Unification without Doublet-Triplet Splitting — SUSY Exotics at the LHC

Jürgen Reuter

Albert-Ludwigs-Universität Freiburg

W. Kilian, JR, PLB **B642** (2006), 81; and work in progress (with F. Deppisch, W. Kilian)

SUSY 07, Karlsruhe, July 26, 2007

Incompleteness/Theoretical Dissatisfaction

EWSB, H, m_{ν} , DM, hierarchy, , reducible representation:

$$q(\mathbf{3},\mathbf{2})_{\frac{1}{3}} \oplus \ell(\mathbf{1},\mathbf{2})_{-1} \oplus u^{c}(\overline{\mathbf{3}},\mathbf{1})_{-\frac{4}{3}} \oplus d^{c}(\overline{\mathbf{3}},\mathbf{1})_{\frac{2}{3}} \oplus e^{c}(\mathbf{1},\mathbf{1}) \oplus H(\mathbf{1},\mathbf{2})_{1}$$

Supersymmetry: consistent extrapolation to high scales

- ⇒ unification quantitatively testable
- ⇒ two Higgs doublets H^u, H^d
- ⇒ TeV-scale SM-superpartners

Bottom-Up Approach: just MSSM

Pati/Salam:
$$G_{PS} = SU(4)_c \times SU(2)_L \times SU(2)_R \times \mathbb{Z}_2$$

Gauge coupling unification by Georgi/Glashow: $G_{GG} = SU(5)$

Unification verification only with megatons? What about colliders?

- SPA: super precision accurately
- Look for chiral exotics

King et al., 2005/6

Physics beyond MSSM provides handle to GUT scale

MSSM Higgses included in ${f 5}_H \oplus \overline{f 5}_H$

$$\mathbf{5}_{H} = (\mathbf{3}, \mathbf{1})_{-\frac{2}{3}} \oplus (\mathbf{1}, \mathbf{2})_{1} : \begin{pmatrix} D \\ H_{u} \end{pmatrix} \qquad \overline{\mathbf{5}}_{H} = (\overline{\mathbf{3}}, \mathbf{1})_{\frac{2}{3}} \oplus (\mathbf{1}, \mathbf{2})_{-1} : \begin{pmatrix} D^{c} \\ \epsilon H_{d} \end{pmatrix}$$

 D, D^c colored triplet Higgses with charges $\pm \frac{1}{3}$ (EW singlet) colored Dirac fermion \tilde{D} with charge -1/3 (EW singlet)

Unification requires omitting colored part of SU(5) Higgs $\mathbf{5}_H, \mathbf{\bar{5}}_H$

1) Doublet-triplet splitting problem $(m_H \sim 100\,{
m GeV}, m_D \sim 10^{16}\,{
m GeV})$

Welcome, since SU(5)-symmetric Higgs interactions would read

$$\mathbf{\bar{5}} \mathbf{10} \, \mathbf{\bar{5}}_H = \ell H_d e^c + q \epsilon H_d d^c + q \epsilon \ell D^c + d^c u^c D^c$$

$$\mathbf{10} \, \mathbf{\bar{5}}_H \, \mathbf{10} = q \epsilon H_u u^c + D u^c e^c + D q \epsilon q$$

Generating SM masses \Rightarrow leptoquark and diquark coupl. for D, D^c \Rightarrow triggers rapid proton decay

Interactions

Leptoquark couplings

(and SUSY vertices)

Diquark couplings

(and SUSY vertices)

Vector bosons induce e.g. decay $p \to e^+ \pi^0$ experimentally: $\tau(p) > 10^{33} \ {\rm yrs}$

Possible scenarios:

- 1. Colored singlets are heavy (GUT scale) = doublet-triplet splitting
 - enables exact unification near 10¹⁶ GeV and excludes rapid proton decay
 - Proton decay may still be too fast (depending on the superpotential)
 - Doublet-triplet splitting is not trivially available
- 2. Colored singlets are light (TeV scale)
 - Simple unification no longer happens near 10¹⁶ GeV, nor elsewhere

Proton-decay coupl. must be excluded: consistent with GUT symmetry?

