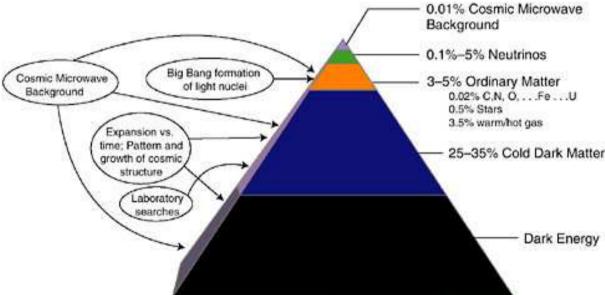
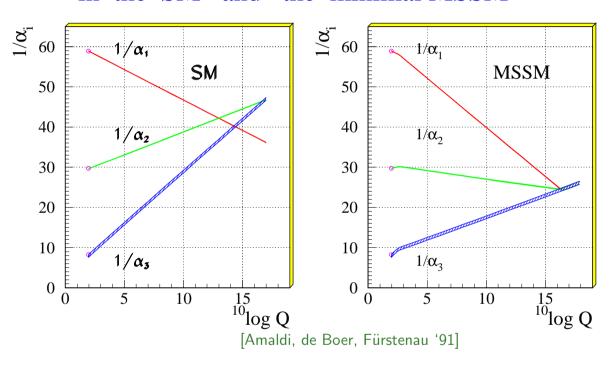
Are There Ultralight Particles in the Hidden Sector?

Particle Physics with Low-Energy Photons –

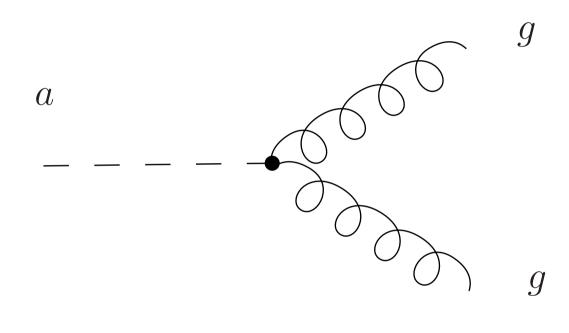
Andreas Ringwald



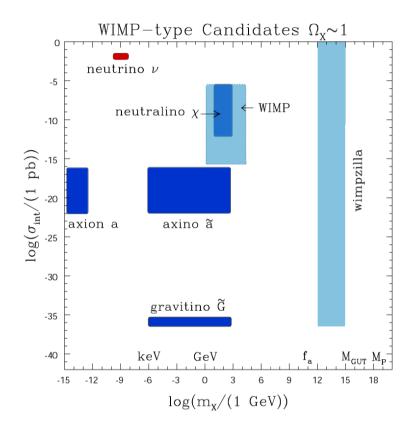
TH Colloquium, CERN, 10 June 2009, Geneva, CH


• Hints for new particles beyond standard model:

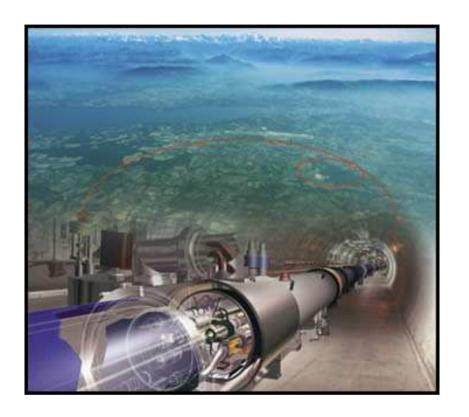
- Dark matter:WIMP or WISP?
- Dark energy: ultralight cosmon?



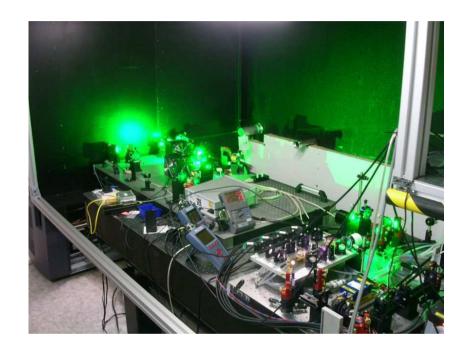
- Hints for new particles beyond standard model:
 - Dark matter: WIMP or WISP?
 - Dark energy: ultralight cosmon?
 - Unification of forces: heavy superpartners?


Unification of the Coupling Constants in the SM and the minimal MSSM

- Hints for new particles beyond standard model:
 - Dark matter:WIMP or WISP?
 - Dark energy: ultralight cosmon?
 - Unification of forces: heavy superpartners?
 - Strong CP problem: ultralight axion?



- Hints for new particles beyond standard model:
 - Dark matter:WIMP or WISP?
 - Dark energy: ultralight cosmon?
 - Unification of forces: heavy superpartners?
 - Strong CP problem: ultralight axion?



[Roszkowski]

Physics at the Terascale:
 The Large Hadron Collider
 (LHC) has a huge discovery
 potential for WIMPs

- Physics at the Terascale:
 The Large Hadron Collider
 (LHC) has a huge discovery
 potential for WIMPs
- Physics at the Milliscale:
 Experiments exploiting low-energy photons and/or large electromagnetic fields have considerable discovery potential for WISPs

Outline:

- 2. Axions and Axion-Like Particles
- 3. Ultralight Hidden-Sector Particles
- 4. Light Shining Through a Wall
- 5. Microwave Cavity Experiments
- 6. Conclusions

2. Axions and Axion-Like Particles

• Strong CP problem: Due to non-Abelian nature of QCD, additional CP-violating term in the Lagrangian,

$$\mathcal{L}_{\text{CP-viol.}} = \frac{\alpha_s}{4\pi} \theta \operatorname{tr} G_{\mu\nu} \tilde{G}^{\mu\nu} \equiv \frac{\alpha_s}{4\pi} \theta \frac{1}{2} \epsilon^{\mu\nu\alpha\beta} \operatorname{tr} G_{\mu\nu} G_{\alpha\beta}$$

- Effective CP-violating parameter in standard model,

$$\theta \to \bar{\theta} = \theta + \arg \det M$$

- Upper bound on electric dipole moment of neutron \Rightarrow

$$|\bar{\theta}| \lesssim 10^{-10}$$

– Unnaturally small!

