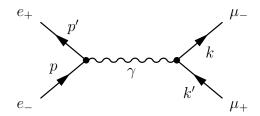
Übungen zur Vorlesung

Quantenfeldtheorie

SS 09 Blatt 11

Prof. Dr. J. Reuter, M.Sc. Felix Braam (Hochhaus/803), 8047

Präsenz-Aufgabe 10 QED: $e^{+}e^{-} \rightarrow \mu^{+}\mu^{-}$



Calculate the cross section for the above process at tree-level using the formula

$$\frac{d\sigma}{d\Omega_{\text{CMS}}} = \frac{|\vec{k}_{\text{CMS}}|}{|\vec{p}_{\text{CMS}}|} \frac{1}{64\pi^2 s} |\mathcal{M}|^2 \tag{1}$$

and following the steps outlined below:

- a) Derive the matrix element \mathcal{M} using the Feynman rules given in the lecture.
- b) The cross section is proportional to the absolut square of \mathcal{M} . Show that

$$|\mathcal{M}|^2 = \frac{e^4}{q^4} \left(\bar{v}(p') \gamma^{\mu} u(p) \, \bar{u}(p) \gamma^{\nu} v(p') \right) \left(\bar{u}(k) \gamma_{\mu} v(k') \, \bar{v}(k') \gamma_{\nu} u(k) \right). \tag{2}$$

c) Average $|\mathcal{M}|^2$ over spins in the initial state and sum over spins in the final state using the following completeness relations:

$$\sum_{s} u^{s}(p)\bar{u}^{s}(p) = \not p + m, \quad \sum_{s} v^{s}(p)\bar{v}^{s}(p) = \not p - m. \tag{3}$$

What experimental setup does this correspond to?

The expression from eq.(2) should simplify to traces of products of γ matrices:

$$\frac{1}{4} \sum_{\text{spins}} |\mathcal{M}|^2 = \frac{e^4}{4q^4} \text{tr} \left[(\not p' - m_e) \gamma^{\mu} (\not p + m_e) \gamma^{\nu} \right] \text{tr} \left[(\not k + m_{\mu}) \gamma_{\mu} (\not k' - m_{\mu}) \gamma_{\nu} \right]. \tag{4}$$

d) Evaluate the electron and muon trace from eq.(4). Now, neglect the electron mass and multiply the electron- with the muon- trace to obtain

$$\frac{1}{4} \sum_{\text{spins}} |\mathcal{M}|^2 = \frac{8e^4}{q^4} \left[(pk)(p'k') + (pk')(p'k) + m_\mu^2(pp') \right]. \tag{5}$$

e) To obtain a more explicit formula one has to choose a particular frame of reference - calculate $\frac{1}{4}\sum_{\text{spins}}|\mathcal{M}|^2$ in the CMS with \vec{p},\vec{p}' along the z-axis and plug it into the formula for the differential cross section (eq.(1)):

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{4s} \sqrt{1 - \frac{4m_\mu^2}{s}} \left[\left(1 + \frac{4m_\mu^2}{s} \right) + \left(1 - \frac{4m_\mu^2}{s} \right) \cos^2 \theta \right]. \tag{6}$$

f) Integrate over the solid angle to obtain the total cross section. Take the limit $m_{\mu} \rightarrow 0$. What is the problem with very high center of mass energies?

Hausaufgabe 17 Compton Scattering and the Klein-Nishima formula

In QED the electromagnetic field couples via the conserved vector current $j^{\mu} = \bar{\psi}\gamma^{\mu}\psi$, $\partial_{\mu}j^{\mu} = 0$.

For matrix elements in Fourier space $\mathcal{M}^{\mu}(k) = \int d^4x \ e^{ikx} \langle f|j^{\mu}(x)|i\rangle$ this implies $k_{\mu}\mathcal{M}^{\mu}(k) = 0$ (known as the Ward identity).

a) Show that in an amplitude with an external photon

$$\sum_{\text{pols}} |\mathcal{M}(k)|^2 \equiv \sum_{\text{pols}} |\mathcal{M}^{\mu}(k)\epsilon_{\mu}^{\star}(k)|^2 = \mathcal{M}^{\mu}(k)\mathcal{M}^{\star\nu}(k)\sum_{\text{pols}} \epsilon_{\mu}^{\star}(k)\epsilon_{\nu}(k)$$
(7)

the sum over the physical polarizations of the photons can be replaced by $-g^{\mu\nu}$. For simplicity you may assume $k^\mu=(k,0,0,k)$ and $\epsilon_1^\mu=(0,1,0,0),\epsilon_2^\mu=(0,0,1,0)$.

