WHIZARD Event Generation for LCs From Beam Spectra to Higher Orders

Jürgen R. Reuter

DESY Hamburg

LCWS 2014, Belgrade, October 8th, 2014

The WHIZARD has come to the 'White City'

The WHIZARD has come to the 'White City'

WHIZARD in a Nutshell

WHIZARD is a universal event generator for elementary processes at colliders:

- ▶ e^+e^- : LEP and TESLA/NLC \Rightarrow ILC, CLIC, FCC-ee . . .
- ▶ pp: Tevatron \Rightarrow LHC, HL/E-LHC, VLHC, FCC, XXX . . .

It contains

- O'Mega: Optimized automatic matrix elements for arbitrary elementary processes, supports SM and many BSM extensions
- 2. Phase-space parameterization module (very efficient PS)
- VAMP: Generic adaptive Monte Carlo integration and (unweighted) event generation
- CIRCE1/2: Lepton/[photon] collider beam spectra
- Intrinsic support or external interfaces for: Feynman rules, beam properties, cascade decays, shower, hadronization, analysis, event file formats, etc., etc.
- 6. Free-format steering language SINDARIN

The WHIZARD Event Generator – Release 2.2

- 1.0 Project started around 1999: Studies for electroweak multi-particle processes at TESLA (W, Higgs, Z)
- 1.5 Event samples for LC studies at SLAC
- 1.9 Full SM w/ QCD, beam properties, SUSY/BSM, event formats
- 2.1 QCD shower+matching, FeynRules support, internal density-matrix formalism (cascade decays), SINDARIN as user interface, OpenMP, . . .
- 2.2 Major refactoring, event reweighting, inclusive processes and selective decay chains (production version)
- Plan Improve e^+e^- support; NLO + matching; improve user interface \Rightarrow adapt to specific needs of user groups

The WHIZARD Event Generator - Release 2.2

- 1.0 Project started around 1999: Studies for electroweak multi-particle processes at TESLA (W, Higgs, Z)
- 1.5 Event samples for LC studies at SLAC
- 1.9 Full SM w/ QCD, beam properties, SUSY/BSM, event formats
- 2.1 QCD shower+matching, FeynRules support, internal density-matrix formalism (cascade decays), SINDARIN as user interface, OpenMP, . . .
- 2.2 Major refactoring, event reweighting, inclusive processes and selective decay chains (production version)
- Plan Improve e^+e^- support; NLO + matching; improve user interface \Rightarrow adapt to specific needs of user groups

WHIZARD 2.2.2 release: July 6, 2014

The WHIZARD team: F. Bach, B. Chokoufé, W. Kilian, T. Ohl, JRR, M. Sekulla, F. Staub, C. Weiss, + 2 bachelors + DESY summer students

Web address: http://projects.hepforge.org/whizard Standard Reference: Kilian/Ohl/JRR. EPJC 71 (2011) 1742, arXiv:0708.4233

WHIZARD 2: Status 2010-14 – Technical Features

- Fortran2003/2008 (gfortran 4.7.1 or newer) and OCaml (for MEs)
- WHIZARD core: separate interface from implementation Complete object orientation
 - Replaceable modules with well-defined interface: matrix-elements, beam structure, phase space, integration, decays, shower, ...
 - ► Much easier to outsource small(er) projects
 - Much better self checks, regression testing and maintainability
- OpenMP parallelization
- Operation modes:
 - Dynamic linking (default mode) with on-the-fly generation of process code
 - Static linking (for batch clusters)
 - ► Library mode, callable from C/C++/Python/...
 - ▶ Interactive mode: WHIZARD works as a Shell WHISH
- Standard conformance: uses autotools: automake/autoconf/libtool
- Large self test suite
- Version control (svn) at HepForge: use of ticket system and bug tracker
- Continuous integration system (jenkins) linked with svn repository

