Is There New Physics at the Milliscale?

Particle Physics with Low-Energy Photons –

Andreas Ringwald

Gentner-Kolloquium, MPI für Kernphysik, 27 May 2009, Heidelberg, D

 Hints for new particles beyond standard model:

- Dark matter:WIMP or WISP?
- Dark energy: ultralight cosmon?
- Unification of forces: superpartners?
- Light neutrino masse heavy neutrinos?
- Strong CP problem: ultralight axion?

- Hints for new particles beyond standard model:
 - Dark matter:WIMP or WISP?
 - Dark energy: ultralight cosmon?
 - Unification of forces: heavy superpartners?
 - Light neutrino masses: new heavy neutrinos?
 - Strong CP problem: ultralight axion?

[Roszkowski]

- Hints for new particles beyond standard model:
 - Dark matter:WIMP or WISP?
 - Dark energy: ultralight cosmon?
 - Unification of forces: heavy superpartners?
 - Light neutrino masses: new heavy neutrinos?
 - Strong CP problem: ultralight axion?

Unification of the Coupling Constants in the SM and the minimal MSSM

- Hints for new particles beyond standard model:
 - Dark matter: WIMP or WISP?
 - Dark energy: ultralight cosmon?
 - Unification of forces: heavy superpartners?
 - Light neutrino masses: new heavy neutrinos?
 - Strong CP problem: ultralight axion?

- Hints for new particles beyond standard model:
 - Dark matter: WIMP or WISP?
 - Dark energy: ultralight cosmon?
 - Unification of forces: heavy superpartners?
 - Light neutrino masses: new heavy neutrinos?
 - Strong CP problem: ultralight axion?

- Heavy superpartners of standard model particles as well as ultralight axion may easily be accommodated in Grand Unified Theories and occur especially naturally in the low-energy description of string theory
- Phenomenologically viable string compactifications potentially predict even more Weakly Interacting Sub-eV Particles (WISPs):
 - Axion-Like Particles (ALPs)
 - hidden-sector U(1) gauge bosons (\Rightarrow hidden photons)
 - hidden-sector U(1) charged fermions (\Rightarrow minicharged particles)

Physics at the Terascale:
 The Large Hadron Collider
 (LHC) has a huge discovery
 potential for WIMPs

- Physics at the Terascale:
 The Large Hadron Collider
 (LHC) has a huge discovery
 potential for WIMPs
- Physics at the Milliscale:
 Experiments exploiting low-energy photons and/or large electromagnetic fields have considerable discovery potential for WISPs

Outline:

- 2. Axions and Axion-Like Particles
- 3. Ultralight Hidden-Sector Particles
- 4. Light Shining Through a Wall
- 5. Microwave Cavity Experiments
- 6. Conclusions

2. Axions and Axion-Like Particles

• Strong CP problem: Due to non-Abelian nature of QCD, additional CP-violating term in the Lagrangian,

$$\mathcal{L}_{\text{CP-viol.}} = \frac{\alpha_s}{4\pi} \theta \operatorname{tr} G_{\mu\nu} \tilde{G}^{\mu\nu} \equiv \frac{\alpha_s}{4\pi} \theta \frac{1}{2} \epsilon^{\mu\nu\alpha\beta} \operatorname{tr} G_{\mu\nu} G_{\alpha\beta}$$

- Effective CP-violating parameter in standard model,

$$\theta \to \bar{\theta} = \theta + \arg \det M$$

Upper bound on electric dipole moment of neutron ⇒

$$|\bar{\theta}| \lesssim 10^{-10}$$

– Unnaturally small!