• Peccei-Quinn solution to the strong CP problem:

- Introduce global anomalous chiral U(1) $_{\rm PQ}$ symmetry, spontaneously broken by the vev of a complex scalar $\langle\Phi\rangle=f_ae^{ia/f_a}$ [Peccei,Quinn '77]
- Axion field a shifts under a U(1)_{PQ} transformation, $a \rightarrow a + \text{const.}$
- ⇒ Low-energy effective Lagrangian:

$$\mathcal{L}_{a} = \frac{1}{2} \partial_{\mu} a \partial^{\mu} a + \mathcal{L}_{a}^{\text{int}} \left[\frac{\partial_{\mu} a}{f_{a}}; \psi \right] + \frac{r \alpha_{s}}{4\pi f_{a}} a \operatorname{tr} G^{\mu\nu} \tilde{G}_{\mu\nu} + \frac{s \alpha}{8\pi f_{a}} a F^{\mu\nu} \tilde{F}_{\mu\nu} + \dots$$

- $\bar{\theta}$ -term in $\mathcal{L}_{\rm SM}+\mathcal{L}_a$ can be eliminated by exploiting the shift symmetry, $a \to a \bar{\theta} f_a/r$
- Topological charge density $\propto \langle \operatorname{tr} G^{\mu\nu} \tilde{G}_{\mu\nu} \rangle \neq 0$ provides nontrivial potential for axion field \Rightarrow axion is pseudo-Nambu-Goldstone boson

[S.Weinberg '78; Wilczek '78]

Mass obtained via chiral perturbation theory:

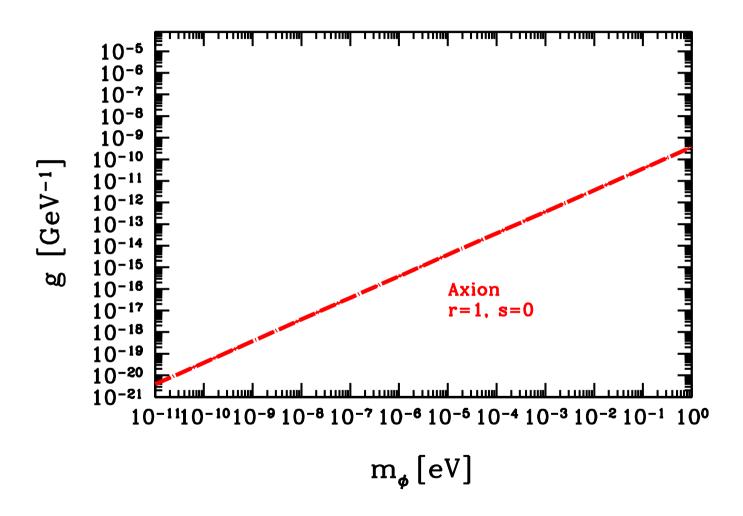
[S.Weinberg '78]

$$m_a = \frac{r m_\pi f_\pi}{f_a} \frac{\sqrt{m_u m_d}}{m_u + m_d} \simeq 0.6 \,\mathrm{meV} \times \left(\frac{10^{10} \,\mathrm{GeV}}{f_a/r}\right)$$

- For large f_a : axion is ultralight and invisible:

[J.E. Kim '79; Shifman et al. '80; Dine et al. '81;...]

e.g. coupling to photons,


$$\mathcal{L}_{a\gamma\gamma} = -\frac{1}{4} g \, a \, F_{\mu\nu} \tilde{F}^{\mu\nu} = g \, a \, \vec{E} \cdot \vec{B},$$

with

[Bardeen, Tye '78; Kaplan '85; Srednicki '85]

$$g = \frac{r\alpha}{2\pi f_a} \left(\frac{2}{3} \frac{m_u + 4m_d}{m_u + m_d} - \frac{s}{r} \right) \sim 10^{-13} \text{ GeV}^{-1} \left(\frac{10^{10} \text{ GeV}}{f_a/r} \right)$$

• Generic prediction for axion:

- Are There Ultralight Particles in the Hidden Sector? -

Axions in string theory:

Axions with global anomalous PQ symmetries generic in string compactifications [Svrcek, Witten '06]

- Model-independent axion of weakly coupled heterotic string: dual of $B_{\mu\nu}$, with μ and ν tangent to 4d Minkowski spacetime:

$$f_a = \frac{g_s^2}{\sqrt{2\pi V_6} M_s^2} = \frac{\alpha_C M_P}{2\pi \sqrt{2}}$$

$$\simeq 10^{16} \text{ GeV}$$
 $m_a \simeq 10^{-9} \text{ eV}$

• Heterotic string:

– 10d low-energy Lagrangian:

$$\mathcal{L}_{10d} = \frac{2\pi M_s^8}{g_s^2} \sqrt{-g} R - \frac{M_s^6}{2\pi g_s^2} \frac{1}{4} \text{tr} F \wedge \star F - \frac{2\pi M_s^4}{g_s^2} \frac{1}{2} H \wedge \star H + \dots$$

Compactify 6 extra dimensions:

$$\mathcal{L}_{4d} = \frac{M_P^2}{2} \sqrt{-g} R - \frac{1}{4g_{YM}^2} \sqrt{-g} \text{tr} F_{\mu\nu} F^{\mu\nu} - \frac{1}{f_a^2} \frac{1}{2} H \wedge \star H + \dots$$

 \Rightarrow Read off coefficients:

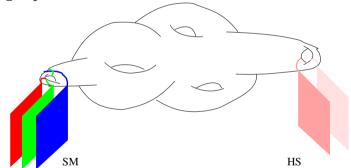
$$M_P^2 = \frac{4\pi}{g_s^2} M_s^8 V_6; \quad g_{YM}^2 = \frac{4\pi g_s^2}{M_s^6 V_6}; \quad f_a^2 = \frac{g_s^2}{2\pi M_s^4 V_6}$$

$$\Rightarrow$$
 Large $M_s = \sqrt{\alpha_{
m YM}/(4\pi)}\,M_P$ Geneva, June 2009

Axions in string theory:

Axions with global anomalous PQ symmetries generic in string compactifications [Svrcek,Witten '06]

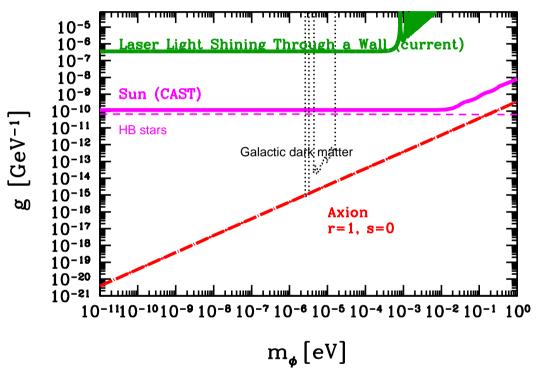
- Axions in intersecting D-brane models in type II string theory come from zero modes of the RR gauge fields ${\cal C}$


$$f_a \sim M_s$$

- \Rightarrow wider range of possibilities
 - Plenitude of zero modes ⇒
 axion-like particles
 - Stückelberg axions associated with anomalous U(1)s

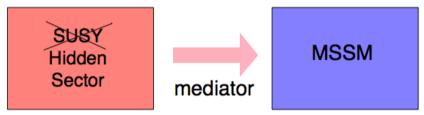
[Coriano, Irges, Kiritsis '06]

• Intersecting D-brane models:


- Gauge theory lives on D(3+q)-branes, extending along the 4 non-compact dimensions and wrapping a q-cycle in the extra dimensions

- Gravity lives in all 10 dimensions
- Smaller string scale because of large volume, $M_s\sim g_s M_P/\sqrt{V_6 M_s^6}$; can be as low as \sim TeV

• Constraints on coupling of axion-like particles (ALPs) to photons:


[Raffelt; ...]

