1}{2}Y_{ij}\sigma N_{i}N_{j} + y\,\tilde{Q}\sigma Q + y_{Q_{d}i}\sigma Q d_{i} + h.c.\right]$$

$$\mathbf{SM*A*S*H}$$

- > VEV $v_{\sigma} \sim 10^{11} \, {\rm GeV}$:
 - Determines Majorana masses
 - Explains smallness of active neutrino masses by see-saw relation

- > Thermal leptogenesis (out of equilibrium decay of RHN)
- Axion cold DM

SM * Axion * See-saw * Hidden scalar inflation

[Ballesteros, Redondo, AR, Tamarit, arXiv:1606.????]

 $\sim 10^9\,{
m GeV}$

126 GeV

spin 0

photon

weak

weak

Inflation: Higgs Inflation, Hidden Scalar Inflation, ...

Non-minimal couplings: stretching of the scalar potential in Einstein frame which makes it convex and asymptotically flat at large field values

$$\tilde{V}(h,\rho) = \frac{1}{\Omega^4(h,\rho)} \left[\frac{\lambda_H}{4} \left(h^2 - v^2 \right)^2 + \frac{\lambda_\sigma}{4} \left(\rho^2 - v_\sigma^2 \right)^2 + \frac{\lambda_{H\sigma}}{2} \left(h^2 - v^2 \right) \left(\rho^2 - v_\sigma^2 \right) \right]$$

$$\Omega^2 = 1 + \frac{\xi_H(h^2 - v^2) + \xi_\sigma(\rho^2 - v_\sigma^2)}{M_P^2}$$

Inflation: Higgs Inflation, Hidden Scalar Inflation, ...

Non-minimal couplings: stretching of the scalar potential in Einstein frame which makes it convex and asymptotically flat at large field values

$$\tilde{V}(h,\rho) = \frac{1}{\Omega^4(h,\rho)} \left[\frac{\lambda_H}{4} \left(h^2 - v^2 \right)^2 + \frac{\lambda_\sigma}{4} \left(\rho^2 - v_\sigma^2 \right)^2 + \frac{\lambda_{H\sigma}}{2} \left(h^2 - v^2 \right) \left(\rho^2 - v_\sigma^2 \right) \right]$$

$$\Omega^2 = 1 + \frac{\xi_H(h^2 - v^2) + \xi_\sigma(\rho^2 - v_\sigma^2)}{M_P^2}$$

> Potential has valleys allowing for Higgs Inflation (HI), Hidden Scalar Inflation (HSI) or mixed Higgs Hidden Scalar Inflation (HHSI), depending on relative signs of $\kappa_H \equiv \lambda_{H\sigma}\xi_H - \lambda_H\xi_\sigma$, $\kappa_\sigma \equiv \lambda_{H\sigma}\xi_\sigma - \lambda_\sigma\xi_H$

Andreas Ringwald | SM*A*S*H*, 12th Patras Workshop on Axions, WIMPs and WISPs, Jeju Island, South Korea, 20-24 June 2016 | Page 22

> Adjusting χ_I , CMB observables

$$A_s = (2.20 \pm 0.08) \times 10^{-9},$$

 $n_s = 0.967 \pm 0.004,$
 $r < 0.07$

can be fit for any $\xi \gtrsim 10^{-3}$

$$\xi \equiv \begin{cases} \xi_H, & \text{for HI,} \\ \xi_\sigma, & \text{for HSI,} \\ \xi_\sigma, & \text{for HHSI} \end{cases}$$

> Smaller non-minimal coupling excluded by upper limit on r < 0.07

> Adjusting χ_I , CMB observables

$$A_s = (2.20 \pm 0.08) \times 10^{-9},$$

 $n_s = 0.967 \pm 0.004,$
 $r < 0.07$

can be fit for any $\xi \gtrsim 10^{-3}$

$$\xi \equiv \begin{cases} \xi_H, & \text{for HI,} \\ \xi_\sigma, & \text{for HSI,} \\ \xi_\sigma, & \text{for HHSI} \end{cases}$$

> Smaller non-minimal coupling $_{0.1}$ excluded by upper limit on r < 0.07

$$\lambda \equiv \begin{cases} \lambda_H, & \text{for HI,} \\ \lambda_{\sigma}, & \text{for HSI,} \\ \lambda_{\sigma} \left(1 - \frac{\lambda_{H\sigma}^2}{\lambda_{\sigma} \lambda_H} \right), & \text{for HHSI} \end{cases}$$