Peccei-Quinn solution to the strong CP problem:

- Introduce global anomalous chiral U(1) $_{\rm PQ}$ symmetry, spontaneously broken by the vev of a complex scalar $\langle\Phi\rangle=f_ae^{ia/f_a}$ [Peccei,Quinn '77]
- Axion field a shifts under a U(1)_{PQ} transformation, $a \rightarrow a + \text{const.}$
- Axion field can enter in Lagrangian only through derivative terms and explicit symmetry violating terms originating from chiral anomalies,

$$\mathcal{L}_{a} = \frac{1}{2} \partial_{\mu} a \partial^{\mu} a + \mathcal{L}_{a}^{\text{int}} \left[\frac{\partial_{\mu} a}{f_{a}}; \psi \right] + \frac{r \alpha_{s}}{4\pi f_{a}} a \operatorname{tr} G^{\mu\nu} \tilde{G}_{\mu\nu} + \frac{s \alpha}{8\pi f_{a}} a F^{\mu\nu} \tilde{F}_{\mu\nu} + \dots$$

- $\bar{\theta}$ -term in $\mathcal{L}_{\rm SM}+\mathcal{L}_a$ can be eliminated by exploiting the shift symmetry, $a \to a \bar{\theta} f_a/r$
- Topological charge density $\propto \langle \operatorname{tr} G^{\mu\nu} \tilde{G}_{\mu\nu} \rangle \neq 0$ provides nontrivial potential for axion field \Rightarrow axion is pseudo-Nambu-Goldstone boson

[S.Weinberg '78; Wilczek '78]

12

Mass obtained via chiral perturbation theory:

[S.Weinberg '78]

$$m_a = \frac{r m_\pi f_\pi}{f_a} \frac{\sqrt{m_u m_d}}{m_u + m_d} \simeq 0.6 \,\mathrm{meV} \times \left(\frac{10^{10} \,\mathrm{GeV}}{f_a/r}\right)$$

- For large f_a : axion is ultralight and invisible:

[J.E. Kim '79; Shifman et al. '80; Dine et al. '81;...]

e.g. coupling to photons,

$$\mathcal{L}_{a\gamma\gamma} = -\frac{1}{4} g \, a \, F_{\mu\nu} \tilde{F}^{\mu\nu} = g \, a \, \vec{E} \cdot \vec{B},$$

with

[Bardeen, Tye '78; Kaplan '85; Srednicki '85]

$$g = \frac{r\alpha}{2\pi f_a} \left(\frac{2}{3} \frac{m_u + 4m_d}{m_u + m_d} - \frac{s}{r} \right) \sim 10^{-13} \text{ GeV}^{-1} \left(\frac{10^{10} \text{ GeV}}{f_a/r} \right)$$

• Generic prediction for axion:

• Axions in string theory:

Axions with global anomalous PQ symmetries generic in string compactifications

- Model-independent axion of weakly coupled heterotic string: dual of $B_{\mu\nu}$, with μ and ν tangent to 4d Minkowski spacetime:

$$f_a = \frac{g_s^2}{\sqrt{2\pi V_6} M_s^2} = \frac{\alpha_C M_P}{2\pi \sqrt{2}}$$

$$\simeq 10^{16} \text{ GeV}$$
 $m_a \simeq 10^{-9} \text{ eV}$

• Heterotic string:

– 10d low-energy Lagrangian:

$$\mathcal{L}_{10\text{d}} = \frac{2\pi M_s^8}{g_s^2} \sqrt{-g} R - \frac{M_s^6}{2\pi g_s^2} \frac{1}{4} \text{tr} F \wedge \star F - \frac{2\pi M_s^4}{g_s^2} \frac{1}{2} H \wedge \star H + \dots$$

Compactify 6 extra dimensions:

$$\mathcal{L}_{4d} = \frac{M_P^2}{2} \sqrt{-g} R - \frac{1}{4g_{YM}^2} \sqrt{-g} \text{tr} F_{\mu\nu} F^{\mu\nu} - \frac{1}{f_a^2} \frac{1}{2} H \wedge \star H + \dots$$

⇒ Read off coefficients:

$$M_P^2 = \frac{4\pi}{g_s^2} M_s^8 V_6; \quad g_{YM}^2 = \frac{4\pi g_s^2}{M_s^6 V_6}; \quad f_a^2 = \frac{g_s^2}{2\pi M_s^4 V_6}$$

$$\Rightarrow$$
 Large $M_s = \sqrt{lpha_{
m YM}/(4\pi)}\,M_P$ Heidelberg, May 2009

- Is There New Physics at the Milliscale? -

Axions in string theory:

Axions with global anomalous PQ symmetries generic in string compactifications

Axions in intersecting D-brane models in type II string theory come from zero modes of the RR gauge fields C

$$f_a \sim M_s$$

 \Rightarrow wider range of possibilities; phenomenologically preferred: intermediate scale, $M_s \sim \sqrt{M_{\rm EW} M_P} \sim 10^{11} \; {\rm GeV}$ $\Rightarrow m_a \simeq 10^{-4} \; {\rm eV}$

Intersecting D-brane models:

- Gauge theory lives on D(3+q)branes, extending along the 4 noncompact dimensions and wrapping a q-cycle in the extra dimensions
- Gravity lives in all 10 dimensions

Higher dimensional

– Smaller string scale because of large volume, $M_s\sim g_s M_P/\sqrt{V_6 M_s^6}$; can be as low as \sim TeV

Axion-like particles:

Other (pseudo-)Nambu-Goldstone bosons associated with breakdown of other continuous global symmetries

- Familons, associated with global family symmetry [Wilczek '82]
- Majorons, associated with global $\mathsf{U}(1)_{B-L}$ [Chikashige, Mohapatra, Peccei '80]
- Accelerons: [Friemann,Hill,Stebbins,Waga '95] breaking scale $f_\phi\sim M_P$ and explicit symmetry breaking scale $\Lambda\sim m_\nu\sim 10^{-3}~{\rm eV} \Rightarrow m_\phi\sim \Lambda^2/f_\phi\sim 10^{-33}~{\rm eV}\sim H_0$
- Stückelberg axions: associated with anomalous U(1)s in low-scale string compactifications [Coriano, Irges, Kiritsis '06]

- . . .

Not as predictive as axion:

- explicit symmetry breaking scale?
- any experimental hint from astrophysics, cosmology, and laboratory experiments very welcome

• Constraints on axion-like particles:

[Raffelt; ...]

Photon regeneration due to ALP- γ oscillations (light shining through a wall; CERN Axion Solar Telescope (CAST); galactic dark matter search); energy loss (lifetime of Helium Burning (HB) stars);

3. Ultralight Hidden-Sector Particles

- Most extensions of standard model based on supergravity or superstrings predict "hidden sector" of particles which are very weakly coupled to the "visible sector" standard model particles
 - cf. "gravity mediation" of SUSY breaking from hidden sector to visible sector
- Gauge interactions in hidden sector generically involve U(1) factors. There are also hidden sector matter particles charged under these U(1)s.
 - Usual assumption: hidden sector particles very heavy
 - ⇒ no constraints from low-energy phenomenology
 - Here: what if hidden sector particles remain massless or light?
 - \Rightarrow hidden sector U(1) gauge boson ("hidden photon" γ') interacts with visible photon through gauge kinetic mixing
 - \Rightarrow hidden sector U(1) charged matter appears to have a small electric charge due to this mixing ("minicharged particle" ϵ)

• Simplest model:

[Holdom '85]

$$\mathcal{L} = \underbrace{-\frac{1}{4}F^{\mu\nu}F_{\mu\nu}}_{\text{U(1)}_{\text{visible}}} \underbrace{-\frac{1}{4}B^{\mu\nu}B_{\mu\nu}}_{\text{U(1)}_{\text{hidden}}} \underbrace{+\frac{1}{2}\chi\,F^{\mu\nu}B_{\mu\nu}}_{\text{kinetic mixing}} \underbrace{+\bar{v}(i\not\!\partial + e\not\!A)v}_{\text{visible matter}} \underbrace{+\bar{h}(i\not\!\partial + e_h\not\!B)h}_{\text{hidden matter}}$$

- Dimensionless kinetic mixing parameter χ :
 - * Kinetic mixing generically appears in theories with several U(1) factors (renormalizable term respecting gauge and Lorentz symmetry)
 - * Integrating out heavy particles generically tends to generate $\chi \neq 0$:

A. Ringwald (DESY)

Heidelberg, May 2009

Diagonalization of kinetic term:

$$B^{\mu} \to \tilde{B}^{\mu} + \chi A^{\mu}$$

- ${\sf U}(1)_{\rm visible}$ unaffected, up to renormalization, $e^2 o e^2/(1-\chi^2)$
- Hidden sector charged particle gets induced electric charge:

$$e_h \bar{h} \not\!\!B h \rightarrow e_h \bar{h} \not\!\!B h + \chi e_h \bar{h} \not\!A h$$

$$\Rightarrow Q_h^{\text{vis}} \equiv \epsilon e = \chi e_h$$

- * may be fractional
- * may be tiny, if $\chi \ll 1$: h is minicharged particle
- Possible parameter ranges in string phenomenology: [Dienes et al. '97; Abel et al. '08]

$$\chi \sim 10^{-23} \div 10^{-2}; \quad m_{\gamma'} \sim 0 \div M_s; \quad m_{\epsilon} \sim 0 \div M_s$$

21

- U(1) factors in hidden sectors: generic prediction of realistic string compactifications
 - $E_8 \times E_8$ heterotic closed string theory

Orbifold compactifications of heterotic string theory:

e.g.

[Buchmüller et al. '07;...]

$$E_8 \times E_8 \rightarrow$$

$$G_{SM} \times U(1)^4 \times \left[SU(4) \times SU(2) \times U(1)^4 \right]$$

or

[Lebedev et al. '07]

$$E_8 \times E_8 \rightarrow$$

$$G_{SM} \times U(1)^4 \times \left[SO(8) \times SU(2) \times U(1)^3 \right]$$

and many more

22

- U(1) factors in hidden sectors: generic prediction of realistic string compactifications
 - $E_8 \times E_8$ heterotic closed string theory
 - IIA/IIB open string theory with branes

Compactification of type II string theory:

- U(1) factors in hidden sectors: generic prediction of realistic string compactifications
 - $E_8 \times E_8$ heterotic closed string theory
 - IIA/IIB open string theory with branes
- Some hidden U(1) gauge bosons and hidden charged fermions may remain massless or light
- ⇒ Dominant interaction with standard model: gauge kinetic mixing and minicharge

KM in heterotic string models:

[Dienes, Kolda, March-Russell '97]

$$\chi \simeq \frac{ee_h}{16\pi^2} C \frac{\Delta m}{M_P}$$

$$\gtrsim 10^{-17},$$

for
$$C \gtrsim 10, \Delta m \gtrsim 100 \text{ TeV}$$

24

- U(1) factors in hidden sectors: generic prediction of realistic string compactifications
 - $E_8 \times E_8$ heterotic closed string theory
 - IIA/IIB open string theory with branes
- Some hidden U(1) gauge bosons and hidden charged fermions may remain massless or light
- ⇒ Dominant interaction with standard model: gauge kinetic mixing and minicharge

KM in IIA/IIB string models:

[Lüst, Stieberger '03; Abel, Schofield '04; Berg, Haack, Körs '05]

$$\chi \sim \frac{e e_h}{16\pi^2} \sim \frac{g_s}{8\pi} (V_6 M_s^6)^{-1/3} \gtrsim 10^{-12},$$

for
$$V_6 M_s^6 \lesssim 10^{30}$$
 (i.e. $M_s \gtrsim \text{ TeV}$)

[Goodsell, Jaeckel, Redondo, AR '09]

• Constraints on hidden photons: [Bartlett,..'88; Kumar,..'06; Ahlers,..'07; Jaeckel,..'07; Redondo,..'08]

Deviations from $1/r^2$ (Coulomb); $\gamma \leftrightarrow \gamma'$ oscillations (Cavity, Light Shining through a Wall (LSW), Sun); $Z \leftrightarrow \gamma'$ mixing (LEP, LHC, ILC)

Constraints on minicharged particles: [Davidson,..'90;Gies,..'06;Ahlers,..'07;Melchiorri,..'07]

Energy loss (Red Giants, RF Cavity); cosmic expansion rate (BBN); deviations of black body spectrum (CMB); $\gamma \leftrightarrow \gamma'$ oscillations (LSW);

27

4. Light Shining through a Wall

- Linearly polarized laser beam in vacuum or along a transverse magnetic field
- Place wall in beam pipe:
 - laser beam will be absorbed
 - neutral WISPs (ALP, γ') fly through wall and
 - reconvert on other side of wall into photons, which can be detected

[Okun '82;Sikivie '83;Anselm '85;..]