Photon regeneration due to ALP- γ oscillations (light shining through a wall; CERN Axion Solar Telescope (CAST); galactic dark matter search); energy loss (lifetime of Helium Burning (HB) stars)

3. Ultralight Hidden-Sector Particles

 Extensions of standard model based on supergravity or superstrings predict "hidden sector" of particles which are very weakly coupled to the "visible sector" standard model particles; cf. "gravity mediation" of SUSY breaking

- Possible WISPs: hidden sector U(1) gauge bosons ("hidden photons" γ') and hidden sector particles charged under the hidden U(1) (\Rightarrow "mini-charged particles" (MCPs))
- More models with ultralight hidden U(1)s: mirror world or extreme, 10^{32} copies of SM $_{\rm [Foot,...;Dvali,...]}$

- U(1) factors in hidden sectors: generic prediction of realistic string compactifications
 - E_8 \times E_8 heterotic closed string theory

Orbifold compactifications of heterotic string theory:

e.g.

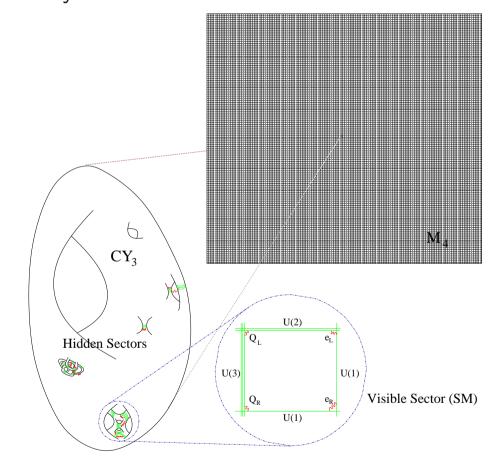
[Buchmüller et al. '07;...]

$$E_8 \times E_8 \rightarrow$$

$$G_{SM} \times U(1)^4 \times \left[SU(4) \times SU(2) \times U(1)^4 \right]$$

or

[Lebedev et al. '07]


$$E_8 \times E_8 \rightarrow$$

$$G_{SM} \times U(1)^4 \times \left[SO(8) \times SU(2) \times U(1)^3 \right]$$

and many more

- U(1) factors in hidden sectors: generic prediction of realistic string compactifications
 - $E_8 \times E_8$ heterotic closed string theory
 - IIA/IIB open string theory with branes

Compactification of type II string theory:

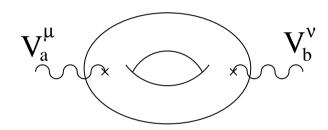
[..,Conlon,Quevedo,..]

- U(1) factors in hidden sectors: generic prediction of realistic string compactifications
 - $E_8 \times E_8$ heterotic closed string theory
 - IIA/IIB open string theory with branes
- Some hidden U(1) gauge bosons and hidden charged fermions may remain massless or light
- ⇒ Dominant interaction with standard model: gauge kinetic mixing and minicharge (for Chern-Simons like coupling:

• Low-energy effective Lagrangian: [Holdom '85]

$$\mathcal{L} = \underbrace{-\frac{1}{4}F^{\mu\nu}F_{\mu\nu} - \frac{1}{4}B^{\mu\nu}B_{\mu\nu} + \frac{1}{2}\chi F^{\mu\nu}B_{\mu\nu}}_{\text{U(1)}_{V}} \underbrace{-\frac{1}{4}B^{\mu\nu}B_{\mu\nu} + \frac{1}{2}\chi F^{\mu\nu}B_{\mu\nu}}_{\text{kin mix}}$$

$$\underbrace{+\bar{v}(i\partial + eA)v + \bar{h}(i\partial + e_{h}B)h}_{\text{v matter}} + \dots$$


- Dimensionless kinetic mixing parameter χ :
 - * Kinetic mixing generically appears in theories with several U(1) factors (renormalizable term respecting gauge and Lorentz symmetry)
 - * Integrating out heavy messenger particles generically tends to generate $\chi \neq 0$:
- Diagonalization of kinetic term, $B^{\mu} \to \tilde{B}^{\mu} + \chi A^{\mu}$;
- Hidden sector charged particle gets induced electric charge:

$$e_h ar{h} Bh \longrightarrow e_h ar{h} Bh + \chi e_h ar{h} Ah$$

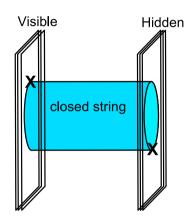
$$\Rightarrow Q_h^{\mathrm{vis}} \equiv \epsilon e = \chi e_h$$
 Geneva, June 2009

- U(1) factors in hidden sectors: generic prediction of realistic string compactifications
 - $E_8 \times E_8$ heterotic closed string theory
 - IIA/IIB open string theory with branes
- Some hidden U(1) gauge bosons and hidden charged fermions may remain massless or light
- ⇒ Dominant interaction with standard model: gauge kinetic mixing and minicharge

KM in heterotic string models:

[Dienes, Kolda, March-Russell '97]

$$\chi \simeq \frac{ee_h}{16\pi^2} C \frac{\Delta m}{M_P}$$


$$\gtrsim 10^{-17},$$

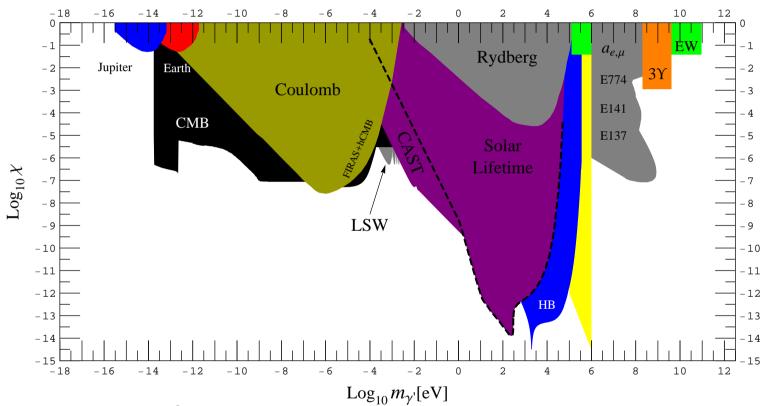
for
$$C \gtrsim 10, \Delta m \gtrsim 100 \text{ TeV}$$

- Are There Ultralight Particles in the Hidden Sector? -
- U(1) factors in hidden sectors: generic prediction of realistic string compactifications
 - $E_8 \times E_8$ heterotic closed string theory
 - IIA/IIB open string theory with branes
- Some hidden U(1) gauge bosons and hidden charged fermions may remain massless or light
- ⇒ Dominant interaction with standard model: gauge kinetic mixing and minicharge

KM in IIA/IIB string models:

[Lüst, Stieberger '03; Abel, Schofield '04; Berg, Haack, Körs '05]

