Channels & Challenges – Neue Physik am LHC

Jürgen Reuter

Carleton University, Ottawa Albert-Ludwigs-Universität Freiburg

Dresden, 24. März 2007

Warum Neue Physik?

Standardmodell besser als 1 % getestet

- ? Elektroschwache Symmetriebrechung, Higgs
- ? Dunkle Materie: $m_{DM} \sim 100 \, \text{GeV}$
- ? 28 freie Parameter
- ? 3 Familien
- ? Vereinigung, Gravitation

Erhaltende Symmetrie ?

Supersymmetrie

Spin-Statistik: Korrekturen von Bosonen und Fermionen heben sich weg

verbinden Eich- und Raum-Zeit-Symmetrien

$$\label{eq:second} \begin{split} & \mbox{Fermion/Boson-Multipletts gleicher} \\ & \mbox{Masse} \Rightarrow \mbox{SUSY gebrochen} \end{split}$$

 M_H in allen Ordnungen geschützt

Große Vereinheitlichung

R-Parität: Dunkle Materie

Little Higgs

Globale Symmetrien: Korrekturen von Teilchen gleicher Statistik heben sich weg

Higgs: Goldstone-Boson spontan gebrochener globaler Symmetrie

Kollektive Brechung globaler Symmetrien schützt Higgs-Masse

 M_H geschützt in erster Ordnung

stark wechselwirkend @10 TeV

T-Parität: dunkle Materie

Charakteristika von Standard-Modell-Erweiterungen

<u>Skala</u>∧: "hidden sector", Symmetriebrechung

Skala F: neue Teilchen

<u>Skala v</u>: Higgs, W/Z, ℓ^{\pm} , ...

Teraskala: Reiches Spektrum neuer Teilchen, komplizierte Zerfallsstrukturen

Schranken an neue Modelle?

Flavour-Struktur: Meson-Mischung & seltene Zerfälle, CP-Verletzung Astrophysikalische Schranken: Dunkle-Materie-Verteilung Eichstruktur: Elektroschwache Präzisionsobservablen

Schranken an neue Modelle?

Flavour-Struktur: Meson-Mischung & seltene Zerfälle, CP-Verletzung Astrophysikalische Schranken: Dunkle-Materie-Verteilung Eichstruktur: Elektroschwache Präzisionsobservablen

Neue Teilchen-Skala $F \gtrsim 1 - 3 \, \text{TeV}$

Direkte Suchen: Large Hadron Collider

LHC @ CERN: 2007/08 pp-Collider $\sqrt{s} = 14 \text{ TeV}$

Die Herausforderung des LHC

Partonische Subprozesse: *qq*, *qg*, *gg* Keine feste partonische Energie

Hohe Ereignisraten für t, W/Z, H, \Rightarrow riesige Untergründe

Schnitte zur Untergrundreduktion

Die Herausforderung des LHC

Partonische Subprozesse: *qq*, *qg*, *gg* Keine feste partonische Energie

Hohe Ereignisraten für t, W/Z, H, \Rightarrow **riesige Untergründe** Schnitte zur Untergrundreduktion

Neue Physik: Observablen/Präzisionsmessungen

Signale für Neue Physik: E_T , high- p_T Jets, viele harte Leptonen, aber: Welches Modell?

- Kaskadenzerfälle: Massendifferenzen aus den Endpunkten der Zerfallsspektren
- Spin neuer Teilchen: Winkelverteilungen, ...

- ⇒ Präzise Vorhersagen für Signal und Untergrund
 - Berücksichtigung von Cuts

Verteilungen: $d\sigma/dX$, $X = \cos \theta$, η , p_T , ...

- Quantenkorrekturen: reell und virtuell

Simulationen: Der Event-Generator-Generator O'Mega Ω / Whizard \checkmark

 Matrix-Element-Generator O'Mega:
 Ohl, 2000/01; M.Moretti/Ohl/JR, 2001

 Optimierte Helizitätsamplituden: Vermeidung aller Redundanzen

Vielzweck-Event-Generator Whizard:

- Adaptive Multikanal-Monte-Carlo-Integration
- sehr gut getestet

- JR et al., 2006; Hagiwara/.../JR..., 2006
- Strukturfunktionen, Partonschauer/Hadronisierung
- Eventformate für Detektorsimulationen
- Virtuelle Korrekturen: NLO-Monte-Carlo

NLO-MC für $e^+e^-
ightarrow {\tilde \chi}^+_1 {\tilde \chi}^-_1$ Kilian/JR/Robens, 2006

Beliebige Verteilungen @ NLO

 \rightarrow NLO-Signal-MC für LHC

Ohl, 1996; Kilian, 2000; Kilian/Ohl/JR, 2007

Kilian, 2001; JR, 2007

[STDHEP. HEPEVT. ATHENA. ...]