LSW via

photon-ALP oscillations:

• γ - γ' oscillations:

- Linearly polarized laser beam in vacuum or along a transverse magnetic field
- Place wall in beam pipe:
 - laser beam will be absorbed
 - neutral WISPs (ALP, γ') fly through wall and
 - reconvert on other side of wall into photons, which can be detected

[Okun '82;Sikivie '83;Anselm '85;..]

Photon-WISP evolution along distance L:

$$i\frac{d}{dL} \left(\begin{array}{c} |\gamma\rangle \\ |\phi\rangle \end{array} \right) = \frac{1}{2\omega} \left(\begin{array}{cc} 0 & \delta \\ \delta & m_{\phi}^2 \end{array} \right) \left(\begin{array}{c} |\gamma\rangle \\ |\phi\rangle \end{array} \right)$$

[Okun '82;Stodolsky,Raffelt

'87; Ahlers, Gies, Jaeckel, Redondo, AR '07]

WISP	$\delta_{ }$	δ_{\perp}	m_ϕ^2
ALP (0 ⁻)	$g B^{ m ext} \omega$	0	$m_{\phi-}^2$
$ALP (0^{+})$	0	$g_+ B^{ m ext} \omega$	$m_{\phi\perp}^{2}$
HP	$\chi m_{\gamma'}^2$	$\chi m_{\gamma^{\prime}}^2$	$m_{\gamma'}^{2}$
MCP+HP	$-2\chi\omega^2\overset{\prime}{\Delta}N_{ }$	$-2\chi\omega^2 \overset{\prime}{\Delta} N_{\perp}$	$-2\omega^2\Delta^{'}N_{ ,\perp}$

Transition probability:

$$P(\gamma \to \phi) \simeq \frac{4\delta^2}{m_{\phi}^4} \sin^2 \frac{m_{\phi}^2 L}{4\omega}$$

 Linearly polarized laser beam in vacuum or along a transverse magnetic field

Place wall in beam pipe:

- laser beam will be absorbed

– neutral WISPs (ALP, γ') fl through wall and

 reconvert on other side o wall into photons, which can be detected

[Okun '82;Sikivie '83;Anselm '85;.

Experiment	Laser	< P >	Magnets
ALPS	532 nm; FP	30-300 W	$\begin{array}{c} \mathbf{B}_1 = \mathbf{B}_2 = 5 \text{ T} \\ \ell_1 = \ell_2 = 4.21 \text{ m} \end{array}$
BFRT	~ 500 nm; DL	100 W	$\begin{array}{c} B_1 = B_2 = 3.7 \; T \\ \ell_1 = \ell_2 = 4.4 \; m \end{array}$
V BMV	1064 nm; LULI	$8 imes 10^{21} \; \gamma/\mathrm{pulse}$	$\begin{array}{c} \mathbf{B}_1 = \mathbf{B}_2 = 11 \; \mathbf{T} \\ \ell_1 = \ell_2 = 0.25 \; \mathbf{m} \end{array}$
GammeV	532 nm;	3.2 W	$\begin{array}{c} \mathbf{B}_1 = \mathbf{B}_2 = 5 \text{ T} \\ \ell_1 = \ell_2 = 3 \text{ m} \end{array}$
LIPSS	900 nm; FEL	300 W	$\begin{array}{c} \mathbf{B}_1 = \mathbf{B}_2 = 1.7 \; \mathbf{T} \\ \ell_1 = \ell_2 = 1 \; \mathbf{m} \end{array}$
OSQAR	1064 nm; FP	> 1 kW	$\begin{array}{c} \mathbf{B}_1 = \mathbf{B}_2 = 9.5 \; \mathbf{T} \\ \ell_1 = \ell_2 = 14 \; \mathbf{m} \end{array}$

Pioneering experiment: BFRT

Several ongoing experiments

- Linearly polarized laser beam in vacuum or along a transverse magnetic field
- Place wall in beam pipe:
 - laser beam will be absorbed
 - neutral WISPs (ALP, γ') fly through wall and
 - reconvert on other side of wall into photons, which can be detected

[Okun '82;Sikivie '83;Anselm '85;..]