- Download WHIZARD from http://www.hepforge.org/ archive/whizard/whizard-2.2.2.tar.gz and unpack it
- WHIZARD intended to be centrally installed on a system, e.g. in /usr/local (or locally on user account)
- Create build directory and configure External programs (LHAPDF, StdHEP, HepMC, FastJet) might need flags
- make, make install
- Create SINDARIN steering file (in any working directory)
- Run whizard (in working directory)
- Supported event formats: HepMC, StdHEP, LHEF, LHA, div. ASCII formats

```
WHIZARD self tests:
make check-am
make check-TESTS
PASS: expressions.run
PASS: beams.run
PASS: cputime.run
PASS: state_matrices.run
PASS: interactions.run
PASS: beam_structures.run
PASS: models.run
PASS: phs_forests.run
PASS: rng_base.run
PASS: selectors.run
PASS: phs wood.run
PASS: mci_vamp.run
PASS: particle specifiers.run
PASS: prclib_stacks.run
PASS: slha_interface.run
PASS: subevt expr.run
PASS: process stacks.run
PASS: cascades.run
PASS: processes.run
PASS: decays.run
PASS: events.run
PASS: eio_base.run
PASS: rt data.run
PASS: dispatch.run
PASS: process_configurations.run
PASS: event weights 1.run
PASS: integrations.run
PASS: simulations.run
PASS: process libraries.run
PASS: compilations.run
PASS: prclib_interfaces.run
PASS: commands.run
PASS: helicity.run
PASS: prc omega.run
PASS: gedtest 1.run
PASS: beam_setup_1.run
PASS: reweight_1.run
PASS: colors.run
PASS: lhef_1.run
PASS: alphas.run
PASS: smtest 1.run
PASS: hepmc.run
PASS: restrictions.run
PASS: pdf builtin.run
PASS: stdhep 1.run
Testsuite summary for WHIZARD 2.2.0
```

```
# TOTAL: 241
# PASS: 236
 SKIP:
# XFAIL:
# FAIL:
 XPASS: 0
```

WHIZARD Manual

with distribution and online: http://whizard.hepforge.org/manual

Ohl/JRR, 2001

Replace forest of tree diagrams by

Directed Acyclical Graph (DAG) of the algebraic expression (including color).

$$ab(ab+c) = \underbrace{a}_{a} \underbrace{b}_{a} \underbrace{x}_{b} \underbrace{c}_{c} = \underbrace{x}_{a} \underbrace{x}_{b} \underbrace{x}_{b}$$

Ohl/JRR, 2001

Replace forest of tree diagrams by
 Directed Acyclical Graph (DAG) of the algebraic expression (including color).

► Example: $e^+e^- \rightarrow \mu^+\mu^-\gamma\gamma$

Ohl/JRR, 2001

Replace forest of tree diagrams by
 Directed Acyclical Graph (DAG) of the algebraic expression (including color).

► Example: $e^+e^- \rightarrow \mu^+\mu^-\gamma\gamma$

▶ Unification of model setup: only one binary (2.3.0)

Ohl/JRR, 2001

2

Replace forest of tree diagrams by
 Directed Acyclical Graph (DAG) of the algebraic expression (including color).

► Example: $e^+e^- \rightarrow \mu^+\mu^-\gamma\gamma$

- ▶ Unification of model setup: only one binary (2.3.0)
- ► Specification of order of strong or EW coupling (2.3.x/2.4)

Ohl/JRR, 2001

 Ω

Replace forest of tree diagrams by
 Directed Acyclical Graph (DAG) of the algebraic expression (including color).

$$ab(ab+c) = \underbrace{a}_{a} \underbrace{b}_{a} \underbrace{c}_{b} = \underbrace{a}_{a} \underbrace{b}_{b} \underbrace{c}_{c}$$

• Example: $e^+e^- \rightarrow \mu^+\mu^-\gamma\gamma$

- ▶ Unification of model setup: only one binary (2.3.0)
- Specification of order of strong or EW coupling (2.3.x/2.4)
- ► Teaser: new algorithm for generating loop diagrams (3.0 ?)

Beams and hard matrix elements

- Hadron Colliders structured beams
 - LHAPDF interface, most prominent PDFs directly included
 - QCD ISR and FSR (2 diff. own implementations, interface to PYTHIA)
 - Matching/merging matrix elements/showers
 - Underlying event/multiple interactions (proof of principle)
- Hadronic events/hadronic decays + hadronic (QED) FSR (ext.)
- Lepton Colliders structured beams
 - Beam structure (CIRCE1/2 module) more later
 - arbitrarily polarized beams (density matrices)
 - QED ISR (Skrzypek/Jadach, Kuraev/Fadin , incl. p_T distributions [caveat!])
 - [Photon collider spectra (CIRCE2 module)]
- Hard matrix elements:
 - Particle spins: $0, \frac{1}{2}, 1, \frac{3}{2}, 2$
 - Lorentz structures: hugh set of hard-coded structures
 - Fully general Lorentz structures foreseen for 2.3.0
 - Color structures: 3, 3, 8, [6]
 - Color flow formalism
 Stelzer/Willenberg
 - Stelzer/Willenbrock, 2003; Kilian/Ohl/JRR/Speckner, 2011
 - General color structures 6, 10, $\epsilon_{ijk}\phi^i\phi^j\phi^k$