I. Reuter

Sbottom-Produktion am LHC

Hagiwara/..., JR/..., 2006

Reelle Korrekturen: Bottom-Jet-Strahlung

K. Hagiwara/..., JR/..., 2006

 $g \rightarrow b\bar{b}$ -Splitting, b-ISR als kombinatorischer Untergrund

 $pp \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 b \overline{b} b \overline{b}$: 32112 Diagramme, 22 Farbflüsse, ~ 4000 PS-Kanäle

 $\sigma(pp \to b\bar{b}\tilde{\chi}_1^0\tilde{\chi}_1^0) = 1177 \text{ fb} \longrightarrow \sigma(pp \to b\bar{b}b\bar{b}\tilde{\chi}_1^0\tilde{\chi}_1^0) = 130.7 \text{ fb}$

Vorwärts-Diskriminierung von ISR und Zerfalls-b-Jets schwierig:

Nur der äußerste Vorwärts-b-Jet deutlich weicher

Reelle Korrekturen: Bottom-Jet-Strahlung

K. Hagiwara/..., JR/..., 2006

 $g \rightarrow b\bar{b}$ -Splitting, b-ISR als kombinatorischer Untergrund

 $pp \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 b \overline{b} b \overline{b}$: 32112 Diagramme, 22 Farbflüsse, ~ 4000 PS-Kanäle

 $\sigma(pp \to b\bar{b}\tilde{\chi}_1^0\tilde{\chi}_1^0) = 1177 \text{ fb} \longrightarrow \sigma(pp \to b\bar{b}b\bar{b}\tilde{\chi}_1^0\tilde{\chi}_1^0) = 130.7 \text{ fb}$

Nur geringe Unterschiede in $p_{T,b}$, PDF: Maximum bei kleinerem Wert

zu kleinerem p_T verschoben: leichte Teilchen balancieren Events aus

Und wenn nicht SUSY?

Pseudo-Axionen in Little Higgs

- U(1)-Gruppe geeicht: $Z' \leftrightarrow$ ungeeicht: η
- koppelt an Fermionen wie ein Pseudoskalar
- $-m_\eta \lesssim 400 \,\mathrm{GeV}$
- SM-Singlett, Kopplungen an SM-Teilchen v/F unterdrückt
- $-\eta$ axion-artiges Teilchen:

- U(1) explizit gebrochen \Rightarrow Axionschranken aus Astroteilchenphysik nicht anwendbar

Kilian/Rainwater/JR, 2004, 2006

Kilian/Rainwater/JR, 2004, 2006

LHC: Gluon-Fusion, Diphoton-Signal für $m_\eta \gtrsim 200 \,\text{GeV}, \, 7\sigma$ möglich LHC: $T \rightarrow t\eta$ Godfrey/Rainwater/JR ILC: $e^+e^- \rightarrow t\bar{t}\eta$

Kilian/Rainwater/JR, 2004, 2006

LHC: Gluon-Fusion, Diphoton-Signal für $m_\eta\gtrsim 200~{\rm GeV},~7\sigma$ möglich LHC: $T \rightarrow t\eta$ Godfrey/Rainwater/JR ILC: $e^+e^- \rightarrow t\bar{t}\eta$

 $ZH\eta$ -Kopplung

verboten in Produkt-Gruppen-Modellen

$$gg \to \left\{ \begin{array}{ll} H \to Z\eta & \to \ell\ell bb \\ \eta \to ZH & \to \ell\ell bb, \ell\ell\ell jj \end{array} \right.$$

Kilian/Rainwater/JR, 2004, 2006

LHC: Gluon-Fusion, Diphoton-Signal für $m_\eta \gtrsim 200 \text{ GeV}, 7\sigma$ möglich LHC: $T \rightarrow t\eta$ Godfrey/Rainwater/JR ILC: $e^+e^- \rightarrow t\bar{t}\eta$

 $ZH\eta$ -Kopplung

verboten in Produkt-Gruppen-Modellen

$$gg \to \left\{ \begin{array}{ll} H \to Z\eta & \to \ell\ell bb \\ \eta \to ZH & \to \ell\ell bb, \ell\ell\ell jj \end{array} \right.$$