- Pioneering experiment: BFRT
- Several ongoing experiments

ALPS (Any-Light Particle Search):

[AEI, DESY, Hamburger Sternwarte, Laser Zentrum Hannover]

- Linearly polarized laser beam in vacuum or along a transverse magnetic field
- Place wall in beam pipe:
 - laser beam will be absorbed
 - neutral WISPs (ALP, γ') fly through wall and
 - reconvert on other side of wall into photons, which can be detected

[Okun '82;Sikivie '83;Anselm '85;..]

- Pioneering experiment: BFRT
- Several ongoing experiments

ALPS (Any-Light Particle Search):

[AEI, DESY, Hamburger Sternwarte, Laser Zentrum Hannover]

- Primary beam: enhanced LIGO laser (1064 nm, 35 W cw)
- \Rightarrow frequency doubled to 532 nm
- $\Rightarrow \sim 100$ fold power build up through resonant optical cavity (Fabry-Perot), $\sim 10~\mu m$ focus
- ⇒ CCD camera: expect regenerated photons in signal region of a few pixel

- Linearly polarized laser beam in vacuum or along a transverse magnetic field
- Place wall in beam pipe:
 - laser beam will be absorbed
 - neutral WISPs (γ' , ALP) fly through wall and
 - reconvert on other side of wall into photons, which can be detected

[Okun '82;Sikivie '83;Anselm '85;..]

- Pioneering experiment: BFRT
- Several ongoing experiments

Limits from **ALPS** run in December 2008 (0.03 kW at 532 nm):

[ALPS Collaboration '09]

Heidelberg, May 2009

- Linearly polarized laser beam in vacuum or along a transverse magnetic field
- Place wall in beam pipe:
 - laser beam will be absorbed
 - neutral WISPs (γ' , ALP) fly through wall and
 - reconvert on other side of wall into photons, which can be detected

[Okun '82;Sikivie '83;Anselm '85;..]

- Pioneering experiment: BFRT
- Several ongoing experiments

Limits from **ALPS** run in December 2008 (0.03 kW at 532 nm):

[ALPS Collaboration '09]

Heidelberg, May 2009

- Linearly polarized laser beam in vacuum or along a transverse magnetic field
- Place wall in beam pipe:
 - laser beam will be absorbed
 - neutral WISPs (γ' , ALP) fly through wall and
 - reconvert on other side of wall into photons, which can be detected

[Okun '82;Sikivie '83;Anselm '85;..]

- Pioneering experiment: BFRT
- Several ongoing experiments

Limits from **ALPS** run in December 2008 (0.03 kW at 532 nm):

[ALPS Collaboration '09]

Heidelberg, May 2009

- Linearly polarized laser beam in vacuum or along a transverse magnetic field
- Place wall in beam pipe:
 - laser beam will be absorbed
 - neutral WISPs (γ' , ALP) fly through wall and
 - reconvert on other side of wall into photons, which can be detected

[Okun '82;Sikivie '83;Anselm '85;..]

- Pioneering experiment: BFRT
- Several ongoing experiments

Limits from **ALPS** run in December 2008 (0.03 kW at 532 nm):

[ALPS Collaboration '09]

Heidelberg, May 2009

- Linearly polarized laser beam in vacuum or along a transverse magnetic field
- Place wall in beam pipe:
 - laser beam will be absorbed
 - neutral WISPs (γ' , ALP) fly through wall and
 - reconvert on other side of wall into photons, which can be detected

[Okun '82;Sikivie '83;Anselm '85;..]

- Pioneering experiment: BFRT
- Several ongoing experiments

Roadmap of ALP search with LSW:

[A. Lindner '09]

- Linearly polarized laser beam in vacuum or along a transverse magnetic field
- Place wall in beam pipe:
 - laser beam will be absorbed
 - neutral WISPs (γ' , ALP) fly through wall and
 - reconvert on other side of wall into photons, which can be detected

[Okun '82;Sikivie '83;Anselm '85;..]