WHIZARD – Overview over Physics Models

MODEL TYPE	with CKM matrix	trivial CKM
QED with e, μ, τ, γ	-	QED
QCD with d, u, s, c, b, t, g	-	QCD
Standard Model	SM_CKM	SM
SM with anomalous gauge coupl.	SM_ac_CKM	SM_ac
SM with anomalous top coupl.	SMtop_CKM	SMtop
SM for e^+e^- top threshold	_	SM_tt_threshold
SM with anom. Higgs coupl.	_	SM_rx / NoH
SM ext. for VV scattering	_	SSC / AltH
SM with Z'	_	Zprime
2HDM	2HDM_CKM	2HDM
MSSM	MSSM_CKM	MSSM
MSSM with gravitinos	_	MSSM_Grav
NMSSM	NMSSM_CKM	NMSSM
extended SUSY models	_	PS/E/SSM
Littlest Higgs	_	Littlest
Littlest Higgs with ungauged $U(1)$	_	Littlest_Eta
Littlest Higgs with T parity	_	Littlest_Tpar
Simplest Little Higgs (anomaly-free/univ.)	_	Simplest[_univ]
3-site model	_	Threeshl
UED	_	UED
SM with gravitino and photino	_	GravTest
Augmentable SM template	_	Template

new models easily: FeynRules interface Christensen/Duhr/Fuks/JRR/Speckner, 1010.3251

Interface to SARAH in the SUSY Toolbox Staub, 0909.2863; Ohl/Porod/Speckner/Staub, 1109.5147

WHIZARD – Overview over Physics Models

MODEL TYPE	with CKM matrix	trivial CKM
QED with e, μ, τ, γ	-	QED
QCD with d, u, s, c, b, t, g	_	QCD
Standard Model	SM_CKM	SM
SM with anomalous gauge coupl.	SM_ac_CKM	SM_ac
SM with anomalous top coupl.	SMtop_CKM	SMtop
SM for e^+e^- top threshold	_	SM_tt_threshold
SM with anom. Higgs coupl.	_	SM_rx / NoH
SM ext. for VV scattering	_	SSC / AltH
SM with Z'	_	Zprime
2HDM	2HDM_CKM	2 HDM
MSSM	MSSM_CKM	MSSM
MSSM with gravitinos	_	MSSM_Grav
NMSSM	NMSSM_CKM	NMSSM
extended SUSY models	_	PS/E/SSM
Littlest Higgs	_	Littlest
Littlest Higgs with ungauged $U(1)$	_	Littlest_Eta
Littlest Higgs with T parity	_	Littlest_Tpar
Simplest Little Higgs (anomaly-free/univ.)	_	Simplest[_univ]
3-site model	_	Threeshl
UED	_	UED
SM with gravitino and photino	_	GravTest
Augmentable SM template	_	Template

JRR et al. 1408.6207 Talk LCWS14 EW session 7.10.

new models easily: FeynRules interface Christensen/Duhr/Fuks/JRR/Speckner, 1010.3251

Interface to SARAH in the SUSY Toolbox Staub, 0909.2863; Ohl/Porod/Speckner/Staub, 1109.5147

SINDARIN Input files: Basic features

```
model = SM
```

```
process helloworld = E1, e1 => t, tbar, H
process inclusive = e1, E1 \Rightarrow (Z, h) + (Z, H) + (A, H)
```

```
sqrts = 500
beams = E1, e1 => circe1 => isr
```

```
integrate (helloworld) { iterations = 5:10000, 2:10000 }
```

```
n = vents = 10000
```

SINDARIN Input files: Basic features

```
model = SM
alias lepton = e1:E1
process helloworld = E1, e1 => t, tbar, H
process inclusive = e1, E1 \Rightarrow (Z, h) + (Z, H) + (A, H)
process t dec = t => E1, n1, b
process tb dec = tbar => el, N1, bbar
sarts = 500
beams = E1, e1 => circe1 => isr
cuts = any 5 degree < Theta < 175 degree
         [select if abs (Eta) < eta_cut [lepton]]
cuts = any E > 2 * mW [extract index 2
         [sort by Pt [lepton]]]
integrate (helloworld) { iterations = 5:10000, 2:10000 }
unstable t (t_dec)
unstable thar (thar dec)
n \text{ events} = 10000
simulate (helloworld)
```