- 2) μ problem: SUSY μ -term $\mu H_u H_d$, not related to soft breaking Why $\mu \sim \mathcal{O}(100\,\text{GeV})$, not $\mathcal{O}(10^{16}\,\text{GeV})$?
 - \Rightarrow Possible extension as a solution: singlet Higgs S with superpotential

$$\lambda S H_u H_d \to \lambda \langle S \rangle H_u H_d = \mu H_u H_d$$

 \Rightarrow NMSSM: $\langle S \rangle$ should be somehow related to soft-breaking

Large top Yukawa coupl. drives effective H_u mass squared negative:

This mechanism may also be responsible for a S vev in the NMSSM

- requires the existence of a vectorlike pair of chiral superfields
 - for instance, D and D^c (colored) with coupling SDD^c
 - lacksquare ... as required by SU(5), if ${}^{\mbox{\it S}}H_uH_d$ is present, gives Dirac mass to D
- Without tree-level quartic coupling, the CW mechanism implies $\langle S \rangle \sim 4\pi m_{\rm soft}$, so $\langle S \rangle \gg \langle H \rangle$.
- 3) **Higgs-matter unification:** Why only one family of Higgs matter? $SU(5), G_{PS} SO(10)$ unify Higgs fields with SM matter...

Higgs-Matter Unification

Trinification: all IAs equally $G_{\text{Tri}} = SU(3)_c \times SU(3)_L \times SU(3)_R \times Z_3$

 $E_6 \supset G_{\text{Tri}}, SO(10) \text{ w/ add. gauge bosons } X(3,3,3) + \text{h.c.} \Rightarrow 78$

- \Rightarrow irred. multiplet (27) unifies all matter, Higgs, singlets (for each family)
- ⇒ contains NMSSM, allows for radiative SB for singlets + doublets
- ▶ Complete G_{Tri} or E_{6} multiplet: no unification

Possible scenarios:

- 1. Omit one bi-triplet D, D^c family \Rightarrow doublet-triplet splitting
- 2. Add one extra MSSM Higgs family ⇒ ESSM

S.King et al., 2005/6

3. Different unification pattern

Kilian/JR, 2006

Bottom-up approach: MSSM with one generation of triplets

 10^{15} GeV: crossing of $SU(2)_L$ and $U(1)_Y$ \Rightarrow unification to LR symmetry $SU(2)_L \times SU(2)_R$, requires ν_R^c $SU(3)_c$ crosses at 10^{21} GeV: too high

Kilian/JR, 2006

Bottom-up approach: MSSM with one generation of triplets

 10^{15} GeV: crossing of $SU(2)_L$ and $U(1)_Y$ \Rightarrow unification to LR symmetry $SU(2)_L \times SU(2)_R$, requires ν_R^c $SU(3)_c$ crosses at 10^{21} GeV: too high

 \Rightarrow extend to $SU(4)_C$: unification possible at 10^{18} GeV

Kilian/JR, 2006

Running With Triplets

Complete Model:

▶ Full SUSY E_6/G_{Tri} matter spectrum above 10³ GeV, except ν^c

▶ PS symmetry with ν_R above 10¹⁵ GeV

$$\mathbf{Q}_L = (Q, L) = (\mathbf{4}, \mathbf{2}, \mathbf{1})$$
 $\mathbf{D} = (D, D^c) = (\mathbf{6}, \mathbf{1}, \mathbf{1})$ $\mathbf{Q}_R = ((u^c, d^c), (\nu^c, \ell^c)) = (\overline{\mathbf{4}}, \mathbf{1}, \mathbf{2})$ $\mathbf{S} = (\mathbf{1}, \mathbf{1}, \mathbf{1})$ $\mathbf{H} = (H_u, H_d) = (\mathbf{1}, \mathbf{2}, \mathbf{2})$

▶ E₆ symmetry (and possibly extra fields) at 10¹⁸ GeV

Proton decay?

Once triplets are included, a PS-symmetric superpotential contains leptoquark and diquark couplings simultaneously:

$$DQ_RQ_R = \epsilon_{\alpha\beta\gamma}\epsilon_{jk}D_{\alpha}(Q_R)_{\beta j}(Q_R)_{\gamma k}$$

Possible solution: extra flavor symmetry $SU(3)_F$ (or $SO(3)_F$)

 \Rightarrow D diquark coupling with $SU(2)_R, SU(3)_c, SU(3)_F$:

$$DQ_RQ_R = \epsilon^{abc} \epsilon_{\alpha\beta\gamma} \epsilon_{jk} D^a_{\alpha} (Q_R)^b_{\beta j} (Q_R)^c_{\gamma k}$$