- Pioneering experiment: BFRT
- Several ongoing experiments

Roadmap of ALP search with LSW:

[A. Lindner '09]

- Linearly polarized laser beam in vacuum or along a transverse magnetic field
- Place wall in beam pipe:
 - laser beam will be absorbed
 - neutral WISPs (γ' , ALP) fly through wall and
 - reconvert on other side of wall into photons, which can be detected

[Okun '82;Sikivie '83;Anselm '85;..]

- Pioneering experiment: BFRT
- Several ongoing experiments

Roadmap of ALP search with LSW:

[A. Lindner '09]

- Linearly polarized laser beam in vacuum or along a transverse magnetic field
- Place wall in beam pipe:
 - laser beam will be absorbed
 - neutral WISPs (γ' , ALP) fly through wall and
 - reconvert on other side of wall into photons, which can be detected

[Okun '82;Sikivie '83;Anselm '85;..]

- Pioneering experiment: BFRT
- Several ongoing experiments

Roadmap of ALP search with LSW:

[A. Lindner '09]

- Linearly polarized laser beam in vacuum or along a transverse magnetic field
- Place wall in beam pipe:
 - laser beam will be absorbed
 - neutral WISPs (ALP, γ') fly through wall and
 - reconvert on other side of wall into photons, which can be detected

[Okun '82;Sikivie '83;Anselm '85;..]

- Pioneering experiment: BFRT
- Several ongoing experiments

Second Fabry-Perot Cavity:

[Hoogeveen, Ziegenhagen '91; Sikivie, Tanner, van Bibber '07]

A. Ringwald (DESY)

- Linearly polarized laser beam in vacuum or along a transverse magnetic field
- Place wall in beam pipe:
 - laser beam will be absorbed
 - neutral WISPs (ALP, γ') fly through wall and
 - reconvert on other side of wall into photons, which can be detected

[Okun '82;Sikivie '83;Anselm '85;..]

- Pioneering experiment: BFRT
- Several ongoing experiments

XFEL or synchrotron light through wall suffers from "low" photon flux

[Rabadan, AR, Sigurdson '06; Dias, Lugones '09]

- Linearly polarized laser beam in vacuum or along a transverse magnetic field
- Place wall in beam pipe:
 - laser beam will be absorbed
 - neutral WISPs (γ' , ALP) fly through wall and
 - reconvert on other side of wall into photons, which can be detected

[Okun '82;Sikivie '83;Anselm '85;..]

- Pioneering experiment: BFRT
- Several ongoing experiments

Roadmap of HP search with LSW:

[Redondo '09]

A. Ringwald (DESY)

Heidelberg, May 2009

 High quality cavities can be exploited to search for

[Jaeckel, AR '07; Caspers, Jaeckel, AR '09]

$$-\gamma'$$

[Jaeckel, AR '07]

 High quality cavities can be exploited to search for

[Jaeckel, AR '07; Caspers, Jaeckel, AR '09]

[Jaeckel, AR '07]

 High quality cavities can be exploited to search for

[Jaeckel, AR '07; Caspers, Jaeckel, AR '09]

- $-\gamma'$
- ALPs
- Discovery potential:
 - substantial reach in parameter space for γ'
 - may reach $g \sim 10^{-10} \ {\rm GeV^{-1}}$ with presently available technology
- Yale: Experiment in progress

[Jaeckel, AR '07]

• Current-Through-a-Wall:

 In strong electric field of accelerator cavity, minicharged particles may be produced in pairs and accelerated along the beam axis

$$E_{\rm crit}^e = \frac{m_e^2}{e} \simeq 10^{18} \, \frac{\rm V}{\rm m}$$

$$E_{\rm crit}^{\epsilon} = \frac{m_{\epsilon}^2}{\epsilon e} \simeq 5 \frac{\rm MV}{\rm m} \frac{10^{-6}}{\epsilon} \left(\frac{m_{\epsilon}}{\rm meV}\right)^2$$