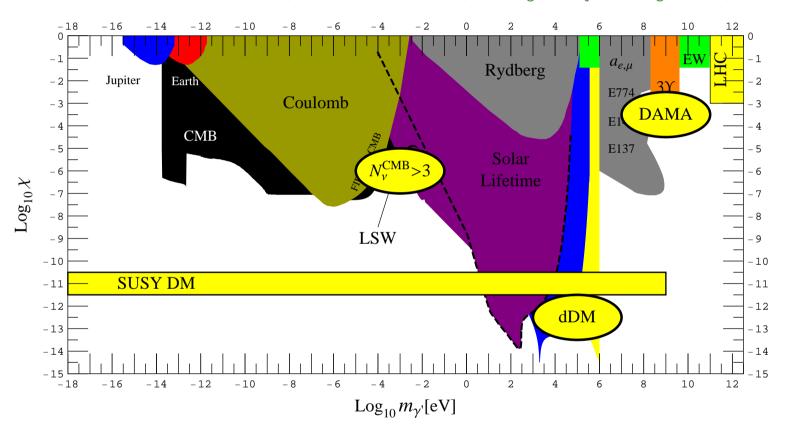
e.g. mixing with U(1) residing on D7 brane wrapping LARGE 4-cycle


$$\chi \sim \frac{e e_h}{16\pi^2} \sim \frac{g_s}{8\pi} (V_6 M_s^6)^{-1/3} \gtrsim 10^{-12},$$

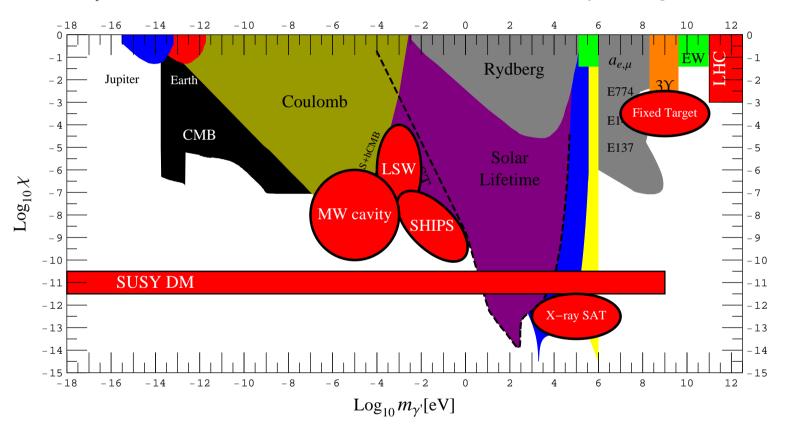
for
$$V_6 M_s^6 \lesssim 10^{30}$$
 (i.e. $M_s \gtrsim \text{ TeV}$)

[Goodsell, Jaeckel, Redondo, AR '09] Geneva, June 2009

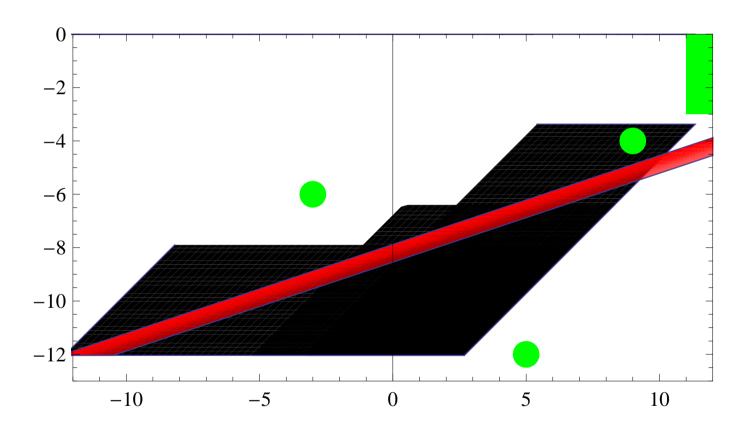
• The rich phenomenology of hidden U(1)s:


[Bartlett,...'88; Kumar,...'06; Ahlers,...'07; Jaeckel,...'07; Redondo,...'08;...]

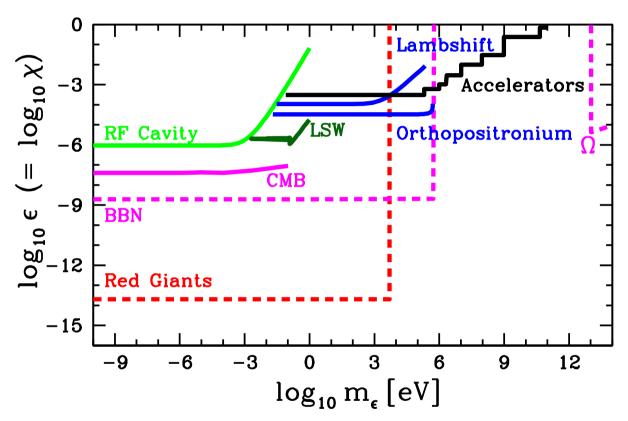
Deviations from $1/r^2$ (Jupiter, Coulomb); $\gamma \leftrightarrow \gamma'$ oscillations (CMB, Light Shining through a Wall (LSW); stellar evolution (Sun, HB, dDM); fixed target; e^+e^- (Υ , EW)


• The rich phenomenology of hidden U(1)s:

[Jaeckel, Redondo, AR '08; Postma, Redondo '08; Arkani-Hamed,...'08; Ibarra, AR, Weniger '08; Bjorken, Essig, Schuster, Toro '09;...]



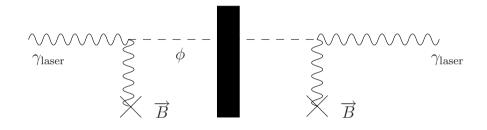
• The rich phenomenology of hidden U(1)s:


[Ahlers,...'07; Jaeckel, AR '07; Gninenko, Redondo '08; Postma, Redondo '08; Bjorken, Essig, Schuster, Toro'09;...]

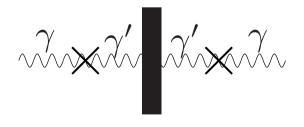
• Expectations in LARGE volume string compactifications (D7 brane wrapping LARGE 4-cycle): [Goodsell, Jaeckel, Redondo, AR in prep.]

• The rich phenomenology of minicharged particles: [Davidson,...'90;Gies,...'06;Ahlers,...'07;Melchiorri,...'07]

Energy loss (Red Giants, RF Cavity); cosmic expansion rate (BBN); deviations of black body spectrum (CMB); $\gamma \leftrightarrow \gamma'$ oscillations (LSW); ...


4. Light Shining through a Wall

- Linearly polarized laser beam in vacuum or along a transverse magnetic field
- Place wall in beam pipe:
 - laser beam will be absorbed
 - neutral WISPs (ALP, γ') fly through wall and
 - reconvert on other side of wall into photons, which can be detected


[Okun '82;Sikivie '83;Anselm '85;..]

LSW via

photon-ALP oscillations:

• γ - γ' oscillations:

4. Light Shining through a Wall

- Linearly polarized laser beam in vacuum or along a transverse magnetic field
- Place wall in beam pipe:
 - laser beam will be absorbed
 - neutral WISPs (ALP, γ') fly through wall and
 - reconvert on other side of wall into photons, which can be detected

[Okun '82;Sikivie '83;Anselm '85;..]