HI requires huge non-minimal coupling of the Higgs:

$$\xi_H \sim 2 imes 10^5 \sqrt{\lambda_H (\sim M_P)} \sim 2 imes 10^4$$

$$\lambda \equiv \begin{cases} \lambda_{H}, & \text{for HI,} \\ \lambda_{\sigma}, & \text{for HSI,} \\ \lambda_{\sigma} \left(1 - \frac{\lambda_{H\sigma}^{2}}{\lambda_{\sigma}\lambda_{H}} \right), & \text{for HHSI} \end{cases}$$

HI requires huge non-minimal coupling of the Higgs:

$$\xi_H \sim 2 \times 10^5 \sqrt{\lambda_H(\sim M_P)} \sim 2 \times 10^4$$

Perturbative unitarity lost in HI

$$\Lambda_U \sim \frac{M_P}{\xi_H} \sim 10^{14} \text{ GeV} \sim H_I \ll \tilde{V}^{1/4}(h_I), h_I$$

$$\lambda \equiv \begin{cases} \lambda_H, & \text{for HI,} \\ \lambda_{\sigma}, & \text{for HSI,} \\ \lambda_{\sigma} \left(1 - \frac{\lambda_{H\sigma}^2}{\lambda_{\sigma}\lambda_H} \right), & \text{for HHSI} \end{cases}$$

HI requires huge non-minimal coupling of the Higgs:

$$\xi_H \sim 2 \times 10^5 \sqrt{\lambda_H(\sim M_P)} \sim 2 \times 10^4$$

Perturbative unitarity lost in HI

$$\Lambda_U \sim \frac{M_P}{\xi_H} \sim 10^{14} \text{ GeV} \sim H_I \ll \tilde{V}^{1/4}(h_I), h_I$$

$$\lambda \equiv \begin{cases} \lambda_H, & \text{for HI,} \\ \lambda_{\sigma}, & \text{for HSI,} \\ \lambda_{\sigma} \left(1 - \frac{\lambda_{H\sigma}^2}{\lambda_{\sigma}\lambda_H} \right), & \text{for HHSI} \end{cases}$$

HI requires huge non-minimal coupling of the Higgs:

$$\xi_H \sim 2 \times 10^5 \sqrt{\lambda_H(\sim M_P)} \sim 2 \times 10^4$$

Perturbative unitarity lost in HI

$$\Lambda_U \sim \frac{M_P}{\xi_H} \sim 10^{14} \text{ GeV} \sim H_I \ll \tilde{V}^{1/4}(h_I), h_I$$

Can be of order one for HSI or HHSI; e.g. $\xi_{\sigma} = 1$ requires

$$\lambda_{\sigma}, \tilde{\lambda}_{\sigma} = (4.1^{+3.0}_{-2.1}) \times 10^{-10}$$

No unitarity problem in HSI/HHSI!

Andreas Ringwald | 2M/4/5/H*. 12th Patras Workshop on Axions, WIMPs and WISPs, Jeju Island, South Korea, 20-24 June 2016 | Page 28

Stability

- Determine range of parameters in SMASH for which effective scalar potential is positive up to the large values of scalar fields required to have successful inflation
- Instabilities in effective scalar potential can arise from fermionic quantum corrections in both scalar directions, driving quartic couplings towards negative values and rendering potential unstable for large field values
 - Along Higgs direction: instability driven by top Yukawa coupling
 - Along hidden scalar direction: instability driven by Yukawas of RH neutrinos and exotic quark

Stability: Scan $(\lambda_{\sigma}, \lambda_{H\sigma} > 0, Y_{11}, y = Y_{11}, f_A)$ with $m_t = 172.38 \text{ GeV}$

> Stability in the hidden scalar direction enforces a minimum of λ_{σ} at a given scale, as a function of $M_i/f_A = Y_{ii}/\sqrt{2}$

Stability: Scan $(\lambda_{\sigma}, \lambda_{H\sigma} > 0, Y_{11}, y = Y_{11}, f_A)$ with $m_t = 172.38 \text{ GeV}$

- > Stability in the hidden scalar direction enforces a minimum of λ_{σ} at a given scale, as a function of $M_i/f_A = Y_{ii}/\sqrt{2}$
- Stability in the Higgs direction can be obtained from the threshold mechanism w/o RG effects by adjusting portal coupling
 - Higgs quartic measured at low energies,

$$\overline{\lambda}_H(m_h) = \lambda_H(m_h) - \lambda_{H\sigma}^2 / \lambda_{\sigma} \big|_{\mu=m_h}$$

• Fundamental quartic λ_H can stay positive up to large energies if threshold correction $\delta \equiv \lambda_{H\sigma}^2/\lambda_\sigma$ sufficiently large

Stability: Scan $(\lambda_{\sigma}, \lambda_{H\sigma} > 0, Y_{11}, y = Y_{11}, f_A)$ with $m_t = 172.38 \text{ GeV}$

