

Automation of NLO processes and decays and POWHEG matching in WHIZARD

Jürgen R. Reuter, DESY

Automation of NLO QCD in WHIZARD

Mi primera vez en Chile

WHIZARD for e+e- Physics

IHEP Workshop 2015, Beijing, 14.10.2015

Felicitaciones para los ganadores de Copa 2015

WHIZARD for e+e- Physics

IHEP Workshop 2015, Beijing, 14.10.2015

WHIZARD: Introduction

WHIZARD v2.2.8(22.11.2015)http://whizard.hepforge.org

WHIZARD Team:Wolfgang Kilian, Thorsten Ohl, JRR, Simon Braß/Bijan Chokoufé/Marco Sekulla/Soyoung
Shim/Florian Staub/Christian Weiss/Zhijie Zhao + 2 MasterEPJ C71 (2011) 1742

- Universal event generator for lepton and hadron colliders
- Modular package: Phase space parameterization (resonances, collinear emission, Coulomb etc.)
 - O'Mega optimized matrix element generator (recursiveness via Directed Acyclical Graphs)
 Q
 - VAMP: adaptive multi-channel Monte Carlo integrator
 - CIRCE1/2: generator/simulation tool for lepton collider beam spectra
 - Lepton beam ISR Kuraev/Fadin, 2003; Skrzypek/Jadach, 1991
 - Color flow formalism Stelzer/Willenbrock, 2003; Kilian/Ohl/JRR/Speckner, 2011
- Interfaces to external packages for Feynman rules, hadronization, tau decays, event formats, analysis, jet clustering etc.: FastJet, GoSam, GuineaPig(++), HepMC, HOPPET, LCIO, LHAPDF(4/5/6), LoopTools, OpenLoops, PYTHIA6, [PYTHIA8], StdHep [internal]

Spin Correlation and Polarization in Cascades

Cascade decay, factorize production and decay

Automation of NLO QCD in WHIZARD

Spin Correlation and Polarization in Cascades

Cascade decay, factorize production and decay

NEW: possibility to select specific helicity in decays!

unstable "W+" { decay_helicity = 0 }

Automation of NLO QCD in WHIZARD

WHIZARD Parton Shower

Two independent implementations: kT-ordered QCD and Analytic QCD shower Analytic shower: no shower veto \Rightarrow exact shower history known, allows reweighting

Kilian/JRR/Schmidt/Wiesler, JHEP 1204 013 (2012)

Technical overhaul of the shower / merging part

Plans: implement GKS matching, QED shower (also interleaved, infrastructure ready)

J.R.Reuter

Automation of NLO QCD in WHIZARD

Tuning of the WHIZARD Parton Shower

First tunes of both kT-ordered QCD and Analytic QCD shower

Chokoufe/Englert/JRR, 2015

- Di- and Multijet data from LEP as given in RIVET analysis
- Usage of the PROFESSOR tool for determining the best fit Buckley et al., 2009

J.R.Reuter

Automation of NLO QCD in WHIZARD

- Need for precision predictions that match (sub-) percent experimental accuracy
- mainly NLO corrections, but also QED and electroweak (ee)

Binoth Les Houches Interface (BLHA): Workflow

- I. Process definition in SINDARIN (contract to One-Loop Program [OLP])
- 2. OLP generates code (Born/virtual interference), WHIZARD reads contract
- 3. NLO matrix element library loaded into WHIZARD

- Need for precision predictions that match (sub-) percent experimental accuracy
- mainly NLO corrections, but also QED and electroweak (ee)

Binoth Les Houches Interface (BLHA): Workflow

- I. Process definition in SINDARIN (contract to One-Loop Program [OLP])
- 2. OLP generates code (Born/virtual interference), WHIZARD reads contract
- 3. NLO matrix element library loaded into WHIZARD

Working NLO interfaces to:

* GoSam [G. Cullen et al.]

(first focus on QCD corrections)

* OpenLoops [F. Cascioli et al.]

Automation of NLO QCD in WHIZARD ACAT

- Need for precision predictions that match (sub-) percent experimental accuracy
- mainly NLO corrections, but also QED and electroweak (ee)

Binoth Les Houches Interface (BLHA): Workflow

- I. Process definition in SINDARIN (contract to One-Loop Program [OLP])
- 2. OLP generates code (Born/virtual interference), WHIZARD reads contract
- 3. NLO matrix element library loaded into WHIZARD

Working NLO interfaces to:

(first focus on QCD corrections)

* GoSam [G. Cullen et al.]
* OpenLoops [F. Cascioli et al.]