Vanishes due to total antisymmetry \Rightarrow **no proton decay**

Analogous for
$$\epsilon^{abc}\epsilon_{\alpha\beta\gamma}\epsilon_{jk}(D^c)^a_{\alpha}(Q_L)^b_{\beta j}(Q_L)^c_{\gamma k}$$

Leptoquark coupling of D not affected

Eff. superpotential from (spontan.) breaking of LR and/or flavor symm.:

- ▶ Exclude spurions $\propto \epsilon_{\alpha\beta\gamma}$ (color space) \Rightarrow diquark couplings absent
- baryon number as low-energy symmetry, flavor symmetry not (necessarily)

Sample Implementation

Toy Model (no dynamics!)

Extend $E_6 \times SU(3)_F$ to E_8

- ... by implementing N=2 supersymmetry:
 - We have: matter 27_3 and gauge $78_1 + 1_8$.
 - Add: mirror matter 273
 - supersymmetrize by adding matter $78_1 + 1_8$ and gauge $27_3 + \overline{27}_{\overline{3}}$.

Decomposition of reps. in $E_8 \to E_6 \times SU(3)_E$:

$$\mathbf{248} = \mathbf{27_3} \oplus \overline{\mathbf{27}_{\overline{\mathbf{3}}}} \oplus \mathbf{78_1} \oplus \mathbf{1_8}$$

Result: matter 248 and gauge 248 (fundamental = adjoint)

Sample Implementation — Top Down

1. Somewhat below M_{Planck}

- ▶ $N=2 \rightarrow 1$ breaking removes mirror matter: $\langle (\mathbf{27}_3)_i^a (\overline{\mathbf{27}}_{\bar{3}})_j^b \rangle = \delta^{ab} \delta_{j,i+1}$
- \blacktriangleright $\it E_{\rm 6}$ zero mode of chiral matter $\bf 27_{\rm 3},$ maybe adjoint matter $\bf 78_{\rm 1}$ and $\bf 1_{\rm 8}$
- Flavor SU(3) on the zero modes (would be anomalous) is broken by colorless spurions, e.g., condensate $\langle \mathbf{1_8} \rangle$.
- E_6 is broken to G_{PS} by colorless spurions, e.g., bilinear = Higgs " μ term" $\langle \overline{\mathbf{1}}_{2,2}\overline{\mathbf{1}}_{2,2} \rangle$ in the $\overline{\mathbf{27}}_3\overline{\mathbf{27}}_3$ mirror representation
- Additional allowed spurion = Singlet $\langle \bar{\mathbf{1}}_{1,1} \rangle = \langle \bar{S} \rangle$ (3. gen.)

Note: all spurions so far break flavor as well

Result:

- PS symmetry
- all MSSM superpotential terms allowed, subject to PS symmetry/flavor constraints (no quark mixing):

$$\mathbf{27}_3\,\mathbf{27}_3\,\mathbf{27}_3=0 \quad \ \ (\mathbf{27}_3\,\mathbf{78}_1\,\overline{\mathbf{27}}_{\bar{3}}),\, (\mathbf{78}_1\,\mathbf{78}_1\,\mathbf{78}_1),\, (\mathbf{27}_3\,\mathbf{1}_8\,\overline{\mathbf{27}}_{\bar{3}}),\, \mathbf{1}_8\,\mathbf{1}_8\,\mathbf{1}_8$$

Flavor dynamics in higher-dim. superpotential due to 1₈ matter exchange only potentially dangerous term for proton decay: 78_1 78_1 , because inserting (colorless) condensates into 27_3 78_1 $27_{\bar{3}}$, integrating out 78_1 color-triplet leptoquark self-coupling XXX = 0 (antisymmetry)

2. At 1015 GeV

Condensate in adjoint matter representation: $\langle 78_1 \rangle = \langle W_R^{23} \rangle + \text{higher-dimensional terms}$ $(27.78 \overline{27})^2$

- $\Rightarrow \nu_R$ Majorana mass
- \Rightarrow PS symmetry broken to SM
- \Rightarrow Leptoquark couplings possible for D, D^c , but no diquark couplings

Sample Implementation

3. At 103 GeV

Soft-breaking terms (hidden sector) induce radiative symmetry breaking $\langle S \rangle$ via D/D^c loops

