
DESY Theory Group, Hamburg

Tutorials for the Lecture

Quantum Mechanics II WS 20/21

Prof. Dr. J. Reuter Tutorial 8
(Bldg. 2a/304), 3895
P. Bredt/F. Fabry; B. Richard; S. van Thurenhout; T. Wening; 13.01.2021

Home Exercise 18 Connection between Lorentz group and SL(2,C)

(a) In the lecture the Lorentz transformation matrices for the two smallest non-
trivial representations of the Lorentz group, the left-chiral and right-chiral
spinor transformation, (1

2
, 0) and (0, 1

2
), were derived as:

ΛL =Λ( 1
2
,0) = exp

[
− i

2
(~φ− i~ν)σ

]
, (1)

ΛR =Λ(0, 1
2

) = exp
[
− i

2
(~φ+ i~ν)σ

]
. (2)

Here, σi, i = 1, 2, 3 are the three Pauli matrices, φi ∈ R are the three Euler
angles parameterizing rotations, and νi ∈ R are the boost parameters for the
boosts along the three different axes.

Show that these matrices are not unitary. Furthermore, show that they have
unit determinant. Hence, they constitute the group of special linear transfor-
mation in two (complex) dimensions, SL(2,C).

(b) For SL(2,C), we introduce the following generalization of the Pauli matrices:

σµ = (1, ~σ) σ̄µ = (1,−~σ) ,1 ≡ 12×2 (3)

Show that they have the following properties:

σµσ̄ν + σν σ̄µ = 2gµν · 1 (4)
σ̄µσν + σ̄νσµ = 2gµν · 1 (5)

Tr [σµσ̄ν ] = 2gµν (6)

σ2σµσ2 = σ̄µ T (7)

σ2σ̄µσ2 = σµT (8)

(c) Now, we write down the following representation of a Minkowski 4-vector
as a 2× 2 matrix:

X := xµσ
µ . (9)

Write the explicit matrix form ofX , show that it is Hermitian, and calculate its
determinant. What can you see about the Lorentz transformation properties
of the result for the determinant?

(d) Use the results from part (b) to project out the individual xµ components from
X .

(e) Repeat (c) and (d) for the second possibility to map a Minkowski 4-vector to
a Hermitian 2× 2 matrix,

X̄ := xµσ̄
µ . (10)



(f) Next, we do a SL(2,C) transformation on X ,

X 7→ X ′ = ΛLX Λ†L . (11)

What holds for the determinant of X ′? Hence, what kind of transformation
is ΛLX Λ†L? Why do we have to take Λ†L and not Λ−1

L or ΛT
L?

(g) Use part (d) to derive the form of the vectorial Lorentz transformation Λµ
νx

ν

in terms of the so called spin tensors σµ and σ̄µ.

(h) From all this, derive now the Lorentz transformation properties of the spin
tensors, σµ 7→ σ′µ, taking the transformation of X̄ ′ as

X̄ 7→ X̄ ′ = ΛR X̄ Λ†R . (12)

(i) Convince yourself either from the transformation law Eq. (11) or the transfor-
mation law in (h) that indeed the φi, i = 1, 2, 3 parameterize rotations around
the i axis, while the νi parameterize boosts along the i axis.

Home Exercise 19 Heavyside step function and Green’s function

(a) Show that the Heaviside step function is given by the following integral re-
presentation:

θ(t) · e−iEt =
∫
dΩ

2π
e−iΩt

i

Ω− E + iε
. (13)

(b) The Green’s function (propagator)G(~x, t; ~x′, t′) for the wave function of a free
particle is given by

iΦ(~x, t)θ(t− t′) =
∫
d3~x′G(~x, t; ~x′, t′)Φ(~x′, t′) . (14)

Find a representation of the propagator in terms of an expansion in a com-
plete orthonormal basis of solutions of the free Schrödinger equation.

Repetition QM I Exercise 7 Clebsch-Gordan coefficients and normalization

When adding two angular momenta to a total angular momentum, J = j1 +
j2, this constitutes just a change of basis in Hilbert space,

|J,M〉 = ∑
m1,m2

C(j1,m1; j2,m2| J,M) |j1,m1〉 ⊗ |j2,m2〉 . (15)

Determine the Clebsch-Gordan coefficients, which are the coefficients of the
expansion of the total angular momentum with respect to the added angular
momenta, and proof their normalization

∑
m1,m2

|C(j1,m1; j2,m2| J,M)|2 = 1 . (16)



Repetition QM I Exercise 8 Coupling of orbital angular momentum and spin

(a) Consider an orthonormal basis {|`,m`; s,ms〉} := {|`,m`〉 ⊗ |s,ms〉} of simul-

taneous eigenkets of orbital angular momentum, ~̂L2, L̂z and spin ~̂S2, Ŝz with

~̂L2 |`,m`; s,ms〉 = `(`+ 1) |`,m`; s,ms〉 (17)

~̂S2 |`,m`; s,ms〉 = s(s+ 1) |`,m`; s,ms〉 (18)

~̂Lz |`,m`; s,ms〉 = m` |`,m`; s,ms〉 (19)

~̂Sz |`,m`; s,ms〉 = ms |`,m`; s,ms〉 (20)

with ` = 1 and s = 1
2
.

(a) Couple orbital angular momentum and spin to total angular momentum,
~̂J = ~̂L + ~̂S with j = 3

2
. Determine an orthonormal basis, {|j,mj〉} of simul-

taneous eigenkets of ~̂L2, ~̂S2, ~̂J2, and Ĵz of total angular momentum, orbital
angular momentum and spin, but only the z component of the total angular
momentum (but not the inidividual m`, ms). Hint: Determine the uniquely
given “highest weight” state

∣∣3
2
, 3

2

〉
and construct all others by repeated ap-

plication of the lowering operator Ĵ−. Use the results from Repetition QM I
Exercise 5.

(b) Now for general ` and j = `+ 1
2
, show by induction with respect to mj that

∣∣∣∣j = `+
1

2
,mj

〉
=

√
`+mj + 1

2

2`+ 1

∣∣∣∣`,m` = mj −
1

2
;
1

2
,
1

2

〉

+

√
`−mj + 1

2

2`+ 1

∣∣∣∣`,m` = mj +
1

2
;
1

2
,−1

2

〉
. (21)


