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Home Exercise 24 Proof of the Noether theorem
Consider a Lagrangian of a scalar field L = L(φ, ∂µφ) which is supposed to
be invariant under a specific (infinitesimal) symmetry transformation of the
scalar field, φ(x) → φ′(x) = φ(x) + δεφ(x). Use the invariance of the Lagran-
gian and the Euler-Lagrange equations of motion to show that the Noether
current of the symmetry transformation

jµ(x) :=
∂L

∂(∂µφ)
δεφ(x) (1)

is conserved,
∂µj

µ(x) = 0 . (2)
Show that the space integral over the zero-component of the current (the con-
served charge, the generator of the symmetry transformation) is conserved in
time,

d

dt
Q =

d

dt

∫
d3~xj0(x) = 0 . (3)

Hint: Use the current conservation and the fact that together with the fields
the current vanishes at spatial infinity.

Home Exercise 25 Dirac representation of the Dirac matrices
In the lecture, the chiral representation of the Dirac matrices

γµchiral =

(
0 σµ

σ̄µ 0

)
, i.e. γ0chiral =

(
0 1

1 0

)
, γichiral =

(
0 σi

−σi 0

)
, i = 1, 2, 3

(4)
was discussed, which is most suited for ultra-relativistic particles as there
helicity and chirality are the same, strictly in the limit m→ 0, or v/c→ 1. For
the non-relativistic limit, e.g. to discuss relativistic effects of bound electrons
in atoms, the Dirac representation is better suited:

γ0Dirac =

(
1 0
0 −1

)
, γiDirac =

(
0 σi

−σi 0

)
, i = 1, 2, 3 . (5)

(a) Show that the gamma matrices in the Dirac representation obey the Dirac
algebra, {γµ, γν} = 2gµν · 1.

(b) Find a unitary transformation between the chiral and Dirac representation.
Can you also prove from the fact that it was shown that chiral representation
obeys the Dirac algebra, that also the Dirac representation does?

(c) Determine γ5 = iγ0γ1γ2γ3, the chiral projectors 1
2
(1 ± γ5) as well as 1√

2
(1 −

γ0γ5) in the Dirac representation.



(d) Show that γ0 is Hermitian and γi anti-Hermitian. Does this depend on the
explicit matrix representation?

(e) Show that

γ0(γµ)†γ0 = γµ, γ0(Sµν)†γ0 = Sµν , where Sµν =
i

4
[γµ, γν ] . (6)

(f) Show that

γ5 =
−i
4!
εµνρσγµγνγργσ, mit ε0123 = +1 (7)

(g) Show {
γµ, γ5

}
= 0, [γ5, Sµν ] = 0 . (8)

Home Exercise 26 More properties of Gamma matrices (voluntary), but use the
results for Home Ex. 27

Disclaimer: Never use an explicit representation for the gamma matrices in
this exercise. Traces over gamma matrices are very handy in all kind of cal-
culations of scattering processes of quantum electrodynamics.

(a) Show that a trace over an odd number of gamma matrices vanishes. For this,
use (γ5)2 = 1 and {γ5, γµ}. What does this imply for Tr [γµ]?

(b) Proof Tr [γ5] = 0.

(c) Use the Dirac algebra to show

Tr [γµγν ] = 4gµν Tr [γµγνγργσ] = 4(gµνgρσ + gµσgνρ − gµρgνσ). (9)

(d) Show Tr [γ5γµ1 . . . γµn ] = 0 for n odd.

(e) Show Tr [γµγνγ5] = 0. Which square of a gamma matrix do you use here?

(f) Calculate Tr [γµγνγργσγ5] (use an index combination and the symmetry).

(g) Proof the following contraction identities:

γµγµ = 4 γµγργµ = −2γρ γµγργσγµ = 4gρσ γµγνγργσγµ = −2γσγργν

(10)

Home Exercise 27 Gamma matrices as a basis

(a) Show that the following 16 matrices (S = scalar, V = vector, T = tensor, A =
axial vector, P = pseudoscalar)

ΓS = 1, ΓV = γµ, ΓT = σµν =
i

2
[γµ, γν ], ΓA = γµγ5, ΓP = γ5 (11)



are a basis for 4×4-Matrizen, i.e. every 4×4-Matrix can be written as a linear
combination of them. For that, demand the vanishing of the following linear
combination:

∑
i=S,V,T,A,P

λiΓi = λS1 + λVµ γ
µ + λTµνσ

µν + λAµγ
µγ5 + λPγ5 = 0. (12)

Mulitply successively with the corresponding matrices, and form the trace.

Repetition QM I Exercise 11 Gauge transformation

The state ψ(x, t) be a solution of the Schrödinger equation for a particle in an
electromagnetic field with scalar potential φ and vector potential ~A.

i~
∂

∂t
ψ(~x, t) = Ĥψ(~x, t), Ĥ =

1

2m

(
~̂p− e

c
~A(~̂x)

)2

+ eφ(~̂x) (13)

Reminder: φ′(~x, t) = φ(~x, t) + 1
c
∂f(~x,t)
∂t

, ~A′(~x, t) = ~A(~x, t)− ~∇f(~x, t). Show that
the gauge-transformed state

ψ′(~x, t) = e−
ie
~cf(~x,t)ψ(~x, t) (14)

is a solution of a Schrödinger equation for the same electromagnetic fields ~E
and ~B, i.e. the gauge-transformed Schrödinger equation.

Hint: Verify first: (~̂p− e
c
~A′)e−

ie
~cf(~x,t) = e−

ie
~cf(~x,t)(~̂p− e

c
~A)

Repetition QM I Exercise 12 Magnetic moment in a homogeneous field

Consider a spin-1
2

particle like an electron of mass m and charge e in a homo-
geneous magnetic field ~B. The Hamiltonian in such a case is given by

Ĥ =
1

2m

(
~̂p2 − e

c
~A(~̂x)

)2

− g ~̂S · ~B . (15)

Determine the magnetic moment of ~̂µ of the particle. Hint: Remember how to
write down the vector potential for a constant homogeneous magnetic field,
and also remember that the magnetic moment is given by the negative deri-
vative of the Hamiltonian with respect to the magnetic field,

~̂µ = − ∂Ĥ

∂ ~B
. (16)


