Tutorials for the Lecture

Quantum Mechanics II

WS 20/21

Prof. Dr. J. Reuter
(Bldg. 2a/304), 3895
P. Bredt/F. Fabry; B. Richard; S. van Thurenhout; T. Wening;

Home Exercise 34 Helicity amplitudes

For massless fermions, efficient and modern ways to calculate quantum mechanical amplitudes, are via so-called two-spinor products, named after Weyl and van der Waerden. For this we introduce two auxiliary vectors, k_{0}^{μ}, k_{1}^{μ} with $k_{0}^{2}=0, k_{1}^{2}=-1, k_{0} \cdot k_{1}=0$. Next, we define basis spinors, u_{L}^{0} as the lefthanded spinor for a fermion with momentum k_{0}, and $u_{R}^{0}=\not_{1} u_{L}^{0}$. We then define for any light-like momentum $p, p^{2}=0$, the spinors

$$
\begin{equation*}
u_{L}(p)=\frac{1}{\sqrt{2 p \cdot k_{0}}} \not p u_{R}^{0} \quad \text { and } \quad u_{R}(p)=\frac{1}{\sqrt{2 p \cdot k_{0}}} \not p u_{L}^{0} \quad . \tag{1}
\end{equation*}
$$

Except for the case that p is proportional to k_{0} this fixes the phase convention for the spinors.
(a) Show that $u_{L}(p)$ and $u_{R}(p)$ with that definition are indeed left- and righthanded spinors, respectively.
(b) Show that $\not \hbar_{0} u_{R}^{0}=0$. Proof that for any light-like momentum $p, \not p u_{L}(p)=$ $p u_{R}(p)=0$.
(c) Now take the explicit choices $k_{0}=(E, 0,0,-E)$ and $k_{1}=(0,1,0,0)$. Construct $u_{L}^{0}, u_{R}^{0}, u_{L}(p), u_{R}(p)$ explicitly.
(d) We define the spinor product to $[p q]$ and $\langle p q\rangle$ for light-like momenta p, q by

$$
\begin{equation*}
[p q]:=\bar{u}_{R}(p) u_{L}(q) \quad,\langle p q\rangle:=\bar{u}_{L}(p) u_{R}(q) \tag{2}
\end{equation*}
$$

Use the explicit forms for the spinors from the former part and compute the spinor products explicitly. Show that

$$
\begin{equation*}
\langle p q\rangle=[q p]^{*} \quad,[p q]=-[q p] \tag{3}
\end{equation*}
$$

The two relations then also imply $\langle p q\rangle=-\langle q p\rangle$. Furthermore, proof

$$
\begin{equation*}
|[p q]|^{2}=2 p \cdot q \tag{4}
\end{equation*}
$$

Thus the spinor products are the square roots of the 4 -vector products.
(e) Show that

$$
\begin{equation*}
u_{L}^{0} \bar{u}_{L}^{0}=\frac{1-\gamma^{5}}{2} \not k_{0}, \quad u_{R}^{0} \bar{u}_{R}^{0}=\frac{1+\gamma^{5}}{2} \not k_{0} \tag{5}
\end{equation*}
$$

(f) Use the identities of part (e), and the Dirac matrix trace formulae to show again (and independent of the special choice of k_{0} and k_{1}) the relation

$$
\begin{equation*}
|[p q]|^{2}=2 p \cdot q \tag{6}
\end{equation*}
$$

Home Exercise 35 Recap

Recap all of the exercises and lectures, collect and ask questions, on technical points like calculations etc. or on conceptual points and problems of understanding.