[2 Punkte]

b) Draw the two Feynman diagrams for $e^-(p)\gamma(k)\to e^-(p')\gamma(k')$ and write down the matrix element. Prove

$$(\not p + m)\gamma^{\mu}u(p) = 2p^{\mu}u(p) \tag{8}$$

in order to show that

$$i\mathcal{M} = -ie^2 \epsilon_{\mu}^{\star}(k') \epsilon_{\nu}(k) \bar{u}(p') \left[\frac{\gamma^{\mu} k \gamma^{\nu} + 2\gamma^{\mu} p^{\nu}}{2pk} + \frac{-\gamma^{\nu} k'' \gamma^{\mu} + 2\gamma^{\nu} p^{\mu}}{-2pk'} \right] u(p). \tag{9}$$

[2 Punkte]

c) Calculate the squared matrix element, average over the initial and sum over the final state polarizations. You should obtain

$$\frac{1}{4} \sum_{\text{spins}} |\mathcal{M}(k)|^2 = \frac{e^4}{4} g_{\mu\rho} g_{\nu\sigma} \text{tr} \left\{ (p' + m) \left[\frac{\gamma^{\mu} k \gamma^{\nu} + 2\gamma^{\mu} p^{\nu}}{2pk} + \frac{\gamma^{\nu} k' \gamma^{\mu} - 2\gamma^{\nu} p^{\mu}}{2pk'} \right] \right. \\
\left. \times (p' + m) \left[\frac{\gamma^{\sigma} k \gamma^{\rho} + 2\gamma^{\rho} p^{\sigma}}{2pk} + \frac{\gamma^{\rho} k' \gamma^{\sigma} - 2\gamma^{\sigma} p^{\rho}}{2pk'} \right] \right\} \tag{10}$$

$$\equiv \frac{e^4}{4} \left[\frac{(i)}{(2pk)^2} + \frac{(ii)}{(2pk)(2pk')} + \frac{(iii)}{(2pk)(2pk')} + \frac{(iv)}{(2pk)(2pk')} \right].$$
(11)

[2 Punkte]

d) Prove the following relations:

$$\gamma_{\mu}\gamma^{\mu} = 4, \ \gamma_{\mu}\gamma^{\sigma}\gamma^{\mu} = -2\gamma^{\sigma}, \ \gamma_{\mu}\gamma^{\sigma}\gamma^{\rho}\gamma^{\mu} = 4g^{\sigma\rho},$$
$$\gamma_{\mu}\gamma^{\alpha}\gamma^{\beta}\gamma^{\gamma}\gamma^{\mu} = -2\gamma^{\alpha}\gamma^{\beta}\gamma^{\gamma}. \tag{12}$$

[3 Punkte]

e) Show that evaluating the four traces yield (you obtain (iv) from (i) by interchanging k, k'):

(i):
$$16 \left[2m^4 + m^2(s - m^2) - 1/2(s - m^2)(u - m^2) \right]$$

(ii) = (iii): $-8 \left[4m^4 + m^2(s - m^2) + m^2(u - m^2) \right]$
(iv): $16 \left[2m^4 + m^2(u - m^2) - 1/2(s - m^2)(u - m^2) \right]$ (13)

[5 Punkte]

f) Rewrite s and u in terms of (p - k) and (p - k') to arrive at

$$\frac{1}{4} \sum_{\text{spins}} |\mathcal{M}(k)|^2 = 2e^4 \left[\frac{pk'}{pk} + \frac{pk}{pk'} + 2m^2 \left(\frac{1}{pk} - \frac{1}{pk'} \right) + m^4 \left(\frac{1}{pk} - \frac{1}{pk'} \right)^2 \right]. \tag{14}$$

[1 Punkte]

g) Take the initial electron to be at rest and parametrize the momenta in the following way:

$$p = (m, \vec{0}), k = (\omega, 0, 0, \omega), k' = (\omega', \omega' \sin \theta, 0, \omega' \cos \theta), p' = (E', \vec{p}').$$
 (15)

Use $m^2 = (p + k + k')^2$ to show that

$$\omega' = \frac{\omega}{1 + \frac{\omega}{m} \left(1 - \cos \theta \right)}.\tag{16}$$

[2 Punkte]

h) Show that the two-body phase space can be written as

$$\int d\Pi_2 = \int \frac{d\cos\theta}{2\pi} \frac{\omega'}{4E'} \frac{1}{\left|1 + \frac{\omega' - \omega\cos\theta}{E}\right|} = \frac{1}{8\pi} \int d\cos\theta \frac{(\omega')^2}{\omega m}.$$
 (17)

[3 Punkte]

i) With this at hand, derive the Klein-Nishima formula

$$\frac{d\sigma}{d\cos\theta} = \frac{\pi\alpha^2}{m^2} \left(\frac{\omega'}{\omega}\right)^2 \left[\frac{\omega'}{\omega} + \frac{\omega}{\omega'} - \sin^2\theta\right]. \tag{18}$$

[2 Punkte]

j) Take the limit $\omega \to 0$ to show that $\omega'/\omega \to 1$. Further compute the differential and the total cross section in this limit (you should recover the Thompson cross section for scattering classical electromagnetic radiation off an electron).

[1 Punkte]