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Problem 1 Multi-particle wavefunctions
There are three solid state electrons in the three different states |ψα〉 ≡ |α〉,
|ψβ〉 ≡ |β〉, and |ψγ〉 ≡ |γ〉. Write down the properly normalized many-body
quantum mechanical wavefunction for the three-electron system.

[2 points]

Problem 2 One-particle observables for solid state electrons
Consider the many-body system of solid-state electrons, with two different
one-particle observables

Ô1 =
∞

∑
i,j=1

O
(1)
ij ĉ
†
i ĉj , Ô′1 =

∞

∑
i,j=1

O
(1)′
ij ĉ†i ĉj . (1)

(a) When do such two observables, Ô1, Ô′1 commute with each other, i.e what
conditions must the one-particle matrix elements fulfill?

[4 points]

(b) Does this hold also for observables of a many-body system of bosons?

[2 points]

Problem 3 One-dimensional model of phonons
The task is to quantize the linear chain ofN next-neighbor coupled degrees of
freedom from exercise sheet 7, repetition exercise 7 (with periodic boundary
conditions). This serves as a

one-dimensional model for vibrational phonon excitations in a solid. Consi-
der the Hamiltonian

Ĥ0 =
N

∑
n=1

p̂2n
2m

+
N

∑
n=1

κ

2
(q̂n+1 − q̂n)2 , [q̂n, q̂n′ ] = [p̂n, p̂n′ ] = 0, [q̂n, p̂n′ ] = i~δnn′

(2)
with the canonical commutators of itsN coordinates and momenta q̂k, p̂k, k =
1, . . . N .

(a) Introduce the following creation and annihilation operators of one-particle
vibrational modes (phonons) to diagonalize the Hamiltonian:



q̂n = ∑
k

√
~

2mωk

(
zknb̂k + (zkn)∗b̂†k

)
, (3a)

p̂n = −i∑
k

√
~mωk

2

(
zknb̂k − (zkn)∗b̂†k

)
. (3b)

Here, the zkn are the kth powers of the nth N -root of unity (with periodicity
in k → k +N ),

zkn =
1√
N
e2πik

n
N . (4)

Proof their orthonormality and completeness:

N

∑
n=1

zk
′

n

∗
zkn = δkk′

N

∑
k=1

zkn′
∗
zkn = δnn′ . (5)

Invert the relations in Eq. (3) and show that b̂k, b̂
†
k′ fulfill canonical commuta-

tion relations.

[5 points]

(b) Proof
N

∑
n=1

zk
′

n z
k
n =

N

∑
n=1

zk
′

n

∗
zkn
∗

= δk,−k′ zkn±1 = e±2πi
k
N zkn . (6)

Diagonalize the Hamiltonian. In order for the off-diagonal terms (two crea-
tion or two annihilation operators) to cancel out, derive the condition on the
eigenfrequencies ωk in terms of κ,m.

[6 points]

(c) Show that an external force (e.g. from a constant electric field) of the form

Ĥ = Ĥ0 + V̂ , V̂ = −∑
n

Knq̂n (7)

does not change the phonon spectrum, but just simultaneously lowers all
energies by a certain amount. Calculate that amount in terms of the Kn.
Hint: You need a transformation on the creation and annihilation operators to re-
diagonalize the Hamiltonian.

[4 points]



Problem 4 Canonical ensemble

For a canonical ensemble with parameter β = 1/T (inverse temperature),
the probability distribution for energy eigenstates {|n〉} with energy {En} is
given as

Wn =
1

Z
exp [−βEn] . (8)

Here, the partition function Z is independent of n and determined by the
condition 1 = ∑nWn. Show the following relations for the expectation value
and variance of the energy:

− d

dβ
lnZ = 〈E〉 (9)

d2

dβ2
lnZ =

〈
E2
〉
− 〈E〉2 (10)

[4 points]

Problem 5 Canonical ensemble of harmonic oscillators

Calculate the partition function Z for a canonical ensemble of harmonic oscil-
lators with energy spectrum

{
En = ~ω

(
n+ 1

2

)
|n = 0, 1, ...

}
by summing the

infinite series. Show that the zero point energy drops from the probability
distribution, and redefine the partition function. What is the physics behind
this redefinition? Determine the expectation values 〈E〉 and 〈E2〉, and discuss
the limits βω → 0 und βω → +∞ for 〈E〉. What energy distribution do you
get, and what do the limits mean physically?

