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Home Exercise 15 Casimir Operators of Poincaré algebra

Casimir operators are by definition those that commute with the whole set of
operators (the “underlying algebra”) and with each other, so they constitute
the maximal set of simultaneously diagonalizable operators. Hence, all states
can be expressed by their eigenvalues (“quantum numbers”).

The Poincaré algebra of space-time symmetries consists of the boost and ro-
tation generators, Mµν , as well as the energy-momentum 4-vector, P µ, being
the generator of time-space translations:

[P µ, P ν ] = 0 (1a)
[Mµν ,Mρσ] = −i (gµρMνσ − gµσMνρ − gνρMµσ + gνσMµρ) (1b)

[P µ,Mρσ] = i (gµρP σ − gνσP ρ) (1c)

(The mathematicians would call this the semi-direct product of the rotation
group on a space with Minkowski signature and the 4-dim. [Abelian] trans-
lation group, P ∼= SO(1, 3) oR4.)

Proof that the energy-momentum squared, P 2 as well as the square of Pauli-
Ljubarski vector, W 2 are Casimir operators of the Poincaré group, where W µ

is defined as
W µ =

1

2
εµνρσPνMρσ , (2)

where εµνρσ is the totally antisymmetric tensor in four dimension with ε0123 =
+1.

For the proof that W 2 is a Casimir operator, first show that it transforms as a
4-vector under boosts and rotations, i.e.

[Wµ,M
ρσ] = i

(
gρµW

σ − gσµW ρ
)

. (3)

For this use the identity

gσλεµναβ + gσµεναβλ + gσνεαβλµ + gσαεβλµν + gσβελµνα = 0 (4)

Why does it hold?

What is the commutator [Wµ,Wν ] ?



Home Exercise 16 Connection between the Lorentz group SO(1, 3) and SU(2)×
SU(2)

We take the Lorentz generators Mµν fulfilling the Lorentz algebra, Eq. (1b),
from which we define as in the lecture the new generators:

J i :=
1

2
εijkM jk, Ki := M0i i, j, k = 1, 2, 3 . (5)

(a) Show that the J i are Hermitian operators, (J i)
†

= J i, and the Ki are anti-
Hermitian operators, (Ki)

†
= −Ki.

(b) Show that these operators fulfill the commutation relations

[J i, J j] = iεijkJk, [J i, Kj] = iεijkKk, [Ki, Kj] = −iεijkJk, (6)

(c) Proof that the two linear combinations from these operators,

T i+ =
1

2

(
J i + iKi

)
, T i− =

1

2

(
J i − iKi

)
(7)

constitute two mutually commuting SU(2) algebras, i.e.

[T i±, T
j
±] = iεijkT k± , [T i+, T

j
−] = 0 . (8)

Home Exercise 17 Clifford algebra as representation of Lorentz algebra

The Clifford algebra is an algebra of (in 4 space-time dimensions) 4 anticom-
muting generators (matrices in an explicit representation), Γµ, µ = 0, 1, 2, 3
that are the generators of Lorentz transformations for the spinor or spin-1/2
representation of the Lorentz group. They fulfill the Clifford algebra (which
for this special case is also called Dirac algebra):

{Γµ,Γν} = 2gµν · 14×4 . (9)

Show that the generators

Σµν :=
i

4
[γµ, γν ] (10)

constitute a representation of the Lorentz group (namely for spin 1/2), i.e.
they fulfill

[Σµν ,Σρσ] = −i (gµρΣνσ − gµσΣνρ − gνρΣµσ + gνσΣµρ) . (11)



Repetition QM I Exercise 4 Eigenvalues of projectors [easy]

The operator P̂ has the projector property, P̂ 2 = P̂ . Show that all its eigenva-
lues are 0 and 1.

Repetition QM I Exercise 5 Angular momentum and matrix representation

We again consider the algebra of angular momentum operators:[
Ĵi, Ĵj

]
= iεijkĴk (12)

From the Quantum Mechanics lecture it is known that there are common
eigenstates to the square of angular momentum, ~̂J2 = Ĵ2

1 + Ĵ2
2 + Ĵ2

3 and one of
its components (usually Ĵ3), denoted by their eigenvalues as |j,m〉, fulfilling
the following eigenvalue equations:

~̂J2 |j,m〉 = j(j + 1) |j,m〉 (13)

Ĵ3 |j,m〉 = m |j,m〉 (14)

Here, j takes on the following values, j = 0, 1
2
, 1, 3

2
, 2, . . . while m for each

fixed j is from the set m = −j,−j+ 1,−j+ 2, . . . , j− 1, j. The so-called ladder
operators are given by

Ĵ+ = Ĵ1 + iĴ2, Ĵ− = Ĵ1 − iĴ2. (15)

(a) Using Eq. (12), calculate the commutators[
Ĵ3, Ĵ+

]
,
[
Ĵ3, Ĵ−

]
and

[
Ĵ+, Ĵ−

]
. (16)

Convince yourself that Ĵ± commutes with ~̂J2.

(b) Under the assumption that is not the state “of highest weight”, m 6= j, show
that – if |j,m〉 is an eigenstate of Ĵ3 – so is

(
Ĵ+ |j,m〉

)
eigenstate to Ĵ3 as well.

Similarly, under the assumption m 6= −j, show that also
(
Ĵ− |j,m〉

)
is an

eigenstate. What are their eigenvalues?

(c) Determine the proportionality constant between Ĵ± |j,m〉 and the correspon-
ding properly normalized eigentstate of Ĵ3. Hint: Express the square of the
ladder operators by diagonal operators and assume any appearing phases to
be trival.

(d) Now we specialize to a fixed system of angular momentum j = 1. Hence,
the vectors |1, 1〉 , |1, 0〉 , |1,−1〉 constitute a basis of the representation space.
Determine the matrix representations of the operators Ô := Ĵ+, Ĵ−, Ĵ3, Ĵ2, Ĵ1;



if you like also for ~̂J2. Note that the matrix representation in the basis above
looks like:

(
Ô
)
m,m′

=


〈

1, 1 Ô 1, 1
〉 〈

1, 1 Ô 1, 0
〉 〈

1, 1 Ô 1,−1
〉〈

1, 0 Ô 1, 1
〉 〈

1, 0 Ô 1, 0
〉 〈

1, 0 Ô 1,−1
〉〈

1,−1 Ô 1, 1
〉 〈

1,−1 Ô 1, 0
〉 〈

1,−1 Ô 1,−1
〉
 . (17)

(e) By using ordinary matrix multiplication, confirm that the matrices just deri-
ved obey the canonical commutation relations for angular momentum, Eq. (12).
If you like, also validate Eq. (16).

Repetition QM I Exercise 6 Linear chain

Consider a linear chain, i.e. the quantum mechanical equivalent of n point
masses connected by harmonic “springs” (with spring constant D):’

m m m m m m m m

Use periodic boundary conditions, i.e. the nth point mass is interacting again
by “spring” with the first point mass.

(a) Write down the Hamiltonian of the system.

(b) Express the potential energy as a quadratic form.

(c) Diagonalize this quadratic form. Use an ansatz of complex vectors for the
eigenstates motivated by the periodicity of the system:

Qi = (1, zi, z
2
i , . . . , z

n−1
i ), zni = 1 . (18)

(d) Interpret the eigenvalues and eigenstates of the system.


