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Home Exercise 20 Relativistically covariant phase-space integration

Show for integrals for functions of 4-momentum kµ the following integral
identity:∫
d̃kf(kµ) :=

∫
d3k

(2π)3(2k0)
f(kµ)

∣∣∣∣
k0=+

√
~k2+m2

=
∫

d4k

(2π)4
(2π)δ(k2−m2)θ(k0)f(kµ).

(1)
In which cases is this integral Lorentz invariant?

Home Exercise 21 Kinematics: Mandelstam variables

For simple scattering reactions of relativistic elementary particles with two
particles in initial and final state (so called 2→ 2 processes) with the kinema-
tics

p1 + p2 → q1 + q2, p21 = m2
1, p

2
2 = m2

2, q
2
1 = m2

3, q
2
2 = m2

4 (2)
it is useful to introduce the relativistically invariant Mandelstam variables:

s ≡ (p1 + p2)
2 = (q1 + q2)

2 (3a)
t ≡ (q1 − p1)2 = (p2 − q2)2 (3b)
u ≡ (q1 − p2)2 = (p1 − q2)2 (3c)

(a) Proof the relation
s+ t+ u = m2

1 +m2
2 +m2

3 +m2
4. (4)

(b) We define the function

λ(a, b, c) = a2 + b2 + c2 − 2ab− 2bc− 2ca. (5)

Show that the momentum of two relativistic particles in their center-of-mass
system can be written as

~p 2
CMS =

1

4s
λ(s,m2

1,m
2
2). (6)

Home Exercise 22 Vector representation of Lorentz algebra

Show that the generator for Lorentz transformation in the vector representa-
tion, (Mµν)αβ = i

(
gαµδνβ − gανδ

µ
β

)
indeed obeys the Lorentz algebra:

[Mµν ,Mρσ] = −i (gµρMνσ + gνσMµρ − gµσMνρ − gνρMµσ) .



Home Exercise 23 Creation and annihilation operators of a complex scalar field

Take the field operator of a complex scalar field in the form

φ̂(x) =
∫
d̃k
(
âke
−ikx + b̂†ke

ikx
)
, d̃k ≡ d3~k

(2π)3(2Ek)
, (7)

and the commutation relations of the particle and antiparticles creation and
annihilation operatos

[âk, â
†
p] = [b̂k, b̂

†
p] = (2Ek)(2π)

3δ3(~k − ~p) . (8)

Show that the creation and annihilation operators can be projected out of the
field (and adjoint field) operator in the following way:

âk = i
∫
d3x eikx

↔
∂ t φ̂(x), b̂k = −i

∫
d3x eikx

↔
∂ t φ̂

†(x). (9)

We used the following symbol,
↔
∂ , which stands for

A
↔
∂B = A(∂B)− (∂A)B. (10)

Repetition QM I Exercise 9 Regularized incarnation of delta distribution

Show that limε→0 δε(x) ≡ limε→0
1

π

ε

x2 + ε2
, ε > 0 is a representation of the delta

distribution/function. For this determine the function values of δε in the limit
ε → 0 and verify that – independent of ε – always

∫ +∞
−∞ dx δε(x) = 1 holds.

The last step is to show
∫ +∞
−∞ dx (limε→0 δε(x))f(x) = f(0). For this, substitute

x = εξ and assume that you are allowed to exchange limit and integration.

Repetition QM I Exercise 10 Two-particle problem with central potential

Consider two particles with different masses m1 and m2, whose interaction
only depends on the relative distance of the particles (central force problem).
The Hamiltonian of the system be

Ĥ =
~̂p21
2m1

+
~̂p22
2m2

+ V (
∣∣∣~̂r1 − ~̂r2∣∣∣) . (11)

As in our setup for multi-particle quantum mechanics, operators that des-
cribe observables of one of the particles commute with those of the other
particle (”live in a different Hilbert space”),

[Ô1, Ô′2] = 0. (12)



(a) Are the orbital angular momenta of particles 1 and 2, ~̂L1 und ~̂L2 constants of
motion? (i.e. that these operators commute componentwise with the Hamil-
tonian.) If not, does a linear combination exist which is a constant of motion?

(b) Now transfer the problem to an effective one-particle problem by using a
separation ansatz. For this split the coordinates into those for the center-of-
mass system and relative coordinates, and show that the total angular mo-

mentum of the system ~̂L = ~̂L1 + ~̂L2 can be written as

~~̂L = ~̂R× ~̂P + ~̂r × ~̂p, (13)

where ~̂R = m1~̂r1+m2~̂r2
m1+m2

, ~̂p = m2~̂p1−m1~̂p2
m1+m2

, ~̂r = ~̂r1 − ~̂r2 und ~̂P = ~̂p1 + ~̂p2. Show that
corresponding quantities are canonically conjugated.

(c) We now add another term to Hamiltonian, a so-called spin-orbit coupling

term, which contains the total spin of the system, ~̂S, which fulfills the relati-
ons [Ŝi, Ŝj] = iεijkŜk, and [Ŝi, remainder] = 0. This adds to the Hamiltonian

for the relative motion, Ĥrel. a term ĤSL = f(|~̂r|)(~̂r× ~̂p) · ~̂S. Is ~̂L still a constant
of motion, component-wise? If not, find a new constant of motion.