Accelerator cavity: few $\times 10~{\rm MV/m}$

Focus of PW laser: few $\times 10^{14} \ \text{V/m}$

• Current-Through-a-Wall:

- In strong electric field of accelerator cavity, minicharged particles may be produced in pairs and accelerated along the beam axis
- MCP beam leaves cavity and is flowing through thick wall
- Corresponding electrical current can be measured directly via its induced magnetic field

[Gies, Jaeckel, AR '06]

• Current-Through-a-Wall:

- In strong electric field of accelerator cavity, minicharged particles may be produced in pairs and accelerated along the beam axis
- MCP beam leaves cavity and is flowing through thick wall
- Corresponding electrical current can be measured directly via its induced magnetic field

[Gies, Jaeckel, AR '06]

ACDC (Accelerator Cavity Dark Current):

Cavity

available

• Current-Through-a-Wall:

- In strong electric field of accelerator cavity, minicharged particles may be produced in pairs and accelerated along the beam axis
- MCP beam leaves cavity and is flowing through thick wall
- Corresponding electrical current can be measured directly via its induced magnetic field

[Gies, Jaeckel, AR '06]

ACDC (Accelerator Cavity Dark Current):

Current-Through-a-Wall:

- In strong electric field of accelerator cavity, minicharged particles may be produced in pairs and accelerated along the beam axis
- MCP beam leaves cavity and is flowing through thick wall
- Corresponding electrical current can be measured directly via its induced magnetic field

[Gies, Jaeckel, AR '06]

ACDC (Accelerator Cavity Dark Current):

[Gies, Jaeckel, AR '06]

Cavity available

• Current-Through-a-Wall:

- In strong electric field of accelerator cavity, minicharged particles may be produced in pairs and accelerated along the beam axis
- MCP beam leaves cavity and is flowing through thick wall
- Corresponding electrical current can be measured directly via its induced magnetic field

[Gies, Jaeckel, AR '06]

ACDC (Accelerator Cavity Dark Current):

Cavity and wall available

• Current-Through-a-Wall:

- In strong electric field of accelerator cavity, minicharged particles may be produced in pairs and accelerated along the beam axis
- MCP beam leaves cavity and is flowing through thick wall
- Corresponding electrical current can be measured directly via its induced magnetic field

[Gies, Jaeckel, AR '06]

ACDC (Accelerator Cavity Dark Current):

- Cavity and wall available
- Measurement device available (in princ.)

• Current-Through-a-Wall:

- In strong electric field of accelerator cavity, minicharged particles may be produced in pairs and accelerated along the beam axis
- MCP beam leaves cavity and is flowing through thick wall
- Corresponding electrical current can be measured directly via its induced magnetic field

[Gies, Jaeckel, AR '06]

ACDC (Accelerator Cavity Dark Current):

- Cavity and wall available
- Measurement device available (in princ.)

• Current-Through-a-Wall:

- In strong electric field of accelerator cavity, minicharged particles may be produced in pairs and accelerated along the beam axis
- MCP beam leaves cavity and is flowing through thick wall
- Corresponding electrical curret $\Re g_{10} \epsilon_{-6}$ can be measured directly via its induced magnetic field -6.5

[Gies, Jaeckel, AR '06]

ACDC (Accelerator Cavity Dark Current):

[Ahlers, Gies, Jaeckel, AR in prep.]

6. Conclusions

• A low-energy frontier is forming worldwide:

Fundamental physics with low energy photons and spare parts from high-energy frontier accelerators

- These laboratory experiments have considerable discovery potential for ultralight particles beyond the standard model, which appear quite naturally in realistic string compactifications:
 - axion-like particles
 - hidden-sector U(1) gauge bosons
 - hidden-sector fermions charged under these extra U(1)s
- ullet Theoretical predictions of masses and couplings very uncertain \Rightarrow any experimental hint or constraint extremely welcome!

 In contrast to a WIMP: If a WISP is found, it may have immediate applications ⇒ Hidden Laser Communications!

[Jaeckel, Redondo, AR '09]