- $\Rightarrow \mu_D$ -term $D^c \langle S \rangle D$ (Dirac masses)
- $\Rightarrow \mu_H$ -term $H_u \langle S \rangle H_d$
- \Rightarrow Z' mass if the extra U(1) broken by $\langle S \rangle$ was gauged
- ... with flavor mixing

4. At 10² GeV

Soft-breaking + effective $\mu\text{-term}$ induce radiative symmetry breaking $\langle H_u \rangle$ via t/t^c loops

- \Rightarrow $\langle H_d \rangle$ due to Higgs superpotential + soft-breaking terms
- ⇒ Dirac masses for all charged MSSM matter
- \Rightarrow Majorana masses (see-saw) for ν_L
- ... again, with flavor mixing

MSSM Higgses: H_u^f , H_d^f with f = 1, 2, 3

* VEV selects single direction (taken as f = 3) in family space ⇒ 1 gen. MSSM Higgses, 2 gen. "unhiggses" Ellis et al., 1985; Campbell et al., 1986

(2 bi-doublets = 8 charged and 8 neutral scalars + fermion superpartners)

In gauge interactions, unhiggses are pair-produced, thus suppressed in precision data, ... but also Yukawa interactions

- 1) FCNC 2) resonant single production in $q\bar{q}$ or e^+e^- annihilation Unhiggses very heavy or artificially aligned or suppressed
 - \Rightarrow (approximate?) H parity: odd for unhiggses, even otherwise

And why not? Flavor symmetry removes the need for *R* parity anyway.

If H parity is exact:

- ▶ lightest unhiggs: H parity protected dark matter
- Griest/Sher, 1989
- Pair production of unhiggses/unhiggsinos, cascade decays
- \dots and R parity is exact:
 - dark matter mix: interesting relic abundance (relaxes all neutralino bounds!)

Next step: Provide a viable low-energy spectrum

At LHC:

- 1) 1-3 pairs of scalar leptoquarks D_L, D_R .
 - probably heavy $\lesssim 1 \text{ TeV}$ (but hierarchy is possible)
 - pair-produced in gg fusion at LHC
 - decay into ℓu and νd :
 - generation-diagonal, or just third-generation: au t and au b or
 - generation-crossed (flavor symmetry!): $ec,\,eb,\,\mu d,te,\,t\mu\ldots gq \to D\ell$ production enhanced
 - $-\,$ or, if R-parity is violated, may mix with down-type squarks.

2) 1-3 fermionic leptoquarkinos \tilde{D}

- \blacktriangleright are probably heavy as well, but somewhat lighter than scalars (because $m^2=\lambda\langle S\rangle^2+m_{\rm soft}^2)$
- are also pair produced (maybe singly if R-parity is violated)
- decay into $\tilde{\ell}j$, or $\ell\tilde{q}$, or $\nu\tilde{q}$
 - rich signatures!
 - spin measurement distinguishes from ordinary squarks

- 3) (non)"standard" MSSM Higgs
 - Relaxed Higgs bounds (like in NMSSM)
 - Possibly large invisible decay ratio $(\tilde{\chi}^0, a)$
- 4) 2-4 doublets of unhiggses
 - probably only pair-produced: Drell-Yan, maybe Higgs decays (singlets involved)
 - missing-energy signatures, unique identification could be difficult: ILC?
- 5) 1-3 singlet scalars + pseudoscalars
 - masses, properties?
- 6) and all associated neutralinos (≤ 11) and charginos (≤ 4)
 - large and complicated chargino/neutralino mixing matrices. Decay chains at LHC become difficult to understand.
- 7) Either heavy Z' (gauged NMSSM) or light pseudo-axion(s) η corresponding to extra U(1)

Conclusion: LHC phenomenology rich and confusing

3 independent building blocks for exotic SUSY phenomenology

Color-triplet 'leptoquark' scalars/fermions are present in the low-energy spectrum

- leads to a different unification pattern
- favoring PS symmetry above the R-neutrino mass scale

Flavor symmetry prohibits proton decay

- instead of (or in addition to) R parity
- Superpotential terms are due to GUT- and flavor-breaking
- therefore do not exhibit GUT relations

Higgs sector is flavored

- Unhiggses (1st and 2nd generation) carry conserved quantum number
- Unhiggses dark matter candidates
- Ordinary MSSM stuff might decay via R-parity violation

Confusing LHC pheno, but provides handle to GUT scale