Analytic Parton Shower

- Analytic Parton Shower:
 - no shower veto: shower history is exactly known
 - allows reweighting and maybe more reliable error estimate
- new algorithm for initial state QCD radiation

matching with hard matrix elements, no "power-shower"

Analytic Parton Shower

Kilian/JRR/Schmidt/Wiesler, JHEP 1204 013 (2012)

- Analytic Parton Shower:
 - no shower veto: shower history is exactly known
 - allows reweighting and maybe more reliable error estimate
- new algorithm for initial state QCD radiation

- matching with hard matrix elements, no "power-shower"
- Merging with higher-order matrix elements

Chokoufé/JRR

e^+e^- beam simulation in WHIZARD

- E = 3000 GeV (luminosity spectrum peak)
- E = 1500 GeV(Z peak and lumi spectrum)
- $E = M_Z$ (Z resonance)
- (due to $e^+e^-
 ightarrow \gamma^*
 ightarrow bar{b}$) • $E \approx 30 \text{ GeV}$

e^+e^- beam simulation in WHIZARD

- E = 3000 GeV (luminosity spectrum peak)
- E = 1500 GeV(Z peak and lumi spectrum)
- $E = M_Z$ (Z resonance)
- $E \approx 30 \text{ GeV}$ (due to $e^+e^- \rightarrow \gamma^* \rightarrow b\bar{b}$)

Even correlated beam spectra supported now!

o J. n. neuter rews from the Whizand Generator

- ► Guinea-Pig++ event files too short for high lumi simulations
- ► Fixed width histogramming struggles with steep distributions

Correlated lepton beam spectra with Circe2

- Circe1 too restrictive, assumes
 - *factorized* beam spectra: $D_{p_1p_2}(x_1, x_2) = D_{p_1}(x_1)D_{p_2}(x_2)$
 - power laws in continuum: $D(x) = d \cdot \delta(1-x) + c \cdot x^{\alpha}(1-x)^{\beta}$
- ► Circe2 algorithm:
 - Adapt 2D factorized variable width histogram (à la VEGAS) to steep part of distribution
 - smooth the correlated fluctuations with a moderate gaussian filter to suppress artifacts from limited Guinea-Pig++ statistics
 - smooth separately continuum/boundary bins (avoid artificial beam energy spread)

Smoothing $x_{e^+}=1$ boundary bin with Gaussian filters of width 3 and 10 bins, resp. 5 bins reasonable compromise for histograms with 100 bins.

[bins are *not equidistant*, shrink with power law towards the $x_{e^-} = 1$ boundary on RHS!]

Workflow Guinea-Pig++/Circe2/WHIZARD

1. Run Guinea-Pig++ with

```
do_lumi=7; num_lumi=1000000000; num_lumi_eg=100000000; num_lumi_gg=100000000; to produce lumi. [eg] [eg] .out with (E_1,E_2) pairs. [Large event numbers, as Guinea-Pig++ will produce only a small fraction!]
```

2. Run circe2_tool.opt with steering file

to produce correlated beam description

3. Run whizard with sindarin input:

```
beams = e1, E1 => circe2
$circe2_file = "ilc500.circe"
$circe2_design = "ILC"
?circe_polarized = false
```

Soon also files for polarized beams within distribution

- $ightharpoonup e^+e^-$ top threshold scan offers best option for m_t
- now: analytic LL ttV form factor implemented

Bach/JBB/Stahlhofen

- default parameters: $M^{1S} = 172$ GeV, $\Gamma_t = 1.5$ GeV, $\alpha_s(M^{1S}) = 0.1077$
- analytic LL unstable far off-shell: top mass cut $\Delta M_t < 30$ GeV

- $lackbox{ }e^+e^-$ top threshold scan offers best option for m_t
- ▶ now: analytic LL ttV form factor implemented

Bach/JRR/Stahlhofen

- default parameters: $M^{1S}=172$ GeV, $\Gamma_t=1.5$ GeV, $\alpha_s(M^{1S})=0.1077$
- ▶ analytic LL unstable far off-shell: top mass cut $\Delta M_t \leq 30$ GeV