Photon-WISP evolution along distance L:

$$i\frac{d}{dL} \left(\begin{array}{c} |\gamma\rangle \\ |\phi\rangle \end{array} \right) = \frac{1}{2\omega} \left(\begin{array}{cc} 0 & \delta \\ \delta & m_{\phi}^2 \end{array} \right) \left(\begin{array}{c} |\gamma\rangle \\ |\phi\rangle \end{array} \right)$$

[Okun '82;Stodolsky,Raffelt

'87; Ahlers, Gies, Jaeckel, Redondo, AR '07]

WISP	$\delta_{ }$	δ_{\perp}	m_ϕ^2
ALP (0 ⁻)	$g B^{ m ext} \omega$	0	$m_{\phi-}^2$
$ALP\ (0^+)$	0	$g_+ B^{ m ext} \omega$	$m_{\phi \pm}^2$
HP	$\chi m_{\gamma'}^2$	$\chi m_{\gamma'}^2$	$m_{\gamma'}^{2}$
MCP + HP	$-2\chi\omega^2 \Delta N_{ }$	$-2\chi\omega^2\overset{\prime}{\Delta}N_{\perp}$	$-2\omega^2\Delta^{'}N_{ ,\perp}$

Transition probability:

$$P(\gamma \to \phi) \simeq \frac{4\delta^2}{m_{\phi}^4} \sin^2 \frac{m_{\phi}^2 L}{4\omega}$$

 Linearly polarized laser beam in vacuum or along a transverse magnetic field

Place wall in beam pipe:

- laser beam will be absorbed

– neutral WISPs (ALP, γ') fly through wall and

 reconvert on other side o wall into photons, which can be detected

[Okun '82;Sikivie '83;Anselm '85;

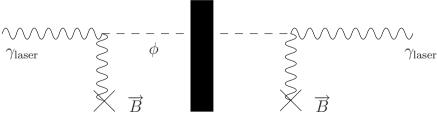
Experiment	Laser	< P >	Magnets
ALPS	532 nm; FP	30-300 W	$\begin{array}{c} \mathbf{B}_1 = \mathbf{B}_2 = 5 \text{ T} \\ \ell_1 = \ell_2 = 4.21 \text{ m} \end{array}$
BFRT	~ 500 nm; DL	100 W	$\begin{array}{c} B_1 = B_2 = 3.7 \; T \\ \ell_1 = \ell_2 = 4.4 \; m \end{array}$
V BMV	1064 nm; LULI	$8 imes 10^{21} \; \gamma/\mathrm{pulse}$	$\begin{array}{c} \mathbf{B}_1 = \mathbf{B}_2 = 11 \; \mathbf{T} \\ \ell_1 = \ell_2 = 0.25 \; \mathbf{m} \end{array}$
GammeV	532 nm;	3.2 W	$\begin{array}{c} \mathbf{B}_1 = \mathbf{B}_2 = 5 \; \mathbf{T} \\ \ell_1 = \ell_2 = 3 \; \mathbf{m} \end{array}$
LIPSS	900 nm; FEL	300 W	$\begin{array}{c} \mathbf{B}_1 = \mathbf{B}_2 = 1.7 \; \mathbf{T} \\ \ell_1 = \ell_2 = 1 \; \mathbf{m} \end{array}$
OSQAR	1064 nm; FP	> 1 kW	$\begin{array}{c} \mathbf{B}_1 = \mathbf{B}_2 = 9.5 \; \mathbf{T} \\ \ell_1 = \ell_2 = 14 \; \mathbf{m} \end{array}$

Pioneering experiment: BFRT

Several ongoing experiments

4. Light Shining through a Wall

- Linearly polarized laser beam in vacuum or along a transverse magnetic field
- Place wall in beam pipe:
 - laser beam will be absorbed
 - neutral WISPs (ALP, γ') fly through wall and
 - reconvert on other side of wall into photons, which can be detected


[Okun '82;Sikivie '83;Anselm '85;..]

- Pioneering experiment: BFRT
- Several ongoing experiments

ALPS (Any-Light Particle Search):

[AEI, DESY, Hamburger Sternwarte, Laser Zentrum Hannover]

4. Light Shining through a Wall

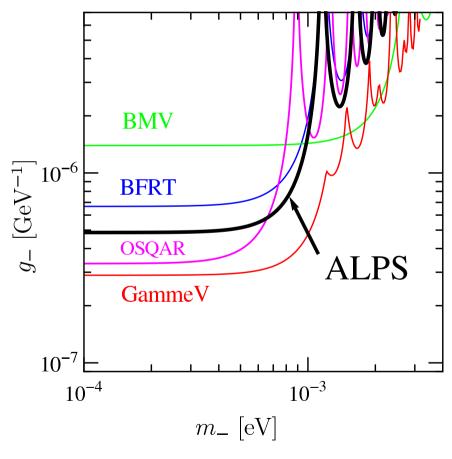
- Linearly polarized laser beam in vacuum or along a transverse magnetic field
- Place wall in beam pipe:
 - laser beam will be absorbed
 - neutral WISPs (ALP, γ') fly through wall and
 - reconvert on other side of wall into photons, which can be detected

[Okun '82;Sikivie '83;Anselm '85;..]

- Pioneering experiment: BFRT
- Several ongoing experiments

ALPS (Any-Light Particle Search):

[AEI, DESY, Hamburger Sternwarte, Laser Zentrum Hannover]


- Primary beam: enhanced LIGO laser (1064 nm, 35 W cw)
- \Rightarrow frequency doubled to 532 nm
- $\Rightarrow \sim 100$ fold power build up through resonant optical cavity (Fabry-Perot), $\sim 10~\mu m$ focus
- ⇒ CCD camera: expect regenerated photons in signal region of a few pixel

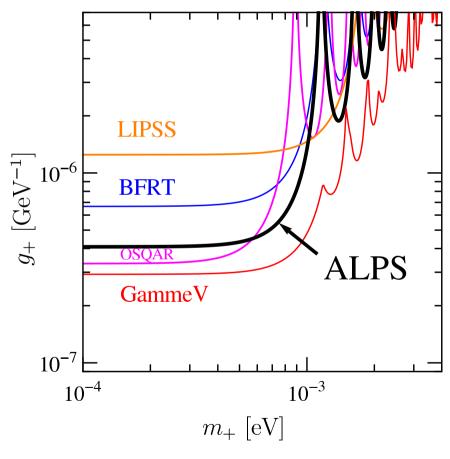
- Linearly polarized laser beam in vacuum or along a transverse magnetic field
- Place wall in beam pipe:
 - laser beam will be absorbed
 - neutral WISPs (γ' , ALP) fly through wall and
 - reconvert on other side of wall into photons, which can be detected

[Okun '82;Sikivie '83;Anselm '85;..]