WHIZARD v2.2.6 contains alpha version

QCD corrections (massless and massive emitters)

```
alpha_power = 2
alphas_power = 0
process eett = e1,E1 => t, tbar
    { nlo_calculation = "full" }
```


Automation of NLO QCD in WHIZARD

- Need for precision predictions that match (sub-) percent experimental accuracy
- mainly NLO corrections, but also QED and electroweak (ee)

Binoth Les Houches Interface (BLHA): Workflow

- I. Process definition in SINDARIN (contract to One-Loop Program [OLP])
- 2. OLP generates code (Born/virtual interference), WHIZARD reads contract
- 3. NLO matrix element library loaded into WHIZARD

Automation of NLO QCD in WHIZARD

- Need for precision predictions that match (sub-) percent experimental accuracy
- mainly NLO corrections, but also QED and electroweak (ee)

Binoth Les Houches Interface (BLHA): Workflow

- I. Process definition in SINDARIN (contract to One-Loop Program [OLP])
- 2. OLP generates code (Born/virtual interference), WHIZARD reads contract
- 3. NLO matrix element library loaded into WHIZARD

Automation of NLO QCD in WHIZARD

FKS Subtraction (Frixione/Kunszt/Signer)

Subtraction formalism to make real and virtual contributions separately finite

$$d\sigma^{\rm NLO} = \underbrace{\int_{n+1} \left(d\sigma^R - d\sigma^S \right)}_{\text{finite}} + \underbrace{\int_{n+1} d\sigma^S + \int_n d\sigma^V}_{\text{finite}}$$

Automation of NLO QCD in WHIZARD

FKS Subtraction (Frixione/Kunszt/Signer)

Subtraction formalism to make real and virtual contributions separately finite

$$d\sigma^{\rm NLO} = \underbrace{\int_{n+1} \left(d\sigma^R - d\sigma^S \right)}_{\text{finite}} + \underbrace{\int_{n+1} d\sigma^S + \int_n d\sigma^V}_{\text{finite}}$$

Automated subtraction terms in WHIZARD, algorithm:

* Find all singular pairs

$$\mathcal{I} = \{(1,5), (1,6), (2,5), (2,6), (5,6)\}$$

* Partition phase space according to singular regions

$$\mathbb{1} = \sum_{\alpha \in \mathcal{I}} S_{\alpha}(\Phi)$$

* Generate subtraction terms for singular regions

FKS Subtraction (Frixione/Kunszt/Signer)

Subtraction formalism to make real and virtual contributions separately finite

$$d\sigma^{\rm NLO} = \underbrace{\int_{n+1} \left(d\sigma^R - d\sigma^S \right)}_{\text{finite}} + \underbrace{\int_{n+1} d\sigma^S + \int_n d\sigma^V}_{\text{finite}}$$

Soft subtraction involves color-correlated matrix elements:

$$\mathcal{B}_{kl} \sim -\sum_{ ext{color}\ ext{spin}} \mathcal{A}^{(n)} ec{\mathcal{Q}}(\mathcal{I}_k) \cdot ec{\mathcal{Q}}(\mathcal{I}_l) \mathcal{A}^{(n)*},$$

Automated subtraction terms in WHIZARD, algorithm:

Find all singular pairs *

$$\mathcal{I} = \{(1,5), (1,6), (2,5), (2,6), (5,6)\}$$

* Partition phase space according to singular regions

$$\mathbb{1} = \sum_{\alpha \in \mathcal{I}} S_{\alpha}(\Phi)$$

* Generate subtraction terms for singular regions

Collinear subtraction involves spin-correlated matrix elements:

$$\mathcal{B}_{+-} \sim Re \left\{ rac{\langle k_{
m em} k_{
m rad}
angle}{[k_{
m em} k_{
m rad}]} \sum_{
m color \ spin} \mathcal{A}^{(n)}_+ \mathcal{A}^{(n)*}_-
ight\}$$