- > Stability in the hidden scalar direction enforces a minimum of λ_{σ} at a given scale, as a function of $M_i/f_A = Y_{ii}/\sqrt{2}$
- Stability in the Higgs direction can be obtained from the threshold mechanism w/o RG effects by adjusting portal coupling
 - Higgs quartic measured at low energies,

$$\overline{\lambda}_H(m_h) = \lambda_H(m_h) - \lambda_{H\sigma}^2/\lambda_\sigma\big|_{\mu=m_h}$$

• Fundamental quartic λ_H can stay positive up to large energies if threshold correction $\delta \equiv \lambda_{H\sigma}^2/\lambda_{\sigma}$ sufficiently large

Reheating

- Mechanism of reheating in SMASH well defined: coupling of inflaton to SM either known or well constrained
- > Fundamental questions:
 - Is PQ symmetry restored after inflation?
 - Is reheating temperature large enough for successful thermal leptogenesis?
- Reheating proceeds in two steps:
 - Preheating: Fluctuations of hidden scalar grow fast due to parametric resonance while HS-inflaton oscillates in its quartic potential. PQ symmetry effectively restored for $f_A \lesssim 10^{16} \, \mathrm{GeV}$
 - Perturbative reheating: HS fluctuations thermalize quickly and decay into SM particles once their decay rate goes above the Hubble rate. In stabilised parameter region, $10^{11}\,\mathrm{GeV}\sim T_R\gg T_c\sim 2\lambda_\sigma^{1/4}\,f_A\sim 10^9\,\mathrm{GeV}$
- PQ thermally restored phase continues for a few e-folds and then PQ symmetry is spontaneously broken
- Leptogenesis proceeds by out of equilibrium decays of RHNs

Axion Dark Matter

- In postinflationary PQ SB scenario: one-to-one relation between axion mass and relic abundance
- Mechanisms of production:
 - Vacuum realignment

Axion Dark Matter

- In postinflationary PQ SB scenario: one-to-one relation between axion mass and relic abundance
- Mechanisms of production:
 - Vacuum realignment
 - Decay of topological defects (domain walls and strings)

$$\Omega_{A,\text{tot}}h^2 = \Omega_{A,\text{real}}h^2 + \Omega_{A,\text{string}}h^2 + \Omega_{A,\text{wall}}h^2$$

[Hiramatsu et al. 12]

Axion Dark Matter

- In postinflationary PQ SB scenario: one-to-one relation between axion mass and relic abundance
- Mechanisms of production:
 - Vacuum realignment
 - Decay of topological defects (domain walls and strings)

$$\Omega_{A,\text{tot}}h^2 = \Omega_{A,\text{real}}h^2 + \Omega_{A,\text{string}}h^2 + \Omega_{A,\text{wall}}h^2$$

- > Key quantity entering prediction: Temperature dependence of axion mass, $m_A(T)f_A = \sqrt{\chi(T)}$
- Exploiting Dilute Instanton Gas Approximation (DIGA) or Instanton Liquid Model (ILM):

$$m_A \approx (0.8-1.3) \times 10^{-4} \,\text{eV}$$

Axion Dark Matter: Uncertainties

> First principle determination of temperature dependence of axion mass from topological susceptibility measured on the lattice, $m_A(T)f_A=\sqrt{\chi(T)}$

[Borsanyi et al. 15]

Axion Dark Matter: Uncertainties

Differing lattice results in full QCD:

Axion Dark Matter: Uncertainties

Resulting uncertainty in axion mass relevant for dark matter:

$$10^{-5}\,\mathrm{eV} \lesssim m_A \lesssim 2 imes 10^{-4}\,\mathrm{eV}$$
 falgev]

Can be narrowed by improving lattice results on topological susceptibility and predictions of axions radiated from strings

Summary

- Remarkably simple extension of the SM provides solution of five fundamental problems of particle physics and cosmology
 - 1. Inflation
 - 2. Baryon asymmetry
 - Dark matter
 - Neutrino flavour oscillations
 - 5. Non-observation of strong CP violation

[Ballesteros, Redondo, AR, Tamarit, arXiv:1606.nnnn]

Andreas Ringwald | SM*A*S*H*, 12th Patras Workshop on Axions,

Summary

Crucial predition: Dark matter comprised of axions with mass in range

$$10^{-5} \,\mathrm{eV} \lesssim m_A \lesssim 2 \times 10^{-4} \,\mathrm{eV}$$

Can be tested experimentally in next decade by new direct detection experiments, such as the Orpheus or MADMAX haloscopes

First prototype setup at MPI