- Pioneering experiment: BFRT
- Several ongoing experiments

Limits from **ALPS** run in December 2008 (0.03 kW at 532 nm):

[ALPS Collaboration '09]


Geneva, June 2009

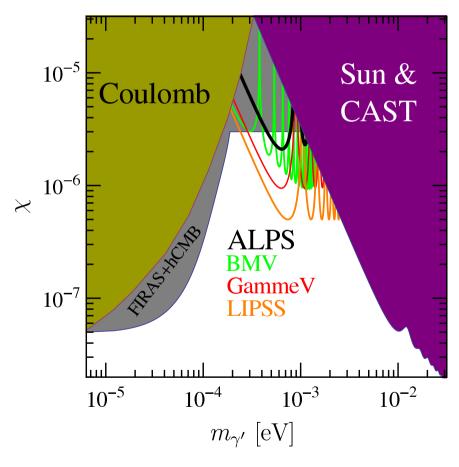
- Linearly polarized laser beam in vacuum or along a transverse magnetic field
- Place wall in beam pipe:
 - laser beam will be absorbed
 - neutral WISPs (γ' , ALP) fly through wall and
 - reconvert on other side of wall into photons, which can be detected

[Okun '82;Sikivie '83;Anselm '85;..]

- Pioneering experiment: BFRT
- Several ongoing experiments

Limits from **ALPS** run in December 2008 (0.03 kW at 532 nm):

[ALPS Collaboration '09]


Geneva, June 2009

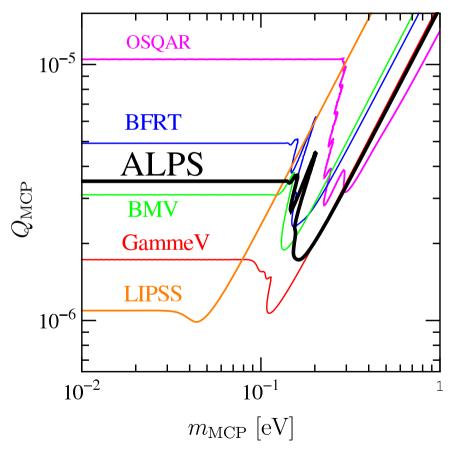
- Linearly polarized laser beam in vacuum or along a transverse magnetic field
- Place wall in beam pipe:
 - laser beam will be absorbed
 - neutral WISPs (γ' , ALP) fly through wall and
 - reconvert on other side of wall into photons, which can be detected

[Okun '82;Sikivie '83;Anselm '85;..]

- Pioneering experiment: BFRT
- Several ongoing experiments

Limits from **ALPS** run in December 2008 (0.03 kW at 532 nm):

[ALPS Collaboration '09]


Geneva, June 2009

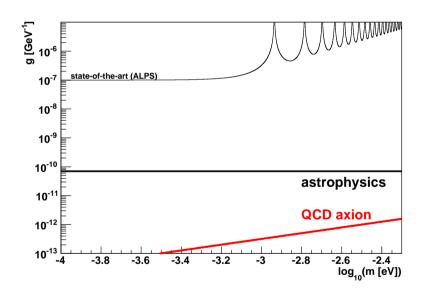
- Linearly polarized laser beam in vacuum or along a transverse magnetic field
- Place wall in beam pipe:
 - laser beam will be absorbed
 - neutral WISPs (γ' , ALP) fly through wall and
 - reconvert on other side of wall into photons, which can be detected

[Okun '82;Sikivie '83;Anselm '85;..]

- Pioneering experiment: BFRT
- Several ongoing experiments

Limits from **ALPS** run in December 2008 (0.03 kW at 532 nm):

[ALPS Collaboration '09]

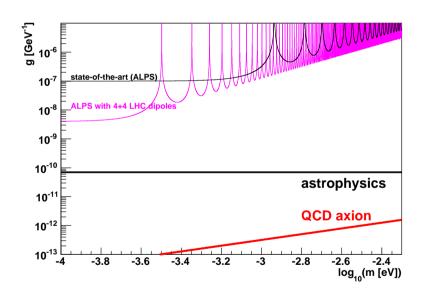

Geneva, June 2009

- Linearly polarized laser beam in vacuum or along a transverse magnetic field
- Place wall in beam pipe:
 - laser beam will be absorbed
 - neutral WISPs (γ' , ALP) fly through wall and
 - reconvert on other side of wall into photons, which can be detected

[Okun '82;Sikivie '83;Anselm '85;..]

- Pioneering experiment: BFRT
- Several ongoing experiments

Roadmap of ALP search with LSW:

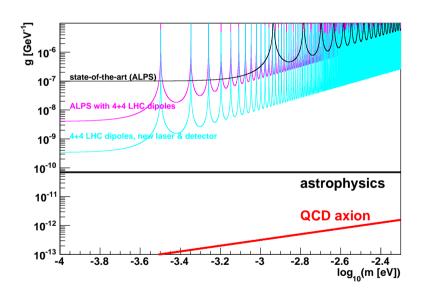

[A. Lindner '09]

- Linearly polarized laser beam in vacuum or along a transverse magnetic field
- Place wall in beam pipe:
 - laser beam will be absorbed
 - neutral WISPs (γ' , ALP) fly through wall and
 - reconvert on other side of wall into photons, which can be detected

[Okun '82;Sikivie '83;Anselm '85;..]

- Pioneering experiment: BFRT
- Several ongoing experiments

Roadmap of ALP search with LSW:

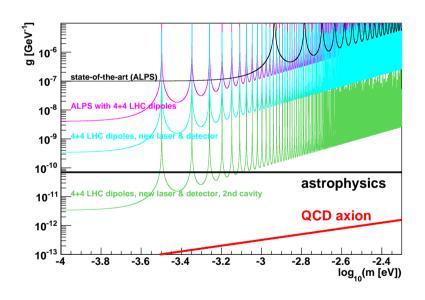

[A. Lindner '09]

- Linearly polarized laser beam in vacuum or along a transverse magnetic field
- Place wall in beam pipe:
 - laser beam will be absorbed
 - neutral WISPs (γ' , ALP) fly through wall and
 - reconvert on other side of wall into photons, which can be detected

[Okun '82;Sikivie '83;Anselm '85;..]

- Pioneering experiment: BFRT
- Several ongoing experiments

Roadmap of ALP search with LSW:


[A. Lindner '09]

- Linearly polarized laser beam in vacuum or along a transverse magnetic field
- Place wall in beam pipe:
 - laser beam will be absorbed
 - neutral WISPs (γ' , ALP) fly through wall and
 - reconvert on other side of wall into photons, which can be detected

[Okun '82;Sikivie '83;Anselm '85;..]

