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Home Exercise 11 Matrix element for shielded two-electron Coulomb interaction

In the lecture, we discussed solid-state electrons with one-particle wave func-
tions in the spin-orbit representation〈

~r, σ0 ~k, σ
〉

= δσ,σ0
1√
Vol

ei
~k·~r , (1)

where Vol is the volume of a certain fundamental domain in the inverse lat-
tice of wave vectors ~k which are discretized (so called first Brillouin zone).

Take the spin-orbit representation to calculate the matrix element of the shiel-
ded pairwise Coulomb interaction between solid-state electrons given by the
two-particle operator

∆ŵ12 =
e2∣∣∣~̂r1 − ~̂r2∣∣∣e−α|~̂r1−~̂r2|, 0 < α ∈ R . (2)

Here, e is the electrical charge. Show that the final result is the one given in
the lecture:

(2)
〈
~k4, σ4

∣∣∣ (1) 〈~k3, σ3∣∣∣∆ŵ12

∣∣∣~k2, σ2〉 (1)
∣∣∣~k1, σ1〉 (2)

=
4πe2

Vol

1

α2 +
∣∣∣~k2 − ~k3∣∣∣2 δσ1,σ4δσ2,σ3δ~k1+~k2,~k3+~k4 . (3)

Hint: It turns out to be a good move to introduce distance and center-of-mass
position vectors, ~R := 1

2
(~r + ~r′) and ~ρ = ~r − ~r′, where ~r amd ~r′ are the two

integration variables of the position unity operators to be inserted.

Does the result have a limit α→ 0? Interpret the result of the matrix element.



Home Exercise 12 Weakly interacting Bose gas and its dispersion relation

We discuss Helium-4 atoms as a weakly coupled Bose gas (i.e. an ensemble of
bosonic degrees of freedom whose density is so low that their interactions are
described as a small perturbation to the free case). In the lecture it is shown
that the kinetic term and interaction of bosonic one-particle excitations in the
momentum (Fourier) space is given by (we work here with finite volumes
where the momentum integral becomes a discretized sum)

Ĥ = ∑
~k

ε~kn̂~k + Ŵ , ε~k =
~2~k2

2M∗ , (4)

Ŵ =
1

2

∫
Vol

d3V
∫
Vol

d3V ′ ψ̂†(~r)ψ̂†(~r ′)v(|~r − ~r ′|)ψ̂(~r ′)ψ̂(~r) (5)

Here, M∗ is the effective mass of Helium-4 atoms, and, as usual, the Helium-
4 number operator is given by n̂~k = b̂†~kb̂~k. Even a weak attractive interaction
among bosons leads to Bose-Einstein condensation, the occupation of the lo-
west state (~k = 0) by a macroscopic number of bosons. Hence, the field ope-
rator of the one-particle boson excitations can be decomposed into a quasi-
classical condensate part ψ0 (which also exhibits a specific complex phase)
and a part with momentum modes ~k 6= ~0, ∆ψ̂(~r). The latter, however, is small
at low temperatures, such that higher than quadratic terms of ∆ψ̂ can be ne-
glected. The explicit form is then:

ψ̂(~r) = ψ0 + ∆ψ̂(~r), ψ0 =

√
n0

Vol
eiϕ, ∆ψ̂(~r) = ∑

~k 6=~0

1√
Vol

ei
~k·~r b̂~k .

(6)
n0 is the number of Helium-4 atoms in the condensate, ϕ is the complex phase
of the condensate. Vol is again a finite volume, here motivated by the finite
size of the Helium-4 vessel, and b̂~k is the annihilation operator of an Helium-4
atom with momentum ~k.

(a) Show that the interaction operator can be written as

Ŵ = n0 ṽ(0)

(
N − 1

2
n0

)
+ ∑

~k 6=~0

n0 ṽ(|~k|)·[
n̂~k +

1

2
e2iϕb̂†~kb̂

†
−~k

+
1

2
e−2iϕb̂~kb̂−~k

]
+O(∆ψ̂3) . (7)

where v(0) ≡ v(|~k| = 0). We use the following convention for the Fourier
transform from position to momentum space:

ṽ(~q) =
∫
Vol

d3V

Vol
ei~q·~rv(~r) . (8)

What is the physics interpretation of N − n0?



(b) We have shown that the Hamiltonian is of the form

Ĥ = ∑
~k

[
X~kn̂~k + Y~kb̂

†
~k
b̂†
−~k

+ Y ∗~k b̂−~kb̂~k

]
+ C . (9)

What are the coefficients X~k, Y~k and C? Which relations do X−~k and Y−~k ful-
fill? In sheet 3 we saw that the presence of the anomalous terms containing
two creation or annihilation operators breaks phase invariance and particle
number conservation.

