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Home Exercise 7 Normalization ofN -particle states, determinants, permanents
In the lecture, Slater determinants and permanents
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where the sum over the permutations runs over all elements of the symmetric
group SN . For both determinants and permanents we work without loss of
generality with orthonormal one-particle states,

〈ψi ψj〉 = δij . (2)

From demanding that the N -particle state is normalized to 1,

〈Ψ Ψ〉 !
= 1 , (3)

show that the normalization constant for fermionic Slater determinants has
to be

Cs=1 =
√
N ! . (4)

For bosons, use
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to show
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∏
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Home Exercise 8 Unitary transformation of one-particle states
Proof that changing the one-particle basis by a unitary transformation,UU † =
1 or ∑k UikU

∗
jk = δij and det [U ] = 1 on every one-particle Hilbert space,

|ψk〉(i) =
N

∑
l=1

Ukl |ψl〉(i) (7)

does not change the Slater determinant.

Home Exercise 9 Orthogonality of Slater determinants and permanents
Use a similar calculation as in Ex. 7 to show under which conditions Slater
determinants or permanents are orthogonal to each other. You can formalize
this by labelling one-particle states by the ordered energy eigenvalues of a
(one-particle) Hamiltonian, j1 < j2 < . . . < jN , as εj1 < . . . < εjN .



Home Exercise 10 Phase transformation and particle number conservation

A Hamiltonian is particle-number conserving, if it commutes with the particle-
number operator, N̂ = ∑k â

†
kâ. This is analogous as doing a global phase

transformation of the annihilation and creation operators, and state that the
Hamiltonian is invariant under this phase transformation. We take the so-
called Bogolyubov Hamiltonian,

Ĥ = ∑
k>0

εk

(
â†kâk + â†−kâ−k

)
+ ∑

k>0

Vk

(
â†kâ

†
−k + âkâ−k

)
. (8)

where âk, â
†
k obey canonical commutation relations.

(a) Use the result of previous exercises to show

eiαN̂ âk e
−iαN̂ = âk e

−iα, α ∈ R , (9)

and calculate the phase transformation of the whole Hamiltonian:

eiαN̂ Ĥ e−iαN̂ = ? . (10)

For which phase α is the Hamiltonian invariant under these phase transfor-
mations. Interpret the result physically.

(b) We now consider a local phase transformation, i.e. one that is individual for
each single momentum mode,

ei∑k αkn̂k Ĥ e−i∑k αkn̂k .

Are there any local phases αk, for which the Hamiltonian is invariant? If yes,
interpret your result physically.

(c) Replace the bosonic creation and annihilation operators âk by their fermionic
counterparts, ĉk, obeying canonical anticommutation relations. Proof that all
statements made before for bosons also hold for fermions by showing

eiαN̂ ĉk e
−iαN̂ = ĉk e

−iα, α ∈ R , (11)