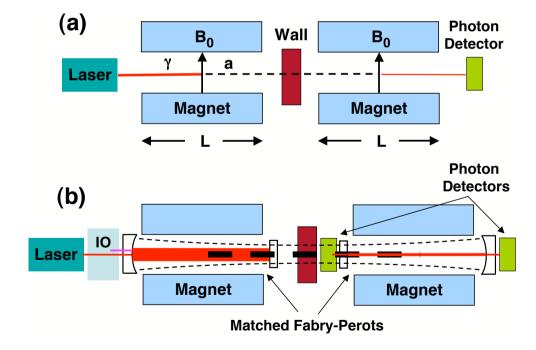
- Pioneering experiment: BFRT
- Several ongoing experiments

Roadmap of ALP search with LSW:

[A. Lindner '09]

39

4. Light Shining through a Wall

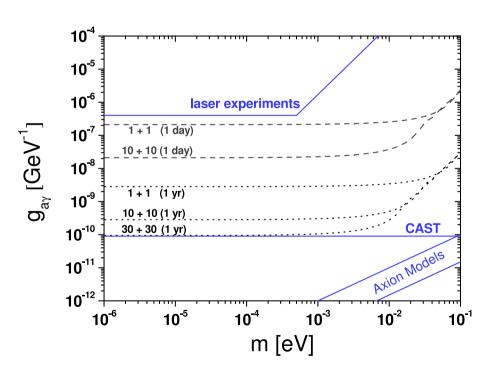

- Linearly polarized laser beam in vacuum or along a transverse magnetic field
- Place wall in beam pipe:
 - laser beam will be absorbed
 - neutral WISPs (ALP, γ') fly through wall and
 - reconvert on other side of wall into photons, which can be detected

[Okun '82;Sikivie '83;Anselm '85;..]

- Pioneering experiment: BFRT
- Several ongoing experiments

Second Fabry-Perot Cavity:

[Hoogeveen, Ziegenhagen '91; Sikivie, Tanner, van Bibber '07]


- Linearly polarized laser beam in vacuum or along a transverse magnetic field
- Place wall in beam pipe:
 - laser beam will be absorbed
 - neutral WISPs (ALP, γ') fly through wall and
 - reconvert on other side of wall into photons, which can be detected

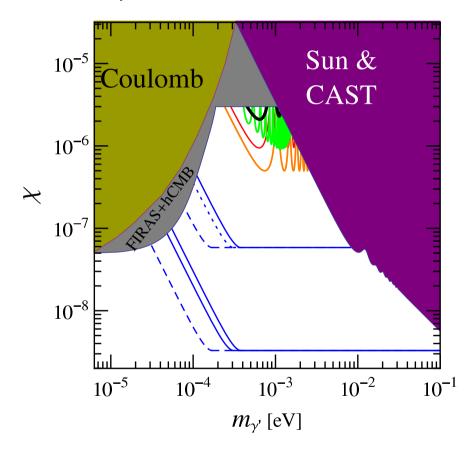
[Okun '82;Sikivie '83;Anselm '85;..]

- Pioneering experiment: BFRT
- Several ongoing experiments

XFEL or synchrotron light through wall suffers from "low" photon flux

[Rabadan, AR, Sigurdson '06; Dias, Lugones '09]

Geneva, June 2009

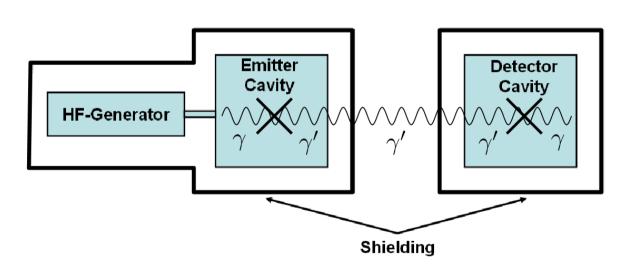

4. Light Shining through a Wall

- Linearly polarized laser beam in vacuum or along a transverse magnetic field
- Place wall in beam pipe:
 - laser beam will be absorbed
 - neutral WISPs (γ' , ALP) fly through wall and
 - reconvert on other side of wall into photons, which can be detected

[Okun '82;Sikivie '83;Anselm '85;..]

- Pioneering experiment: BFRT
- Several ongoing experiments

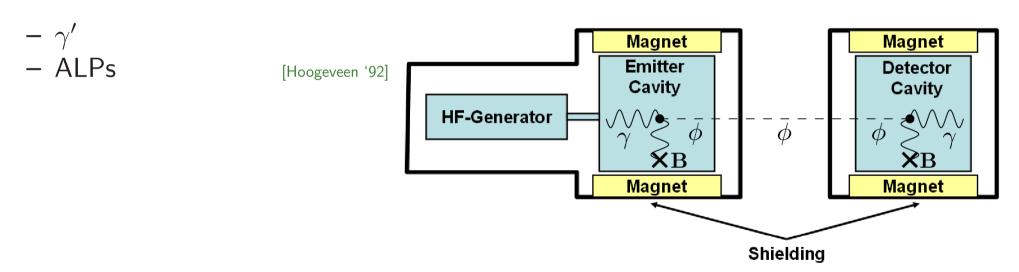
Roadmap of HP search with LSW:


[Redondo '09]

A. Ringwald (DESY)

 High quality cavities can be exploited to search for

[Jaeckel,AR '07;Caspers,Jaeckel,AR in prep.]

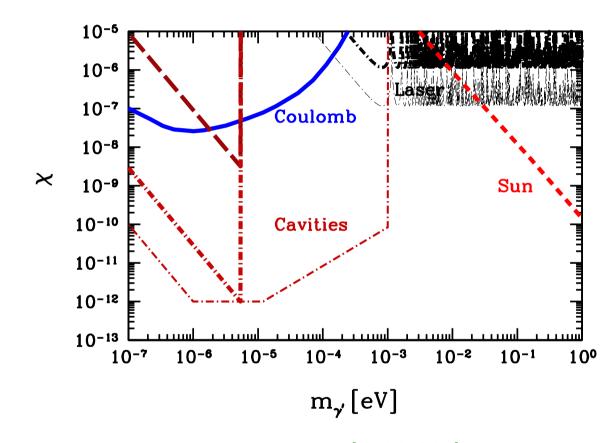

$$-\gamma'$$

[Jaeckel,AR '07]

 High quality cavities can be exploited to search for

[Jaeckel, AR '07; Caspers, Jaeckel, AR in prep.]

[Jaeckel, AR '07]


44

5. Microwave Cavity Experiments

 High quality cavities can be exploited to search for

[Jaeckel, AR '07; Caspers, Jaeckel, AR in prep.]

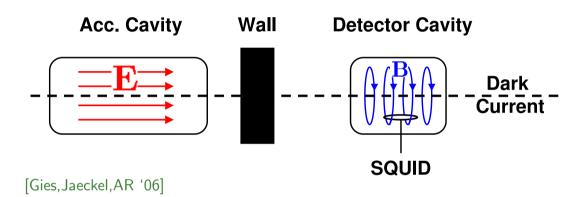
- $-\gamma'$
- ALPs
- Discovery potential:
 - substantial reach in parameter space for γ'
 - may reach $g \sim 10^{-10} \ {\rm GeV^{-1}}$ with presently available technology
- Yale: Experiment in progress

[Jaeckel, AR '07]

- Current-Through-a-Wall:
 - In strong electric field of accelerator cavity, minicharged particles may be produced in pairs and accelerated along the beam axis

$$E_{\rm crit}^e = \frac{m_e^2}{e} \simeq 10^{18} \, \frac{\rm V}{\rm m}$$

$$E_{\rm crit}^{\epsilon} = \frac{m_{\epsilon}^2}{\epsilon e} \simeq 5 \frac{\rm MV}{\rm m} \frac{10^{-6}}{\epsilon} \left(\frac{m_{\epsilon}}{\rm meV}\right)^2$$