A proper solution describing also the backreaction of the free Helium-4 atoms
onto the Bose-Einstein condensate would be using the mean field formalis-
mus for Eq. (9). We are just determining its spectrum here. For doing so, first
show that it can be written as

Ĥ = Ĥ~k=~0 + ∑
positive~k-half space,~k 6=~0

(
Ĥ1,~k + Ĥ2,~k

)
(10)

with

Ĥ1,~k = X~k ·
(
n̂~k + n̂−~k

)
Ĥ2,~k = 2

(
Y~kb̂
†
~k
b̂†
−~k

+ Y ∗~k b̂−~kb̂~k

)
. (11)

(c) To derive the spektrum of this Hamiltonian, we restrict ourselves to a single
direction ~k 6= ~0. In order to diagonalize the Hamiltonian, we take the followi-
ng linear transformation of creation and annihilation operators:

b̂~k = α~kâ~k + γ~kâ
†
−~k

b̂†~k = α∗~kâ
†
~k

+ γ∗~k â−~k . (12)

Calculate the inverse transformation and derive consistency equations for the
coefficients α~k and γ~k by demanding that the new operators â~k and â†~k fulfill
the commutation relations for bosonic creation and annihilation operators.
(Why is this called a canonical transformation?)

Show that the following is a solution of these consistency conditions:

α~k = eiψα|α~k|, γ~k = eiψγ |γ~k|, |α~k| =
1√

1− λ2~k
, |γ~k| =

λ~k√
1− λ2~k

,

(13)
with 0 ≤ λ~k ≤ 1, λ~k ∈ R.

(d) Now plug in the linear transformation from (c) and diagonalize the Hamilto-
nian. Derive the dispersion relation (dependence of the one-particle energies
on the wave vector). You should arrive at an expression

Ĥ~k = ε̃~kâ
†
~k
â~k + “~k ↔ −~k′′ + C~k + C−~k , (14)

where

ε̃~k = X~k

[
|α~k|

2 + |γ−~k|
2
]

+ 2
[
Y~kα

∗
~k
γ∗−~k + c.c.

]
, (15)

0 = X~k

(
α∗~kγ~k + α∗−~kγ−~k

)
+ 2

(
Y~kα

∗
~k
α∗−~k + Y ∗~k γ−~kγ~k

)
(16)



Furthermore, for the Bose-Einstein condensate in suprafluid Helium-4 it is
justified to assume symmetry under parity (space inversion), α~k = α−~k, γ~k =
γ−~k, λ~k = λ−~k.

Show that using the definitions Ỹ~k = Y~ke
−i(ψα+ψγ) and r~k = X~k/(−2Ỹ~k), the

solution for the one-particle energies is given by

ε̃~k =

√
~4|~k|4

4(M∗)2
+

~2|~k|2
M∗ n0ṽ(|~k|) , (17)

and the full diagonalized Hamiltonian has the form

Ĥ = E0 + ∑
~k

ε̃~kâ
†
~k
â~k E0 = C + ∑

~k

C~k . (18)

Voluntarily, show that the coefficients C and C~k are given by

C = n0

(
N − 1

2
n0

)
C~k = ε̃~k −X~k (19)

(e) Empirically, for the two cases of vanishing and ultralarge wave vectors, |~k| →
0 and |~k| → ∞, the potential of ultracold Helium-4 atoms approaches a con-
stant and falls off quadratically, respectively,

ṽ(|~k|) |
~k|→0−→ ṽ(0) ≡ const. ṽ(|~k|) |

~k|→∞−→ 1

k2
. (20)

Show that the excitations energies asymptotically behave as

ε̃~k
|~k|→0−→ ~|~k| · cs +O(k3) ≡ ~|~k| ·

√
n0ṽ(0)

M∗ +O(h3) (21)

ε̃~k
|~k|→∞−→ ε~k +O(

1

k2
) =

~2k2

2M∗ +O(
1

k2
) . (22)

The quantity cs is the speed of sound in (supra)fluid Helium-4 and vanishes
for a non-interacting ultracold Bose gas.

Draw in a diagram ε̃~k (which is directly correlated to the temperature of the
system) as a function of the wave vector |~k|. Interpolate between the two
asymptotic solutions. Around the minimum one can approximate the curve
quadratically, so there harmonic oscillator degrees of freedom exist, which
correspond to acoustic oscillations (“rotons” or so called second sound in
Helium-4).

(f) Helium-3 is a system of three nucleons and four electrons, so seven spin-1/2
particles. Why would you assume it cannot form a suprafluid phase? How
can it nevertheless?