[6 points]

Problem 6 Time evolution of Klein-Gordon field operator

Consider the field operator of a Klein-Gordon field for scalar relativistic par-
ticles in the Heisenberg picture,

φ̂(x) =
∫
d̃p
(
âpe
−ip·x + â†pe

+ip·x) d̃p ≡ d3p

(2π)3(2Ep)
(11)

Show that it fulfills the Schrödinger equation,

i
∂

∂t
φ̂(x) = [φ̂(x), Ĥ] , (12)

where the Hamiltonian was derived in the lecture as

Ĥ =
∫
d̃p Ep â

†
pâp , (13)

and the canonical commutation relations of the creation and annihilation
operators are given by

[âp, â
†
q] = (2Ep)(2π)3δ3(~p− ~q) , [âp, âq] = 0 . (14)



[4 points]

Problem 7 System of two complex scalar fields

The Lagrangian (density) for two complex scalar fields Φ1, Φ2 with quartic
interaction is given by

L =
2

∑
i=1

∂µΦ∗i ∂
µΦi −m2

2

∑
i=1

Φ∗iΦi −
λ2

2

(
2

∑
i=1

Φ∗iΦi

)2

.

(a) Derive the equations of motion. Take Φ and Φ∗ as elementary dynamic de-
grees of freedom (real and imaginary part of Φ is also possible, but this way
it is easier!).

[4 points]

(b) Show that L is invariant under the infinitesimal transformation

Φi −→ Φ′i = Φi + iεa
σaij
2

Φj ,

where σa are the usual Pauli matrices

σ1 = −σ1 =

(
0 1
1 0

)
, σ2 = −σ2 =

(
0 −i
i 0

)
, σ3 = −σ3 =

(
1 0
0 −1

)
.

(15)
with commutation relations [σa, σb] = iεabcσc. εa are constant real parame-
ters. What are the corresponding Noether currents? Hint: The formula for the
Noether current can be found in Eq. (1) of exercise sheet 10.

[6 points]

(c) By using the equations of motions proof that the Noether currents are indeed
conserved, ∂µjaµ = 0.

[3 points]

(d) Calculate the energy-momentum tensor Tµν . Hint: The formula is in Eq. (14)
of exercise sheet 12.

[4 points]

Problem 8 Dirac matrices and all that ...



In the lecture, it was shown that the Dirac gamma matrices can be used to
construct the spinor representation of the Lorentz algebra. Consider the so-
challed chiral representation of the gamma matrices:

γµchiral =

(
0 σµ

σ̄µ 0

)
, i.e. γ0chiral =

(
0 12×2

12×2 0

)
γichiral =

(
0 σi

−σi 0

)
.

(16)
Again, the σi are the Pauli matrices.

(a) Show the behavior of the chiral representation under transposition, (γµ)T =?

[2 points]

(b) Consider the charge conjugation matrix, C = iγ2γ0. Proof the following pro-
perties:

C−1 = −C C† = −C , CT = −C , (17)

Calculate its form in the chiral representation.

[2 points]

(c) Calculate the following quantities

CΓTCT = ... for Γ =
{
1, γ5, γµ, γµγ5, σµν

}
. (18)

Here, γ5 = iγ0γ1γ2γ3 and σµν = i
2
[γµ, γν ].

[4 points]

(d) From the lecture we know that one switches between particles and antipar-
ticles by complex conjugation in fields, and that a real field corresponds to
particles being their own antiparticles. In order to discuss neutral spin 1/2
fermions, it is favorable to use a representation of gamma matrices where the
Dirac equation (i/∂ −m)ψ(x) = 0 becomes real. For this, the gamma matrices
need to be purely imaginary. Show that this set

γ0Majorana =

(
0 σ2

σ2 0

)
γ1Majorana =

(
iσ3 0
0 iσ3

)
(19)

γ2Majorana =

(
0 −σ2

σ2 0

)
γ3Majorana =

(
−iσ1 0

0 −iσ1

)
(20)

is indeed a representation of the Dirac algebra, {γµ, γν} = 2gµν14×4.

Proof that P± = 1
2

(1± σ2) are indeed projectors, and that the matrix U

U =

(
P− P+

P+ −P−

)
, γµMajorana = UγµchiralU

† (21)



indeed transfers the chiral into the Majorana representation.

In the Majorana representation, in order to define the condition necessary
to convert spinors into complex conjugated spinors, the charge conjugation
matrix needs to fulfill u = CvT , which implies C(γµ)TCT . It also has to fulfill
Eq. (17). Which matrix does the job of the charge-conjugation matrix in this
representation?

[6 points]


