Tutorials for the Lecture

Quantum Mechanics II

WS 20/21
Prof. Dr. J. Reuter
Tutorial 9
(Bldg. 2a/304), 3895
P. Bredt/F. Fabry; B. Richard; S. van Thurenhout; T. Wening;
20.01.2021

Home Exercise 20 Relativistically covariant phase-space integration

Show for integrals for functions of 4-momentum k^{μ} the following integral identity:

$$
\begin{equation*}
\int \widetilde{d k} f\left(k^{\mu}\right):=\left.\int \frac{d^{3} k}{(2 \pi)^{3}\left(2 k^{0}\right)} f\left(k^{\mu}\right)\right|_{k^{0}=+\sqrt{\vec{k}^{2}+m^{2}}}=\int \frac{d^{4} k}{(2 \pi)^{4}}(2 \pi) \delta\left(k^{2}-m^{2}\right) \theta\left(k^{0}\right) f\left(k^{\mu}\right) \tag{1}
\end{equation*}
$$

In which cases is this integral Lorentz invariant?

Home Exercise 21 Kinematics: Mandelstam variables

For simple scattering reactions of relativistic elementary particles with two particles in initial and final state (so called $2 \rightarrow 2$ processes) with the kinematics

$$
\begin{equation*}
p_{1}+p_{2} \rightarrow q_{1}+q_{2}, \quad p_{1}^{2}=m_{1}^{2}, p_{2}^{2}=m_{2}^{2}, q_{1}^{2}=m_{3}^{2}, q_{2}^{2}=m_{4}^{2} \tag{2}
\end{equation*}
$$

it is useful to introduce the relativistically invariant Mandelstam variables:

$$
\begin{align*}
& s \equiv\left(p_{1}+p_{2}\right)^{2}=\left(q_{1}+q_{2}\right)^{2} \tag{3a}\\
& t \equiv\left(q_{1}-p_{1}\right)^{2}=\left(p_{2}-q_{2}\right)^{2} \tag{3b}\\
& u \equiv\left(q_{1}-p_{2}\right)^{2}=\left(p_{1}-q_{2}\right)^{2} \tag{3c}
\end{align*}
$$

(a) Proof the relation

$$
\begin{equation*}
s+t+u=m_{1}^{2}+m_{2}^{2}+m_{3}^{2}+m_{4}^{2} . \tag{4}
\end{equation*}
$$

(b) We define the function

$$
\begin{equation*}
\lambda(a, b, c)=a^{2}+b^{2}+c^{2}-2 a b-2 b c-2 c a . \tag{5}
\end{equation*}
$$

Show that the momentum of two relativistic particles in their center-of-mass system can be written as

$$
\begin{equation*}
\vec{p}_{\mathrm{CMS}}^{2}=\frac{1}{4 s} \lambda\left(s, m_{1}^{2}, m_{2}^{2}\right) . \tag{6}
\end{equation*}
$$

Home Exercise 22 Vector representation of Lorentz algebra

Show that the generator for Lorentz transformation in the vector representation, $\left(M^{\mu \nu}\right)^{\alpha}{ }_{\beta}=i\left(g^{\alpha \mu} \delta^{\nu}{ }_{\beta}-g^{\alpha \nu} \delta^{\mu}{ }_{\beta}\right)$ indeed obeys the Lorentz algebra:

$$
\left[M^{\mu \nu}, M^{\rho \sigma}\right]=-i\left(g^{\mu \rho} M^{\nu \sigma}+g^{\nu \sigma} M^{\mu \rho}-g^{\mu \sigma} M^{\nu \rho}-g^{\nu \rho} M^{\mu \sigma}\right)
$$

Home Exercise 23 Creation and annihilation operators of a complex scalar field

Take the field operator of a complex scalar field in the form

$$
\begin{equation*}
\hat{\phi}(x)=\int \widetilde{d k}\left(\hat{a}_{k} e^{-i k x}+\hat{b}_{k}^{\dagger} e^{i k x}\right), \quad \widetilde{d k} \equiv \frac{d^{3} \vec{k}}{(2 \pi)^{3}\left(2 E_{k}\right)} \tag{7}
\end{equation*}
$$

and the commutation relations of the particle and antiparticles creation and annihilation operatos

$$
\begin{equation*}
\left[\hat{a}_{k}, \hat{a}_{p}^{\dagger}\right]=\left[\hat{b}_{k}, \hat{b}_{p}^{\dagger}\right]=\left(2 E_{k}\right)(2 \pi)^{3} \delta^{3}(\vec{k}-\vec{p}) \tag{8}
\end{equation*}
$$