Proper NLO/NLL matched implementation

Bach/Hoang/JRR/Stahlhofen/Teubner

TOPPIK code ships with WHIZARD

courtesy to T. Teubner

Own model: SM_tt_threshold

Parameters: wtop, m1S, vsoft, match

Proper NLO/NLL matched implementation

Bach/Hoang/JRR/Stahlhofen/Teubner

TOPPIK code ships with WHIZARD

courtesy to T. Teubner

Own model: SM t.t. threshold

Parameters: wtop, m1S, vsoft, match

BLHA interface: workflow

- Speckner, 2012; JRR/Weiss, 2014
- 1. Process definition in SINDARIN ⇒ WHIZARD writes contract file
- 2. NLO generator generates code, WHIZARD reads contract
- 3. NLO matrix element loaded as shared library
- ► First implementation: interfacing GoSAM (and FeynArts/FormCalc)
- Schedule / Plan
 - Automatic generation of subtraction terms Speckner, 2012; Kilian/JRR/Weiss, 2014
 - proof-of-concept code in WHIZARD 2.2

Status of NLO development in WHIZARD

BI HA interface: workflow

- Speckner, 2012; JRR/Weiss, 2014
- Process definition in SINDARIN ⇒ WHIZARD writes contract file
- 2. NLO generator generates code, WHIZARD reads contract
- 3. NLO matrix element loaded as shared library
- First implementation: interfacing GoSAM (and FeynArts/FormCalc)
- Schedule / Plan
 - Automatic generation of subtraction terms Speckner, 2012; Kilian/JRR/Weiss, 2014
 - proof-of-concept code in WHIZARD 2.2
 - first FKS then CS dipole subtraction will be available
 - Provide PowHeg box formalism for NLO processes
 - Special (first) focus on e^+e^- physics: top, Higgs, EW processes, BSM

Status of NLO development in WHIZARD

BI HA interface: workflow

- Speckner, 2012; JRR/Weiss, 2014
- Process definition in SINDARIN ⇒ WHIZARD writes contract file
- 2. NLO generator generates code, WHIZARD reads contract
- 3. NLO matrix element loaded as shared library
- First implementation: interfacing GoSAM (and FeynArts/FormCalc)
- Schedule / Plan
 - Automatic generation of subtraction terms Speckner, 2012; Kilian/JRR/Weiss, 2014
 - proof-of-concept code in WHIZARD 2.2
 - first FKS then CS dipole subtraction will be available
 - Provide PowHeg box formalism for NLO processes
 - Special (first) focus on e^+e^- physics: top, Higgs, EW processes, BSM
 - First tutorial example: $e^+e^- \rightarrow q\bar{q}$ and $e^+e^- \rightarrow \ell^-\ell^+q\bar{q}, \ell\nu q\bar{q}$ @ Beijing workshop & school 08/2014

Status of NLO development in WHIZARD

BI HA interface: workflow

- Speckner, 2012; JRR/Weiss, 2014
- Process definition in SINDARIN ⇒ WHIZARD writes contract file
- 2. NLO generator generates code, WHIZARD reads contract
- 3. NLO matrix element loaded as shared library
- First implementation: interfacing GoSAM (and FeynArts/FormCalc)
- Schedule / Plan
 - Automatic generation of subtraction terms Speckner, 2012; Kilian/JRR/Weiss, 2014
 - proof-of-concept code in WHIZARD 2.2
 - first FKS then CS dipole subtraction will be available
 - Provide PowHeg box formalism for NLO processes
 - Special (first) focus on e^+e^- physics: top, Higgs, EW processes, BSM
 - First tutorial example: $e^+e^- \rightarrow q\bar{q}$ and $e^+e^- \rightarrow \ell^-\ell^+q\bar{q}, \ell\nu q\bar{q}$ @ Beijing workshop & school 08/2014
 - Release: WHIZARD 3.0

News 2014/early 2015: upcoming releases 2.3-2.4

- New features in production version 2.2
 - LHAPDF 6 support, FastJet interface √
 - ILC TDR beam spectra (CIRCE1), CLIC (correlated) spectra (CIRCE2)
 - Direct Guinea-Pig interface
 - Complete Reweighting of Event Samples (incl. LHEF 2013)
 - Process containers: inclusive production samples (e.g. SUSY)
 - Automatic generation of decays, depending on the model
 - Simplified models for electroweak vector bosons (w/ light Higgs)