Accelerator cavity: few $\times 10~\mathrm{MV/m}$

Focus of PW laser: few $\times 10^{14}~{\rm V/m}$

• Current-Through-a-Wall:

- In strong electric field of accelerator cavity, minicharged particles may be produced in pairs and accelerated along the beam axis
- MCP beam leaves cavity and is flowing through thick wall
- Corresponding electrical current can be measured directly via its induced magnetic field

[Gies, Jaeckel, AR '06]

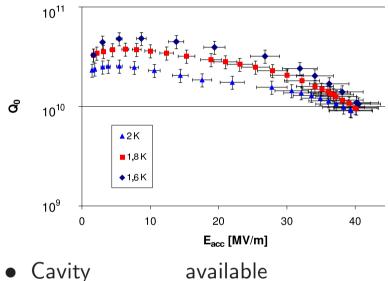
• Current-Through-a-Wall:

- In strong electric field of accelerator cavity, minicharged particles may be produced in pairs and accelerated along the beam axis
- MCP beam leaves cavity and is flowing through thick wall
- Corresponding electrical current can be measured directly via its induced magnetic field

[Gies, Jaeckel, AR '06]

ACDC (Accelerator Cavity Dark Current):

Cavity

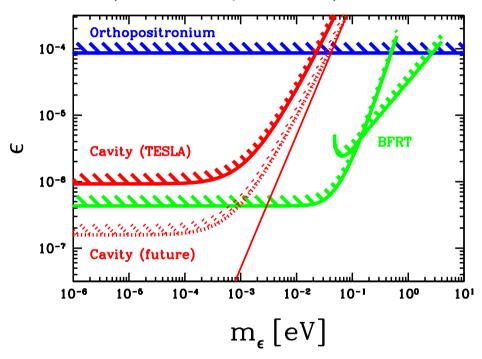

available

• Current-Through-a-Wall:

- In strong electric field of accelerator cavity, minicharged particles may produced in pairs accelerated along the beam axis
- MCP beam leaves cavity and is flowing through thick wall
- Corresponding electrical current can be measured directly via its induced magnetic field

[Gies, Jaeckel, AR '06]

ACDC (Accelerator Cavity Dark Current):



Current-Through-a-Wall:

- In strong electric field of accelerator cavity, minicharged particles may be produced in pairs and accelerated along the beam axis
- MCP beam leaves cavity and is flowing through thick wall
- Corresponding electrical current can be measured directly via its induced magnetic field

[Gies, Jaeckel, AR '06]

ACDC (Accelerator Cavity Dark Current):

[Gies, Jaeckel, AR '06]

Cavity available

• Current-Through-a-Wall:

- In strong electric field of accelerator cavity, minicharged particles may be produced in pairs and accelerated along the beam axis
- MCP beam leaves cavity and is flowing through thick wall
- Corresponding electrical current can be measured directly via its induced magnetic field

[Gies, Jaeckel, AR '06]

ACDC (Accelerator Cavity Dark Current):

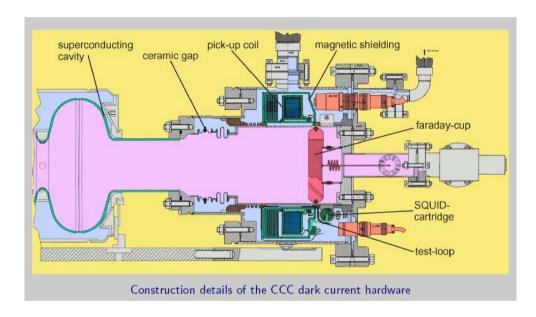
• Cavity and wall available

• Current-Through-a-Wall:

- In strong electric field of accelerator cavity, minicharged particles may be produced in pairs and accelerated along the beam axis
- MCP beam leaves cavity and is flowing through thick wall
- Corresponding electrical current can be measured directly via its induced magnetic field

[Gies, Jaeckel, AR '06]

ACDC (Accelerator Cavity Dark Current):

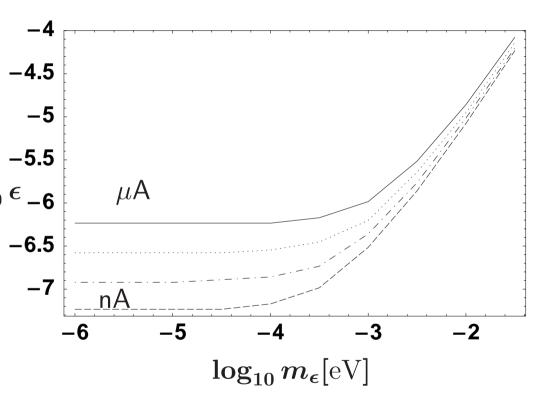

- Cavity and wall available
- Measurement device available (in princ.)

• Current-Through-a-Wall:

- In strong electric field of accelerator cavity, minicharged particles may be produced in pairs and accelerated along the beam axis
- MCP beam leaves cavity and is flowing through thick wall
- Corresponding electrical current can be measured directly via its induced magnetic field

[Gies, Jaeckel, AR '06]

ACDC (Accelerator Cavity Dark Current):

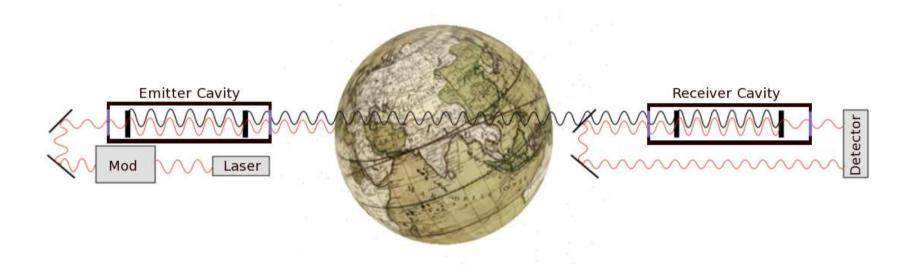

- Cavity and wall available
- Measurement device available (in princ.)

• Current-Through-a-Wall:

- In strong electric field of accelerator cavity, minicharged particles may be produced in pairs and accelerated along the beam axis
- MCP beam leaves cavity and is flowing through thick wall
- Corresponding electrical curret $\Re g_{10} \epsilon_{-6}$ can be measured directly via its induced magnetic field -6.5

[Gies, Jaeckel, AR '06]

ACDC (Accelerator Cavity Dark Current):



[Ahlers, Gies, Jaeckel, AR in prep.]

6. Conclusions

- A low-energy frontier is forming worldwide:
 - Fundamental physics with low energy photons and spare parts from high-energy frontier accelerators
- These laboratory experiments have considerable discovery potential for ultralight particles beyond the standard model, which appear quite naturally in realistic string compactifications:
 - axion-like particles
 - hidden-sector U(1) gauge bosons
 - hidden-sector fermions charged under these extra U(1)s
- ullet Theoretical predictions of masses and couplings very uncertain \Rightarrow any experimental hint or constraint extremely welcome!

 In contrast to a WIMP: If a WISP is found, it may have immediate applications ⇒ Hidden Laser Communications!

[Jaeckel, Redondo, AR '09]