Show that the creation and annihilation operators can be projected out of the field (and adjoint field) operator in the following way:

$$
\begin{equation*}
\hat{a}_{k}=i \int d^{3} x e^{i k x} \stackrel{\leftrightarrow}{\partial}_{t} \hat{\phi}(x), \quad \hat{b}_{k}=-i \int d^{3} x e^{i k x} \stackrel{\leftrightarrow}{\partial}_{t} \hat{\phi}^{\dagger}(x) . \tag{9}
\end{equation*}
$$

We used the following symbol, $\stackrel{\leftrightarrow}{\partial}$, which stands for

$$
\begin{equation*}
A \stackrel{\leftrightarrow}{\partial} B=A(\partial B)-(\partial A) B \tag{10}
\end{equation*}
$$

Repetition QM I Exercise 9 Regularized incarnation of delta distribution

Show that $\lim _{\epsilon \rightarrow 0} \delta_{\epsilon}(x) \equiv \lim _{\epsilon \rightarrow 0} \frac{1}{\pi} \frac{\epsilon}{x^{2}+\epsilon^{2}}, \epsilon>0$ is a representation of the delta distribution/function. For this determine the function values of δ_{ϵ} in the limit $\epsilon \rightarrow 0$ and verify that - independent of ϵ - always $\int_{-\infty}^{+\infty} d x \delta_{\epsilon}(x)=1$ holds. The last step is to show $\int_{-\infty}^{+\infty} d x\left(\lim _{\epsilon \rightarrow 0} \delta_{\epsilon}(x)\right) f(x)=f(0)$. For this, substitute $x=\epsilon \xi$ and assume that you are allowed to exchange limit and integration.

Repetition QM I Exercise 10 Two-particle problem with central potential

Consider two particles with different masses m_{1} and m_{2}, whose interaction only depends on the relative distance of the particles (central force problem). The Hamiltonian of the system be

$$
\begin{equation*}
\hat{H}=\frac{\hat{\vec{p}}_{1}^{2}}{2 m_{1}}+\frac{\hat{\vec{p}}_{2}^{2}}{2 m_{2}}+V\left(\left|\hat{\vec{r}}_{1}-\hat{\vec{r}}_{2}\right|\right) \tag{11}
\end{equation*}
$$

As in our setup for multi-particle quantum mechanics, operators that describe observables of one of the particles commute with those of the other particle ("live in a different Hilbert space"),

$$
\begin{equation*}
\left[\hat{\mathcal{O}}_{1}, \hat{\mathcal{O}}_{2}^{\prime}\right]=0 \tag{12}
\end{equation*}
$$

(a) Are the orbital angular momenta of particles 1 and $2, \hat{\vec{L}}_{1}$ und $\hat{\vec{L}}_{2}$ constants of motion? (i.e. that these operators commute componentwise with the Hamiltonian.) If not, does a linear combination exist which is a constant of motion?
(b) Now transfer the problem to an effective one-particle problem by using a separation ansatz. For this split the coordinates into those for the center-ofmass system and relative coordinates, and show that the total angular momentum of the system $\hat{\vec{L}}=\hat{\vec{L}}_{1}+\hat{\vec{L}}_{2}$ can be written as

$$
\begin{equation*}
\hbar \hat{\vec{L}}=\hat{\vec{R}} \times \hat{\vec{P}}+\hat{\vec{r}} \times \hat{\vec{p}}, \tag{13}
\end{equation*}
$$

where $\hat{\vec{R}}=\frac{m_{1} \hat{\vec{r}}_{1}+m_{2} \hat{\vec{r}}_{2}}{m_{1}+m_{2}}, \hat{\vec{p}}=\frac{m_{2} \hat{\vec{p}}_{1}-m_{1} \hat{\vec{p}}_{2}}{m_{1}+m_{2}}, \hat{\vec{r}}=\hat{\vec{r}}_{1}-\hat{\vec{r}}_{2}$ und $\hat{\vec{P}}=\hat{\vec{p}}+\hat{\vec{p}}_{2}$. Show that corresponding quantities are canonically conjugated.
(c) We now add another term to Hamiltonian, a so-called spin-orbit coupling term, which contains the total spin of the system, $\hat{\vec{S}}$, which fulfills the relations $\left[\hat{S}_{i}, \hat{S}_{j}\right]=\mathrm{i} \epsilon_{i j k} \hat{S}_{k}$, and $\left[\hat{S}_{i}\right.$, remainder $]=0$. This adds to the Hamiltonian for the relative motion, $\hat{H}_{\text {rel }}$ a term $\hat{H}_{\text {SL }}=f(|\hat{\vec{r}}|)(\hat{\vec{r}} \times \hat{\vec{p}}) \cdot \hat{\vec{S}}$. Is $\hat{\vec{L}}$ still a constant of motion, component-wise? If not, find a new constant of motion.