News 2014/early 2015: upcoming releases 2.3-2.4

New features in production version 2.2

- LHAPDF 6 support, FastJet interface
- ILC TDR beam spectra (CIRCE1), CLIC (correlated) spectra (CIRCE2)
- Direct Guinea-Pig interface
- Complete Reweighting of Event Samples (incl. LHEF 2013)
- Process containers: inclusive production samples (e.g. SUSY)
- Automatic generation of decays, depending on the model
- Simplified models for electroweak vector bosons (w/ light Higgs) ✓

Features in preparation: 2.3 – 2.4

- BSM: general Lorentz structures in matrix-element generator (O'Mega)
- LCIO support (in prep.)
- O'Mega Virtual Machine for faster and (much) smaller code (test phase)
- Performance: parallelization, flavor sums, MC over helicities/colors, PS, etc.
- Matched $e^+e^- \rightarrow$ jets at LO and NLO, POWHEG box formalism JRR/Weiss, 2015
- NLL/NLO matched e^+e^- top threshold (test phase) Bach/Hoang/JRR/Stahlhofen
- New syntax/features decays and chains (steering unstable particles):

```
process higgsstr = el, E1 \Rightarrow (Z \Rightarrow e2, E2), (H \Rightarrow b, bbar)
```

- Improved matching/merging for jets/photons Chokoufé/JRR/Kilian/Weiss, ca. 2015
- Specification of QCD and electroweak order
- Automatic QCD NLO corrections (massless) (test phase)

- WHIZARD 2 for LC & LHC physics and beyond
- Versatile, user-friendly & highly reliable tool
- Covers the whole SM, and most possible paths beyond (BSM)
- Highest-possible support for lepton collider physics
- Immense internal technical improvements
- Continuous improvement

- ▶ WHIZARD 2 for LC & LHC physics and beyond
- Versatile, user-friendly & highly reliable tool

- Highest-possible support for lepton collider physics
- Immense internal technical improvements
- Continuous improvement
 - WHIZARD 2.2 ⇒ release series

- WHIZARD 2 for LC & LHC physics and beyond
- Versatile, user-friendly & highly reliable tool

- Highest-possible support for lepton collider physics
- Immense internal technical improvements
- Continuous improvement
 - WHIZARD 2.2 ⇒ release series
 - WHIZARD 2.3-2.4 ⇒ large (LC) physics improvements

- ▶ WHIZARD 2 for LC & LHC physics and beyond
- ► Versatile, user-friendly & highly reliable tool
- ► Covers the whole SM, and most possible paths beyond (BSM)
- ► Highest-possible support for lepton collider physics
- Immense internal technical improvements
- Continuous improvement
 - WHIZARD 2.2 ⇒ release series
 - WHIZARD 2.3-2.4 ⇒ large (LC) physics improvements
 - WHIZARD 3 ⇒ QCD [& EW] NLO

Let us know of your needs!

whizard@desy.de

2nd International WHIZARD Forum 16.-18.3.2015

- Hadron and lepton collider physics
- Higher orders and automation
- Parton shower, matching and merging
- Hadronization & fragmentation
- Linear Collider beam properties
- Parallelization, performance, computing frontiers

2nd International WHIZARD Forum 16.-18.3.2015

- Hadron and lepton collider physics
- Higher orders and automation
- Parton shower, matching and merging
- Hadronization & fragmentation
- Linear Collider beam properties
- Parallelization, performance, computing frontiers

BACKUP SLIDES:

$$p + p \rightarrow \tilde{u}^* + \tilde{u} \rightarrow \tilde{u}^* + u + \tilde{e}^+ + e^-$$

Full process:

$$p + p \rightarrow \tilde{u}^* + \tilde{u} \rightarrow \tilde{u}^* + u + \tilde{e}^+ + e^-$$

Factorized process w/ full spin correlations:

$$p + p \rightarrow \tilde{u}^* + \tilde{u} \rightarrow \tilde{u}^* + u + \tilde{e}^+ + e^-$$

Factorized process w/ classical spin correlations:

$$p + p \rightarrow \tilde{u}^* + \tilde{u} \rightarrow \tilde{u}^* + u + \tilde{e}^+ + e^-$$

Factorized process w/ no spin correlations:

