

Status of the WHIZARD Generator

Jürgen R. Reuter, DESY

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

J.R.Reuter

Status of WHIZARD

WHIZARD: Some (technical) facts

WHIZARD v2.6.4 (23.08.2018) http://whizard.hepforge.org <whizard@desy.de> Wolfgang Kilian, Thorsten Ohl, JRR WHIZARD Team: Simon Braß/Vincent Rothe/Christian Schwinn/Marco Sekulla/So Young Shim/Pascal Stienemeier/Zhijie Zhao + 2 Master PUBLICATIONS General WHIZARD reference: EPJ C71 (2011) 1742, arXiv:0708.4241 0'Mega (ME generator): LC-TOOL (2001) 040; arXiv:hep-ph/0102195 VAMP (MC integrator): CPC 120 (1999) 13; arXiv:hep-ph/9806432 CIRCE (beamstrahlung): CPC 101 (1997) 269; arXiv:hep-ph/9607454 JHEP 1204 (2012) 013; arXiv:1112.1039 Parton shower: JHEP 1210 (2012) 022; arXiv:1206.3700 Color flow formalism: NLO capabilities: JHEP 1612 (2016) 075; arXiv: 1609.03390 lesting CPC 196 (2015) 58; arXiv:1411.3834 Parallelization of MEs: EPS-HEP (2015) 317; arXiv: 1510.02739 **POWHEG** matching:

- Programming Languanges: Fortran2008 (gfortran ≥4.8.4), 0Caml (≥3.12.0)
 - Standard installation: configure <FLAGS>, make, [make check], make install
 - Large self test suite, unit tests [module tests], regression testing
 - Continous integration system (gitlab CI @ Siegen)

J.R.Reuter

Status of WHIZARD

MBI 2018, U. of Michigan, Ann Arbor, 28.08.18

Ş

WHIZARD: Introduction / Technical Facts

- Universal event generator for lepton and hadron colliders
- Tree ME generator 0' Mega optimized ME generator
- Generator/simulation tool for lepton collider beam spectra: CIRCE1/2
- Interfaces to external packages: FastJet, GoSam, GuineaPig(++), HepMC, HOPPET, LCIO, LHAPDF(5/6), LoopTools, OpenLoops, PYTHIA6 [internal], PYTHIA8, Recola, StdHep [internal], Tauola [internal]
- Event formats: LHE, StdHEP, HepMC, LCIO + several ASCII
 - Scattering processes and [auto-] decays

predefined branching ratios]

- Scripting language for the steering: SINDARIN
- Beam structure: polarization, asymmetric beams, crossing angle, structured beams, decays

beams = e1, E1 => circe2 => isr => ewa

מסמג שלפאל מלמה

סלאשום אלףאד כחום

integral (br hZA redef) = 200 keV

J.R.Reuter

Status of WHIZARD

Spin Correlation and Polarization in Cascades 4/22

Cascade decay, factorize production and decay

 $p+p \rightarrow \tilde{u}^* + \tilde{u} \rightarrow \tilde{u}^* + u + \tilde{e}^+ + e^-$

Status of WHIZARD

Spin Correlation and Polarization in Cascades 4/22

Cascade decay, factorize production and decay

 $p+p \rightarrow \tilde{u}^* + \tilde{u} \rightarrow \tilde{u}^* + u + \tilde{e}^+ + e^-$

Possibility to select specific helicity in decays!

unstable "W+" { decay_helicity = 0 }

MBI 2018, U. of Michigan, Ann Arbor, 28.08.18

Status of WHIZARD

e⁺e⁻ Beamspectra

Status of WHIZARD

e⁺e⁻ Beamspectra

- High-energy e+e- colliders need to achieve extreme luminosities
- Price for limited AC power: high bunch charges and tiny cross sections
- Dense beams generate strong EM fields: deflect particles in other bunch (beamstrahlung)

e⁺e⁻ Beamspectra

- High-energy e+e- colliders need to achieve extreme luminosities
- Price for limited AC power: high bunch charges and tiny cross sections
- Dense beams generate strong EM fields: deflect particles in other bunch (beamstrahlung)

Status of WHIZARD

Inclusive Lepton Collider ISR included

Soft exponentiation to all orders

 $\epsilon = rac{lpha}{\pi} q_e^2 \ln\left(rac{s}{m^2}
ight)$ Gribov/Lipatov, 1971 $f_0(x) = \epsilon \cdot (1-x)^{-1+\epsilon}$

Hard-collinear photons up to 3rd QED order

Inclusive Lepton Collider ISR included

Soft exponentiation to all orders

Hard-collinear photons up to 3rd QED order

Kuraev/Fadin, 1983; Skrzypek/Jadach, 1991

$$g_3(\epsilon) = 1 + \frac{3}{4}\epsilon + \frac{27 - 8\pi^2}{96}\epsilon^2 + \frac{27 - 24\pi^2 + 128\zeta(3)}{384}\epsilon^3$$

$$f_{3}(x) = g_{3}(\epsilon) f_{0}(x) - \frac{\epsilon}{2}(1+x)$$

$$- \frac{\epsilon^{2}}{8} \left(\frac{1+3x^{2}}{1-x} \ln x + 4(1+x) \ln(1-x) + 5+x \right)$$

$$- \frac{\epsilon^{3}}{48} \left((1+x) \left[6 \operatorname{Li}_{2}(x) + 12 \ln^{2}(1-x) - 3\pi^{2} \right] + 6(x+5) \ln(1-x) + \frac{1}{1-x} \left[\frac{3}{2}(1+8x+3x^{2}) \ln x + 12(1+x^{2}) \ln x \ln(1-x) - \frac{1}{2}(1+7x^{2}) \ln^{2} x + \frac{1}{4}(39-24x-15x^{2}) \right] \right)$$

6 / 22

 $\zeta(3) = 1.20205690315959428539973816151\ldots$

Inclusive Lepton Collider ISR included

6 / 22

Phase Space Integration

- VAMP: adaptive multi-channel Monte Carlo integrator
- VAMP2: fully MPI-parallelized version, using RNG stream generator

WHIZARD algorithm: heuristics to classify phase-space topology, adaptive multi-channel mapping \implies resonant, t-channel, radiation, infrared, collinear, off-shell

Complicated processes: factorization into production and decay with the unstable option Resonance-aware factorization for NLO processes and parton showers (e.g. $e^+e^- \rightarrow jjjj$)

Status of WHIZARD

MPI Parallelization

Braß/Kilian/JRR, soon-ish

- Event generation trivially parallelizable
- Major bottleneck: adaptive phase space integration (generation of grids)
- Parallelization of integration: OMP multi-threading for different helicities since long
- NEW (after v2.5.0/2.6.4): MPI parallelization (using OpenMPI or MPICH)
- Distributes workers over multiple cores, grid adaption needs non-trivial communication
- Amdahl's law: $s = \frac{1}{1-p+\frac{p}{N}}$
- Speedups of 10 to 30, saturation at O(100) tasks
- Integration times go down from weeks to hours! [can do also parallel event generation]

Status of WHIZARD

LHC VBS: Comparison LO & LO+PS

LHC VBS: Comparison LO & LO+PS

LHC VBS: Comparison LO & LO+PS

Keep resonances in ME-PS merging

10/22

?resonance_history = true
resonance_on_shell_limit = 4

• Problem: $e^+e^- \rightarrow jjjj$ not dominated by highest α_s power,

but by resonances $e^+e^- \rightarrow WW/ZZ \rightarrow (jj)(jj)$

- Solution: proper merging with resonant subprocesses by means of resonance histories
- WHIZARD v2.6.0: option to set resonance histories

Keep resonances in ME-PS merging

10/22

?resonance_history = true
resonance_on_shell_limit = 4

• Problem: $e^+e^- \rightarrow jjjj$ not dominated by highest α_s power,

but by resonances $e^+e^- \rightarrow WW/ZZ \rightarrow (jj)(jj)$

- Solution: proper merging with resonant subprocesses by means of resonance histories
- WHIZARD v2.6.0: option to set resonance histories

Keep resonances in ME-PS merging

?resonance_history = true
resonance_on_shell_limit = 4

• Problem: $e^+e^- \rightarrow jjjj$ not dominated by highest α_s power,

Status of WHIZARD

but by resonances $e^+e^- \rightarrow WW/ZZ \rightarrow (jj)(jj)$

- Solution: proper merging with resonant subprocesses by means of resonance histories
- WHIZARD v2.6.0: option to set resonance histories

J.R.Reuter

Keep resonances in ME-PS merging

?resonance_history = true
resonance_on_shell_limit = 4

• Problem: $e^+e^- \rightarrow jjjj$ not dominated by highest α_s power,

but by resonances $e^+e^- \rightarrow WW/ZZ \rightarrow (jj)(jj)$

- Solution: proper merging with resonant subprocesses by means of resonance histories
- WHIZARD v2.6.0: option to set resonance histories

• Some first tests started on $e^+e^- \rightarrow 6j$; future tests will also include tests with resonant $H \rightarrow bb$

MBI 2018, U. of Michigan, Ann Arbor, 28.08.18

Status of WHIZARD

BSM Models in WHIZARD

MODEL TYPE	with CKM matrix	trivial CKM
Yukawa test model		Test
QED with e, μ, τ, γ		QED
QCD with d, u, s, c, b, t, g		QCD
Standard Model	SM_CKM	SM
SM with anomalous gauge couplings	SM_ac_CKM	SM_ac
SM with Hgg , $H\gamma\gamma$, $H\mu\mu$, He^+e^-	SM_Higgs_CKM	SM_Higgs
SM with bosonic dim-6 operators		SM_dim6
SM with charge $4/3$ top		SM_top
SM with anomalous top couplings		SM_top_anom
SM with anomalous Higgs couplings		SM_rx/NoH_rx/SM_ul
SM extensions for VV scattering		SSC/AltH/SSC_2/SSC_AltT
SM with Z'		Zprime
Two-Higgs Doublet Model	THDM_CKM	THDM
Higgs Singlet Extension		HSExt
MSSM	MSSM_CKM	MSSM
MSSM with gravitinos		MSSM_Grav
NMSSM	NMSSM_CKM	NMSSM
extended SUSY models		PSSSM
Littlest Higgs		Littlest
Littlest Higgs with ungauged $U(1)$		Littlest_Eta
Littlest Higgs with T parity		Littlest_Tpar
Simplest Little Higgs (anomaly-free)		Simplest
Simplest Little Higgs (universal)		Simplest_univ
SM with graviton		Xdim
UED		UED
"SQED" with gravitino		GravTest
Augmentable SM template		Template

- Automated models: interface to SARAH/BSM Toolbox Staub, 0909.2863; Ohl/Porod/Staub/Speckner, 1109.5147
- Automated models: interface to FeynRules

Christensen/Duhr; Christensen/Duhr/Fuks/JRR/Speckner, 1010.3251

Status of WHIZARD

BSM Models in WHIZARD

MODEL TYPE	with CKM matrix	trivial CKM
Yukawa test model		Test
QED with e, μ, τ, γ		QED
QCD with d, u, s, c, b, t, g		QCD
Standard Model	SM_CKM	SM
SM with anomalous gauge couplings	SM_ac_CKM	SM_ac
SM with Hgg , $H\gamma\gamma$, $H\mu\mu$, He^+e^-	SM_Higgs_CKM	SM_Higgs
SM with bosonic dim-6 operators		SM_dim6
SM with charge $4/3$ top		SM_top
SM with anomalous top couplings		SM_top_anom
SM with anomalous Higgs couplings		SM_rx/NoH_rx/SM_ul
SM extensions for VV scattering		SSC/AltH/SSC_2/SSC_AltT
SM with Z'		Zprime
Two-Higgs Doublet Model	THDM_CKM	THDM
Higgs Singlet Extension		HSExt
MSSM	MSSM_CKM	MSSM
MSSM with gravitinos		MSSM_Grav
NMSSM	NMSSM_CKM	NMSSM
extended SUSY models		PSSSM
Littlest Higgs		Littlest
Littlest Higgs with ungauged $U(1)$		Littlest_Eta
Littlest Higgs with T parity		Littlest_Tpar
Simplest Little Higgs (anomaly-free)		Simplest
Simplest Little Higgs (universal)		Simplest_univ
SM with graviton		Xdim
UED		UED
"SQED" with gravitino		GravTest
Augmentable SM template		Template

- Automated models: interface to SARAH/BSM Toolbox Staub, 0909.2863; Ohl/Porod/Staub/Speckner, 1109.5147
- Automated models: interface to FeynRules Christe

Christensen/Duhr; Christensen/Duhr/Fuks/JRR/Speckner, 1010.3251

Automated models: UFO interface [new WHIZARD/0'Mega model format]

J.R.Reuter

Status of WHIZARD

BSM Models in WHIZARD

	MODEL TYPE	with CKM matrix	trivial CKM	
	Yukawa test model		Test	
Ì	QED with e, μ, τ, γ		QED	
	QCD with d, u, s, c, b, t, g		QCD	
	Standard Model	SM_CKM	SM	
	SM with anomalous gauge couplings	SM_ac_CKM	SM_ac	
	SM with Hgg , $H\gamma\gamma$, $H\mu\mu$, He^+e^-	SM_Higgs_CKM	SM Higgs	
	SM with bosonic dim-6 operators		SM_dim6	
	SM with charge $4/3$ top		SM_top	
	SM with anomalous top couplings		SM_top_anom	
	SM with anomalous Higgs couplings		SM_rx/NoH_rx/SM_ul	
	SM extensions for VV scattering		SSC/AltH/SSC_2/SSC_AltT	
	SM with Z'		Zprime	
	Two-Higgs Doublet Model	THDM_CKM	THDM	*
	Higgs Singlet Extension		HSExt	by So Young Shim
	MSSM	MSSM_CKM	MSSM	hoavily used
	MSSM with gravitinos		MSSM_Grav	neavily used
	NMSSM	NMSSM_CKM	NMSSM	for CLIC
	extended SUSY models		PSSSM	Yellow Report
	Littlest Higgs		Littlest	
	Littlest Higgs with ungauged $U(1)$		Littlest_Eta	multi-boson
	Littlest Higgs with T parity		Littlest_Tpar	studies
	Simplest Little Higgs (anomaly-free)		Simplest	
	Simplest Little Higgs (universal)		Simplest_univ	$(\Lambda\Lambda\Lambda + \Lambda R2)$
	SM with graviton		Xdim	
	UED		UED	
	"SQED" with gravitino		GravTest	
	Augmentable SM template		Template	

- Automated models: interface to SARAH/BSM Toolbox Staub, 0909.2863; Ohl/Porod/Staub/Speckner, 1109.5147
- Automated models: interface to FeynRules

Christensen/Duhr; Christensen/Duhr/Fuks/JRR/Speckner, 1010.3251

Automated models: UFO interface [new WHIZARD/0'Mega model format]

J.R.Reuter

Status of WHIZARD

12/22

model = SM (ufo)

UFO file is assumed to be in working directory OR

model = SM (ufo ("<my UFO path>"))

UFO file is in user-specified directory

WHIZARD 2.5.1
Reading model file '/Users/reuter/local/share/whizard/models/SM.mdl'
Preloaded model: SM
Process library 'default_lib': initialized
Preloaded library: default_lib
Reading model file '/Users/reuter/local/share/whizard/models/SM_hadrons.mdl'
Reading commands from file 'ufo_2.sin'
Model: Generating model 'SM' from UFO sources
Model: Searching for UFO sources in working directory
Model: Found UFO sources for model 'SM'
Model: Model file 'SM.ufo.mdl' generated
Reading model file 'SM.ufo.mdl'

Switching to model 'SM' (generated from UFO source)

All the setup works the same as for intrinsic models

Old FeynRules / SARAH interface will get deprecated

kept at the moment for user backwards compatibility

All SM-like models/scalar extensions already supported Higher-dim. operators, general Lorentz/color structures is work in progress

Status of WHIZARD

New Physics in Vector Boson Scattering: LHC 13/22

- Model-independent EFT: either weakly-coupled resonances in reach or strongly-coupled sectors Alboteanu/Kilian/JRR, 0806.4145; Kilian/Ohl/JRR/Sekulla, 1408.6207
- Parameterize new physics by dim 6/dim 8 operators, calculate unitarity limits
- Dim.-8 operators for longitudinal/mixed/transverse modes Brass/Fleper/Kilian/JRR/Sekulla
- T-matrix unitarization implemented in WHIZARD (both for operators and resonances)

$$\mathcal{L}_{S,0} = F_{S,0} \operatorname{Tr}[(\mathbf{D}_{\mu}\mathbf{H})^{\dagger}(\mathbf{D}_{\nu}\mathbf{H})] \operatorname{Tr}[(\mathbf{D}^{\mu}\mathbf{H})^{\dagger}(\mathbf{D}^{\nu}\mathbf{H})]$$
$$\mathcal{L}_{S,1} = F_{S,1} \operatorname{Tr}[(\mathbf{D}_{\mu}\mathbf{H})^{\dagger}(\mathbf{D}^{\mu}\mathbf{H})] \operatorname{Tr}[(\mathbf{D}_{\nu}\mathbf{H})^{\dagger}(\mathbf{D}^{\nu}\mathbf{H})]$$
$$\mathcal{L}_{M,0} = -g^{2} F_{M,0} \operatorname{Tr}[(\mathbf{D}_{\mu}\mathbf{H})^{\dagger}(\mathbf{D}^{\mu}\mathbf{H})] \operatorname{Tr}[\mathbf{W}_{\nu\rho}\mathbf{W}^{\nu\rho}]$$
$$\mathcal{L}_{M,1} = -g^{2} F_{M,1} \operatorname{Tr}[(\mathbf{D}_{\mu}\mathbf{H})^{\dagger}(\mathbf{D}^{\rho}\mathbf{H})] \operatorname{Tr}[\mathbf{W}_{\nu\rho}\mathbf{W}^{\nu\mu}]$$
$$\mathcal{L}_{T,0} = g^{4} F_{T,0} \operatorname{Tr}[\mathbf{W}_{\mu\nu}\mathbf{W}^{\mu\nu}] \operatorname{Tr}[\mathbf{W}_{\alpha\beta}\mathbf{W}^{\alpha\beta}]$$
$$\mathcal{L}_{T,1} = g^{4} F_{T,1} \operatorname{Tr}[\mathbf{W}_{\alpha\nu}\mathbf{W}^{\mu\beta}] \operatorname{Tr}[\mathbf{W}_{\mu\beta}\mathbf{W}^{\alpha\nu}]$$
$$\mathcal{L}_{T,2} = g^{4} F_{T,2} \operatorname{Tr}[\mathbf{W}_{\alpha\mu}\mathbf{W}^{\mu\beta}] \operatorname{Tr}[\mathbf{W}_{\beta\nu}\mathbf{W}^{\nu\alpha}]$$

$$\left|a - \frac{a_K}{2}\right| = \frac{a_K}{2} \implies a = \frac{1}{\operatorname{Re}\left(\frac{1}{a_0}\right) - \mathrm{i}}$$

MBI 2018, U. of Michigan, Ann Arbor, 28.08.18

Status of WHIZARD

New Physics in VBS: LHC & Lepton Colliders

Braß/Fleper/Kilian/JRR/Sekulla, 1807.02512

Status of WHIZARD

MBI 2018, U. of Michigan, Ann Arbor, 28.08.18

New Physics in VBS: LHC & Lepton Colliders

Braß/Fleper/Kilian/JRR/Sekulla, 1807.02512

14/22

Transversal (&mixed) operators:

Much more room for new physics

Status of WHIZARD

New Physics in VBS: LHC & Lepton Colliders

Braß/Fleper/Kilian/JRR/Sekulla, 1807.02512

- Resonances might be in LHC direct reach
- FFT framework EW-restored regime: SU(2)_L × SU(2)_R, SU(2)_L × U(1)_Y gauged
 Apply T-matrix unitarization beyond
 resonance ("UV-incomplete" model)

Transversal (&mixed) operators:

Much more room for new physics

MBI 2018, U. of Michigan, Ann Arbor, 28.08.18

Status of WHIZARD

Kilian/Ohl/JRR/Sekulla: 1511.00022

Black dashed line: saturation of $A_{22}(W^+W^+)/A_{00}(ZZ)$

 $M_{jj} > 500 \,\text{GeV}; \ \Delta \eta_{jj} > 2.4; \ p_T^j > 20 \,\text{GeV}; \ |\Delta \eta_j| < 4.5$

Status of WHIZARD

Brass/Fleper/Kilian/JRR/Sekulla: 1807.02512

 $M_{jj} > 500 \,\text{GeV}; \ \Delta \eta_{jj} > 2.4; \ p_T^j > 20 \,\text{GeV}; \ |\Delta \eta_j| < 4.5$

Status of WHIZARD

Fleper/Kilian/JRR/Sekulla: 1607.03030

CLIC (3 TeV)

Status of WHIZARD

WIP:	Unitarity limits for $pp \rightarrow VVV$	Brass/Kilian/JRR/Sekulla: 18XX.xxxxx

Status of WHIZARD

NLO Automation in WHIZARD

 \star

 \star

Working NLO interfaces to:

- GoSam [N. Greiner, G. Heinrich, J. v. Soden-Fraunhofen et al.]
- OpenLoops [F. Cascioli, J. Lindert, P. Maierhöfer, S. Pozzorini]
- Recola [A. Denner, L. Hofer, J.-N. Lang, S. Uccirati]

NLO QCD (massless & massive) fully supported

```
alpha_power = 2
alphas_power = 0
process eett = e1,E1 => t, tbar
    { nlo_calculation = "full" }
```

- FKS subtraction [Frixione/Kunszt/Signer, hep-ph/9512328]
- Resonance-aware treatment [Ježo/Nason, 1509.09071]
- Virtual MEs external
- Real and virtual subtraction terms internal
- NLO decays available for the NLO processes
- Fixed order events for plotting (weighted)
- Automated POWHEG damping and matching
- NLO QCD: final validation
 NLO EW started
- New refactoring phase (3rd NLO refactoring)

List of validated NLO QCD processes

- $\bullet ~ e^+e^- \to jj$
- $e^+e^- \rightarrow jjj$
- $e^+e^- \rightarrow \ell^+\ell^- jj$
- $e^+e^- \rightarrow \ell^+ \nu_\ell j j$
- $e^+e^- \to t\bar{t}$
- $e^+e^- \to t\bar{t}t\bar{t}$
- $e^+e^- \rightarrow t\bar{t}W^+jj$

- $e^+e^- \to tW^-b$
- $e^+e^- \to W^+W^-b\bar{b}, \quad \ell^+\ell^-\nu_\ell\bar{\nu}_\ell b\bar{b}$
- $e^+e^- \rightarrow b\bar{b}\ell^+\ell^-$
- $e^+e^- \rightarrow t\bar{t}H$
- $e^+e^- \to W^+W^-b\bar{b}H$, $\ell^+\ell^-\nu_\ell\bar{\nu}_\ell b\bar{b}H$
- $pp \rightarrow \ell^+ \ell^-$
- $pp \to \ell \nu$
- $pp \rightarrow ZZ$

MBI 2018, U. of Michigan, Ann Arbor, 28.08.18

Status of WHIZARD

NLO QCD Results for off-shell $e^+e^- \rightarrow ttH$ 17/22

Chokoufé/Kilian/Lindert/Pozzorini/JRR/Weiss, 1609.03390

I.R.Reuter

Status of WHIZARD

NLO QCD Results for off-shell $e^+e^- \rightarrow ttH$ 17/22

Chokoufé/Kilian/Lindert/Pozzorini/JRR/Weiss, 1609.03390

I.R.Reuter

Status of WHIZARD

Top Threshold/Continuum in WHIZARD

- LC top threshold scan best-known method to measure top quark mass, $\Delta M \sim 30-70 \text{ MeV}$
- LC continuum top production best-known method to measure top couplings
- WHIZARD provides special model for top threshold
- Matches threshold resummation with NLO QCD
- Allows for (almost) fully exclusive final states

Chokoufé/Hoang/Kilian/JRR/Stahlhofen/Teubner/Weiss, 1712.02220 [JHEP 1803(2018)184]

Allows to study top mass dependence of differential distributions at threshold

MBI 2018, U. of Michigan, Ann Arbor, 28.08.18

Status of WHIZARD

Interface between WHIZARD - PYTHIA8

- Intention: directly communicate between event records of WHIZARD and PYTHIA8
- No intermediate files
- Allows for using all the machinery for matching and merging from PYTHIA8

Interface between WHIZARD - PYTHIA8

- Intention: directly communicate between event records of WHIZARD and PYTHIA8
- No intermediate files

.R.Reuter

• Allows for using all the machinery for matching and merging from PYTHIA8

Status of WHIZARD

====================================	
A 2212 6500.000 -1 -1 B 2212 6500.000 -1 -1	
Event weighting strategy = -3 Processes, with strategy-dependent cross section info number xsec (pb) xerr (pb) xmax (pb) 1 1.0000e+00 5.0000e-02 1.0000e+00 2 1.2000e+00 6.0000e-02 1.0000e+00 3 1.4000e+00 7.0000e-02 1.0000e+00 4 1.6000e+00 8.0000e-02 1.0000e+00 5 1.8000e+00 9.0000e-02 1.0000e+00	<pre>\$shower_method = "PYTHIA8" \$hadronization_method = "PYTHIA8"</pre>
End LHA initialization information success. Running test: whizard_lha_2 LHA initialization information	
beam kind energy pdfgrp pdfset A 2212 6500.000 -1 -1 B 2212 6500.000 -1 -1 Event weighting strategy = -3 -3 Processes, with strategy-dependent cross section info number xsec (pb) xerr (pb) xmax (pb) 1 1.0000e+00 5.0000e-02 1.0000e+00	Allows to use the PYTHIA8 toolbox for matching
End LHA initialization information	
process = 1 weight = 1.0000e+00 scale = 1.0000e+03 (GeV) alpha_em = 7.8740e-03 alpha_strong = 1.0000e-01 Participating Particles no 1d stat mothers colours p_x p_y p_z e m tau 1 2011 -9 0 0 0.000 0.000 0.000 1.000 1.000 0.000 2 2012 -9 0 0 0 0.000 0.000 2.000 2.000 0.000 3 11 -1 1 0 0 0 0.000 0.000 0.000 2.000 2.000 0.000 4 12 -1 2 0 0 0.000 0.000 0.000 3.000 3.000 0.000 5 91 3 1 0 0 0.000 0.000 0.000 3.000 3.000 0.000 6 92 3 2 0 0 0.000 0.000 0.000 7.000 7.000 0.000	spin 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Gridpack functionality in WHIZARD

- Implemented by Wolfgang Kilian [on sabbatical at CERN w. CLICdp 03/2018-08/2018]
- Workspace subdirectory for GRID communication: job ID
- Pack and unpack features: transfers whole directories, relies on tar

Status of WHIZARD

Outlook & Plans

- See WHIZARD 2.6.4 event generator for collider physics (ee, pp, ep)
- Given the set of the se
- Allows to simulate all possible BSM models
- Strong focus on e⁺e⁻ physics: beam spectra, e⁺e⁻ ISR, LCIO, polarizations
- Multiboson physics: unitarization for transverse operators / resonances
- See NEW:
- UFO models: [WIP: still waiting for general Lorentz structures]
 MPI parallel integration
- Possibility to pre-set branching ratios for factorized processes
- **Markov** Resonance matching to parton shower
- **Fully integrated PYTHIA8** interface [not yet in official release]
- Batch mode / gridpack functionality
- MBI physics: transverse operators/resonances & unitarization

Status of WHIZARD

Found on the Internet, available now:

Status of WHIZARD

Found on the Internet, available now:

MBI 2018, U. of Michigan, Ann Arbor, 28.08.18

Status of WHIZARD

BACKUP

Status of WHIZARD

Decay processes / auto decays

WHIZARD cannot only do scattering processes, but also decays

Example Energy distribution electron in muon decay:

```
model = SM
process mudec = e2 => e1, N1, n2
integrate (mudec)
histogram e e1 (0, 60 MeV, 1 MeV)
analysis = record e_e1 (eval E [e1])
n_{events} = 100000
simulate (mudec)
compile_analysis { $out_file = "test.dat" }
4000 ·
      dN/dE_e(\mu^- \to e^- \bar{\nu}_e \nu_\mu)
3000
2000
1000
  0
                                                   GeV
                  0.02
                                 0.04
   0
                                                 0.06
                           Status of WHIZARD
 J.R.Reuter
```


Decay processes / auto decays

WHIZARD cannot only do scattering processes, but also decays

Example Energy distribution electron in muon decay:

```
model = SM
process mudec = e2 => e1, N1, n2
integrate (mudec)
histogram e_e1 (0, 60 MeV, 1 MeV)
analysis = record e_e1 (eval E [e1])
n_events = 100000
simulate (mudec)
compile_analysis { $out_file = "test.dat" }
```


Automatic integration of particle decays

```
auto_decays_multiplicity = 2
?auto_decays_radiative = false
```

```
unstable Wp () { ?auto_decays = true }
```

i	It	Calls	Integral[GeV]	Error[GeV]	Err[%]	Acc
	1	100	2.2756406	E-01	0.00E+00	0.00	0.00*
	1	100	2.2756406	E-01	0.00E+00	0.00	0.00
	Unstab deca deca deca deca deca Tota	le parti y_p24_1: y_p24_2: y_p24_3: y_p24_3: y_p24_4: y_p24_5: l width	cle W+: co 3.3337068 3.3325864 1.1112356 1.1112356 1.1112356 = 2.047847	mpute E-01 E-01 E-01 E-01 E-01 E-01 1E+00	d branching dbar, u sbar, c e+, nue mu+, numu tau+, nuta GeV (compu	ratios: au ted)	
i	Deca	y option	= 2.049000 s: helicit	0E+00 y tre	GeV (prese ated exactly	t) Y	

WHIZARD: Past and recent timeline (I)

- Original scope: electroweak (multi-fermion) studies at 1.6 TeV TESLA [≈ 1998–2000]
- Milestone: first-ever multi-leg implementation of MSSM v1.25 [2003]
- $\stackrel{\scriptstyle \bigcirc}{=}$ Color flow formalism [≈ 2005]
- Used for many TESLA studies and most ILC CDR and TDR, CLIC CDR and detector LoI studies (versions v1.24, v1.50, v1.95) [≈ 2002–2013]
- Major refactoring phase I: LHC physics \rightarrow v2.0.0 [\approx 2007–2010; 38 months]

WHIZARD: Past and recent timeline (I)

25 / 22

- Original scope: electroweak (multi-fermion) studies at 1.6 TeV TESLA [≈ 1998–2000]
- Milestone: first-ever multi-leg implementation of MSSM v1.25 [2003]
- Solor flow formalism [≈ 2005]

Eyjafjallajökull

- Used for many TESLA studies and most ILC CDR and TDR, CLIC CDR and detector LoI studies (versions v1.24, v1.50, v1.95) [≈ 2002–2013]
- Major refactoring phase I: LHC physics \rightarrow v2.0.0 [\approx 2007–2010; 38 months]

WHIZARD: Past and recent timeline (I)

- Original scope: electroweak (multi-fermion) studies at 1.6 TeV TESLA [≈ 1998–2000]
- Milestone: first-ever multi-leg implementation of MSSM v1.25 [2003]
- $\stackrel{\circ}{=}$ Color flow formalism [≈ 2005]
- ✓ Used for many TESLA studies and most ILC CDR and TDR, CLIC CDR and detector LoI studies (versions v1.24, v1.50, v1.95) [≈ 2002–2013]
- Major refactoring phase I: LHC physics \rightarrow v2.0.0 [\approx 2007–2010; 38 months]
- Validation inside ATLAS and CMS [$\approx 2011-2014$]
- Refactoring phase II: NLO automation / maintainability \rightarrow v2.2.0 [\approx 2012–2014; 18 months]
- Strong interest of CEPC study group(s) for CEPC simulations $[\approx 2013 now]$
- 9 04/2015, ALCW'15 Tokyo: LC generator group endorsed v2.2 for new mass productions
- FCC-ee interest in simulations: [ca. spring 2016]
- Refactoring phase III: first NLO implementation overhaul [2016; 3 months]

Status of WHIZARD

MBI 2018, U. of Michigan, Ann Arbor, 28.08.18

Eyjafjallajökull

WHIZARD: Past and recent timeline (II)

26/22

Final validation for LC [ee] physics between v1.95 and v2 [until end of 2017]

Special thanks to: [beam spectra, photon background, event formats, shower/hadronization, tau decays]

Mo Xin

Philipp Roloff

Mikael Berggren Jean-Jacques Blaising Moritz Habermehl

Akiya Miyamoto

Tim Barklow

Status of WHIZARD

WHIZARD: Past and recent timeline (II)

26/22

Final validation for LC [ee] physics between v1.95 and v2 [until end of 2017]

Special thanks to: [beam spectra, photon background, event formats, shower/hadronization, tau decays]

Philipp Roloff

Mikael Berggren Jean-Jacques Blaising Moritz Habermehl

Mo Xin

Akiya Miyamoto

Tim Barklow

- Ş 01/2018, CERN, LC generator meeting: only trivial minor, ready for mass production
- Ş Refactoring phase IV: core data structure overhaul: NLO [fall 2018; ca. 2-3months] [dust-layer buried students, total-code-no-man-wasteland alarm]
- Ş **Preparation phase for WHIZARD 3.0.0 started:** ... PARALLEL TO

Work on: [NLO QCD final validation; structure functions; NLO EW; shower and matching/merging]

Ş (Technical) refactoring phase V: code modernization (submodules etc: gfortran 6.1+) [end of 2018 / early 2019; when NAG debugging compiler support ready]

.R.Reuter

Status of WHIZARD

Beam structure: special beams

Beam polarization, ILC-like setup

beams = e1, E1
beams_pol_density = @(-1), @(+1)
beams_pol_fraction = 80%, 30%

Polarized decays: longitudinal Z

```
process zee = Z => e1, E1
beams = Z
beams_pol_density = @(0)
```

Scan over polarizations

```
scan int h1 = (-1,1) {
    scan int h2 = (-1,1) {
        beams_pol_density = @(h1), @(h2)
        integrate (proc)
    }
}
```

Asymmetric beams

beams = e1, E1
beams_momentum = 100 GeV, 900 GeV

Beams with crossing angle

beams_momentum = 250 GeV, 250 GeV beams_theta = 0, 10 degree

Beams with rotated crossing angle

beams_momentum = 250 GeV, 250 GeV beams_theta = 0, 10 degree beams_phi = 0, 45 degree

Structure functions (also concatenated)

```
beams = p, p => pdf_builtin
$pdf_builtin_set = "mmht2014lo"
```

beams = p, pbar => lhapdf

beams = e, p => none, pdf_builtin

beams = e1, E1 => circe1
\$circe1_acc = "TESLA"
?circe1_generate = false
circe1_mapping_slope = 2

beams = e1, E1 => circe2 => isr => ewa

```
beams = e1, E1 => beam_events
$beam_events_file = "uniform_spread_2.5%.dat"
```

MBI 2018, U. of Michigan, Ann Arbor, 28.08.18

Status of WHIZARD

Beam structure: beam polarization

Beam polarization

<pre>beams_pol_density = @([<spin< pre=""></spin<></pre>	entries>]), @([<spin entries="">])</spin>
<pre>beams_pol_fraction = <degree< pre=""></degree<></pre>	beam 1>, <degree 2="" beam=""></degree>

Different density matrices

Spin j	Particle type	possible m values
0	Scalar boson	0
1/2	Spinor	+1, -1
1	(Massive) Vector boson	+1, (0), -1
3/2	(Massive) Vectorspinor	+2, (+1), (-1), -2
2	(Massive) Tensor	+2, (+1), (0), (-1), -2

beams pol density = @()	Unpolarized beams	$ \rho = \frac{1}{ m } \mathbb{I} $			m = 2		massless
		111			m = 2	j+1	massive
<pre>beams_pol_density = @(±j) beams_pol_fraction = f</pre>	Circular polarization	$ \rho = \operatorname{diag}\left(\frac{1 \pm f}{2}\right) $	$\left(\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array} \right)$				
<pre>beams_pol_density = @(0) beams_pol_fraction = f</pre>	Longitudinal polarization (massive)	$\rho = \operatorname{diag}\left(\frac{1-f}{ m }\right)$	$, \ldots, \frac{1-f}{ m }, \frac{1+f}{ m }$	$\frac{ (m - 1)}{ m }$	$\frac{1)}{m}, \frac{1-f}{ m },$	$\ldots, \frac{1}{ r }$	$\left(\frac{-f}{n}\right)$
					(1 0		$\cdot \frac{f}{2} e^{-i\phi}$
<pre>beams_pol_density = @(j, -) beams_pol_fraction = f</pre>	j, j:-j:exp(-I*phi))	Transversal (along an ax	polarization is)	$\rho =$	$\begin{array}{ccc} 0 & 0 \\ \vdots & \ddots \end{array}$		0 . :
					0	· 0	0
<pre>beams_pol_density = @(j:j:1</pre>	l-cos(theta), 'exp(-I*phi), -j:-j:1+	cos(theta))	(1-j)	$\cos \theta$	$ \begin{pmatrix} \frac{f}{2} e^{i\phi} & \cdots \\ 0 & \cdots \\ 0 & \ddots \end{pmatrix} $	\cdots 0 \cdots f	1 / $\sin \theta e^{-i\phi}$
Polar	ization along arbitrary axis (θ,Φ)	$\rho = \frac{1}{2} \cdot$	U :	0 · · · · · · · · · · · · · · · · · · ·	·	
<pre>beams_pol_density = @(j:j</pre>	: <i>h</i> _j , j-1:j-1: <i>h</i> _{j-1} ,, -j	:-j:h _{-i})	$\int f \sin t$	$0 \ \theta e^{i\phi}$	·	$\begin{array}{c} 0 \\ 0 \end{array}$ 1	$\left(\begin{array}{c} 0 \\ + f \cos \theta \end{array} \right)$

beams_pol_density = @({m:m':x_{m,m'}})

Diagonal / arbitrary density matrices

J.R.Reuter

Status of WHIZARD

- Amplitudes (except for pure QCD/QED) contain resonances (Z,W, H, t)
- In general: resonance masses *not* respected by modified kinematics of subtraction terms
- Collinear (and soft) radiation can lead to mismatch between Born and subtraction terms
- Algorithm to include resonance histories [Ježo/Nason, 1509.09071]
- Avoids double logarithms in the resonances' width
- $\stackrel{\checkmark}{=}$ Most important for narrow resonances $(H \rightarrow bb)$
- Separate treatment of Born and real terms, soft mismatch [, collinear mismatch]

- Amplitudes (except for pure QCD/QED) contain resonances (Z,W, H, t)
- In general: resonance masses *not* respected by modified kinematics of subtraction terms
- Collinear (and soft) radiation can lead to mismatch between Born and subtraction terms
- Algorithm to include resonance histories [Ježo/Nason, 1509.09071]
- Avoids double logarithms in the resonances' width
- Most important for narrow resonances $(H \rightarrow bb)$
- Separate treatment of Born and real terms, soft mismatch [, collinear mismatch]

29/22

Status of WHIZARD

- Amplitudes (except for pure QCD/QED) contain resonances (Z,W,H,t)
- In general: resonance masses not respected by modified kinematics of subtraction terms
- Collinear (and soft) radiation can lead to mismatch between Born and subtraction terms
- Ş Algorithm to include resonance histories [Ježo/Nason, 1509.09071]
- Avoids double logarithms in the resonances' width
- Most important for narrow resonances $(H \rightarrow bb)$
- Separate treatment of Born and real terms, soft mismatch [, collinear mismatch]

WHIZARD complete automatic implei µµbb

mentation:	example	e+ e-
incirca ciori.	example	00

(ZZ, ZH histories)

29/22

It	Calls	Integral[fb]	Error[fb]	Err[%]	Acc	Eff[%]	Chi2 N	[It]
1 2 3 4 5	11988 11959 11936 11908 11874	9.6811847E+00 2.8539703E+00 2.4907574E+00 2.7695559E+00 2.4346151E+00	6.42E+00 2.35E-01 6.54E-01 9.67E-01 4.82E-01	66.30 8.25 26.25 34.91 19.80	72.60* 9.02* 28.68 38.09 21.57*	0.65 0.69 0.35 0.30 0.74		
 5 =======	59665	2.7539078E+00	1.97E-01	7.15	17.47	0.74	0.49	5

.R.Reuter

Status of WHIZARD

- Amplitudes (except for pure QCD/QED) contain resonances (Z,W, H, t)
- In general: resonance masses *not* respected by modified kinematics of subtraction terms
- Collinear (and soft) radiation can lead to mismatch between Born and subtraction terms
- Algorithm to include resonance histories [Ježo/Nason, 1509.09071]
- Avoids double logarithms in the resonances' width
- Most important for narrow resonances $(H \rightarrow bb)$
- Separate treatment of Born and real terms, soft mismatch [, collinear mismatch]

(ZZ, ZH histories)

29/22

 $\stackrel{\circ}{\Rightarrow}$ WHIZARD complete automatic implementation: example $e^+e^- \rightarrow \mu\mu bb$

======= It	Calls	Integral[fb]	Error[fb]	Err[%]	Acc	Eff[%]	Chi2 N	[It]			
1 2 3 4 5	11988 11959 11936 11908 11874	9.6811847E+00 2.8539703E+00 2.4907574E+00 2.7695559E+00 2.4346151E+00	6.42E+00 2.35E-01 6.54E-01 9.67E-01 4.82E-01	66.30 8.25 26.25 34.91 19.80	72.60* 9.02* 28.68 38.09 21.57*	0.65 0.69 0.35 0.30 0.74		1			
 5 =======	59665	2.7539078E+00	1.97E-01	7.15	17.47	0.74	0.49	 5 =====			
standard FKS											

	Calls	Integral[fb]	Error[fb]	Err[%]	Acc	Eff[%]	Chi2 N	[It]
1 2 3 4 5	11988 11962 11936 11902 11874	2.9057032E+00 2.8591952E+00 2.9277880E+00 2.8512337E+00 2.8855399E+00	8.35E-02 5.20E-02 4.09E-02 3.98E-02 3.87E-02	2.87 1.82 1.40 1.40 1.34	3.15* 1.99* 1.52* 1.52* 1.46*	7.90 10.91 14.48 13.70 17.15		
 5 ========	59662	2.8842006E+00	2.04E-02	0.71	1.72	17.15	0.53	5

FKS with resonance mappings

Status of WHIZARD

Event Formats

Event formats: conventions for outputting details of the events

```
sample_format = hepmc
sample_format = lhef {$lhef_version = "3.0"}
sample_format = stdhep, stdhep_up, stdhep_ev4
sample_format = ascii,debug,mokka,lha
sample_format = lcio
simulate (<process>)
```

- External format, ASCII: HepMC [Dobbs/Hansen, 2001]
- External format, binary: LCIO [Gaede, 2003]
- Internal formats, binary: StdHEP [Lebrun, 1990]
- Internal formats, ASCII: LHA, LHEF [Alwall et al., 2006]

Event Formats

Event formats: conventions for outputting details of the events

```
sample_format = hepmc
sample_format = lhef {$lhef_version = "3.0"}
sample_format = stdhep, stdhep_up, stdhep_ev4
sample_format = ascii,debug,mokka,lha
sample_format = lcio
simulate (<process>)
```

- External format, ASCII: HepMC [Dobbs/Hansen, 2001]
- External format, binary: LCIO [Gaede, 2003]
- Internal formats, binary: StdHEP [Lebrun, 1990]
- Internal formats, ASCII: LHA, LHEF [Alwall et al., 2006]

LCIO Format (LC I/O, particle-flow motivated): (ASCII transcription from binary)

Event : 1 - run: 0 - timestamp [...] date: [...] detector : unknown event parameters: parameter Event Number [int]: 1, Event header information as parameter ProcessID [int]: 1, parameter Run ID [int]: 0, agreed upon with LC Gen Group parameter beamPDG0 [int]: 11, parameter beamPDG1 [int]: -11, parameter Energy [float]: 500, parameter Pol0 [float]: 0, parameter Pol1 [float]: 0, parameter _weight [float]: 1, parameter alphaQCD [float]: 0.1178, parameter crossSection [float]: 338.482, parameter crossSectionError [float]: 7.2328, parameter scale [float]: 500, parameter BeamSpectrum [string]: , parameter processName [string]: lcio_5_p, collection name : MCParticle parameters: flag: 0x0 simulator status bits: [sbvtcls] s: created in simulation b: backscatter v: vertex is not endpoint of parent t: decayed in tracker c: decayed in calorimeter 1: has left detector s: stopped o: overlay]index| PDG energy |gen|[simstat]| vertex x,y,z | colorflow | id mass | charge spin [par] - [dau] px, py, pz | energy |gen|[0.00e+00, 0.00e+00, 2.50e+02| 2.50e+02| 3 |[pz]| 0.0, 0.0, 0.0| 5.11e-04|-1.00e+00| 0.0, 0.0, 0.0|]| 0.0, 0.0, 0.0| 5.11e-04| 1.00e+00| 0.0, 0.0, 0.0| [] - [2,3] [00000004] (0, 0)0 | 111 0 11 [00000005] -11| 0.00e+00, 0.00e+00, -2.50e+02| 2.50e+02| 3 |[0 (0, 0)[] - [2,3] 21 13| 1.42e+02, 1.99e+02,-5.22e+01| 2.50e+02| 1 |[]| 0.0, 0.0, 0.0| 1.06e-01|-1.00e+00| 0.0, 0.0, 1.0| [00000006] 0 (0, 0) [0, 1] -0.0, 0.0, 0.0| 1.06e-01| 1.00e+00| 0.0, 0.0, -1.0| [00000007] -13|-1.42e+02,-1.99e+02, 5.22e+01| 2.50e+02| 0 (0, 0)[0, 1]

Status of WHIZARD