Kilian/Rainwater/JR, 2004, 2006

LHC: Gluon-Fusion, Diphoton-Signal für $m_\eta \gtrsim 200 \,\text{GeV}, \, 7\sigma$ möglich LHC: $T \rightarrow t\eta$ Godfrey/Rainwater/JR ILC: $e^+e^- \rightarrow t\bar{t}\eta$

verboten in Produkt-Gruppen-Modellen

$$gg \to \left\{ \begin{array}{ll} H \to Z\eta & \to \ell\ell bb \\ \eta \to ZH & \to \ell\ell bb, \ell\ell\ell jj \end{array} \right.$$

Kilian/Rainwater/JR, 2004, 2006

LHC: Gluon-Fusion, Diphoton-Signal für $m_\eta \gtrsim 200 \text{ GeV}, 7\sigma$ möglich LHC: $T \rightarrow t\eta$ Godfrey/Rainwater/JR ILC: $e^+e^- \rightarrow t\bar{t}\eta$

verboten in Produkt-Gruppen-Modellen

$$gg \to \left\{ \begin{array}{ll} H \to Z\eta & \to \ell\ell bb \\ \eta \to ZH & \to \ell\ell bb, \ell\ell\ell jj \end{array} \right.$$

Präzisionsmaschine LHC – Anomale Eichkopplungen

ILC: Beyer/Kilian/Krstonošić/Mönig/JR/Schröder/Schmidt, 2006

LHC: Kilian/Mertens/JR/Schumacher

Anomale quartische Eichkopplungen, durch chiralen EW Lagrangian:

$$\begin{split} \mathcal{L}_4 &= \alpha_4 \frac{g^2}{2} \left\{ \left[(W^+ W^+) (W^- W^-) + (W^+ W^-)^2 \right] + \frac{2}{c_W^2} (W^+ Z) (W^- Z) + \frac{1}{2c_W^4} (ZZ)^2 \right\} \\ \mathcal{L}_5 &= \alpha_5 \frac{g^2}{2} \left\{ (W^+ W^-)^2 + \frac{2}{c_W^2} (W^+ W^-) (ZZ) + \frac{1}{2c_W^4} (ZZ)^2 \right\} \end{split}$$

(alle Leptonen, einschl. τ):

 $pp \rightarrow jj(ZZ/WW) \rightarrow jj\ell^-\ell^+\nu_\ell\bar{\nu}_\ell$

 $\sigma pprox$ 40 fb

Untergrund:

- $t\bar{t} \rightarrow WbWb, \sigma \approx 52 \, \text{pb}$
- Single t, misrek. Jet: $\sigma \approx 4.8 \, \text{pb}$
- QCD: σ ≈ 0.21 pb

Tagging und Schnitte:

- ▶ $\ell\ell jj$ -Tag, $\eta_{tag}^{min} < \eta_{\ell} < \eta_{tag}^{max}$, b-Veto
- ► $|\Delta \eta_{jj}| >$ 4.4, $M_{jj} >$ 1080 GeV
- Minijet-Veto: $p_{T,j} < 30 \,\text{GeV}$
- ▶ $E_j > 600, 400 \, \text{GeV}, \quad p_{T,j}^1 > 60, 24 \, \text{GeV}$

Verbessert S/\sqrt{B} von 3.3 auf 29.7

Ergebnisse: (1 σ Sensitivität auf α s)

Coupl.	ILC (1 ab ⁻¹)	LHC (100fb^{-1})
α_4	0.0088	0.00160
α_5	0.0071	0.00098

Schranken auf A [TeV]:

Spin	I = 0	I = 1	I = 2
0	1.39	1.55	1.95
1	1.74	2.67	—
2	3.00	3.01	5.84

Ausblick

- LHC: neue Ära der Physik
- Higgs-Mechanismus
- Neue Teilchen, Symmetrien: SUSY, Little Higgs
- Pheno: präzise Berechnungen/Simulationen von Vielteilchen-Endzuständen
- Spannende Zeiten!

Ausblick

- LHC: neue Ära der Physik
- Higgs-Mechanismus
- Neue Teilchen, Symmetrien: SUSY, Little Higgs
- Pheno: präzise Berechnungen/Simulationen von Vielteilchen-Endzuständen
- Spannende Zeiten!
- Es ist Licht am Ende des Tunnels!