.R.Reuter

Automation of NLO QCD in WHIZARD

First Examples and Validation

Simplest benchmark process:

$$e^+e^- \to q\bar{q}$$
 with $(\sigma^{\rm NLO} - \sigma^{\rm LO})/\sigma^{\rm LO} = \alpha_s/\pi$

Plot for total cross section for fixed strong coupling constant

List of validated QCD NLO processes

- $e^+e^- \to q\bar{q}$
- $e^+e^- \to q\bar{q}g$
- $e^+e^- \rightarrow \ell^+\ell^- q\bar{q}$
- $e^+e^- \to \ell^+ \nu_\ell q \bar{q}$
- $e^+e^- \to t\bar{t}$
- $\bullet \quad e^+e^- \to t W^- b$
- $e^+e^- \to W^+W^-b\bar{b}$
- $e^+e^- \to t\bar{t}H$

- Cross-checks with MG5_aMC@NL0
- Phase space integration for virtuals performs great

J.R.Reuter

Automation of NLO QCD in WHIZARD

First Examples and Validation

Simplest benchmark process:

$$e^+e^- \to q\bar{q}$$
 with $\left(\sigma^{\rm NLO} - \sigma^{\rm LO}\right)/\sigma^{\rm LO} = \alpha_s/\pi$

Plot for total cross section for fixed strong coupling constant

List of validated QCD NLO processes

- $e^+e^- \to q\bar{q}$
- $e^+e^- \to q\bar{q}g$
- $e^+e^- \rightarrow \ell^+\ell^- q\bar{q}$
- $e^+e^- \to \ell^+ \nu_\ell q \bar{q}$
- $e^+e^- \to t\bar{t}$
- $\bullet \quad e^+e^- \to t W^- b$
- $e^+e^- \to W^+W^-b\bar{b}$
- $e^+e^- \to t\bar{t}H$

- Cross-checks with MG5_aMC@NL0
- Phase space integration for virtuals performs great
- QCD NLO infrastructure in pp complete
- First attempts on electroweak corrections, interfacing the RECOLA code [Denner et al.]

J.R.Reuter

Automation of NLO QCD in WHIZARD

NLO Fixed-Order Events

- Add weights of real emission events to weight of Born kinematics using the FKS mapping
- Output weighted events in WHIZARD (e.g. using HepMC), then analysis with Rivet
- Example process: $e^+e^- \rightarrow W^+W^-b\bar{b}$

NLO Fixed-Order Events

- Add weights of real emission events to weight of Born kinematics using the FKS mapping
- Output weighted events in WHIZARD (e.g. using HepMC), then analysis with Rivet
- Example process: $e^+e^- \rightarrow W^+W^-b\bar{b}$

NLO Fixed-Order Events

- Add weights of real emission events to weight of Born kinematics using the FKS mapping
- Output weighted events in WHIZARD (e.g. using HepMC), then analysis with Rivet
- Example process: $e^+e^- \rightarrow W^+W^-b\bar{b}$

- Completed: polarized NLO results (remember: ILC will always run with polarization)
- Produce also plots including complete ISR photon radiation and beamstrahlung
- NLO decays also available (Initial state Jacobian, important for consistent widths)
- Investigate the full $2 \rightarrow 6$ process: $e+e- \rightarrow bbe\mu\nu\nu$ [Chokoufé/Kilian/Lindert/JRR/Pozzorini/Weiss]

Automated POWHEG Matching in WHIZARD

- Soft gluon emissions before hard emission generate large logs
- Perturbative α_s : $|\mathcal{M}_{\text{soft}}|^2 \sim \frac{1}{k_T^2} \rightarrow \log \frac{k_T^{\max}}{k_T^{\min}}$
- Consistent matching of NLO matrix element with shower
- POWHEG method: hardest emission first [Nason et al.]

Automation of NLO QCD in WHIZARD

Automated POWHEG Matching in WHIZARD

- Soft gluon emissions before hard emission generate large logs
- Perturbative α_s : $|\mathcal{M}_{\text{soft}}|^2 \sim \frac{1}{k_T^2} \rightarrow \log \frac{k_T^{\max}}{k_T^{\min}}$
- Consistent matching of NLO matrix element with shower
- POWHEG method: hardest emission first [Nason et al.]
- Complete NLO events

$$\overline{B}(\Phi_n) = B(\Phi_n) + V(\Phi_n) + \int d\Phi_{\rm rad} R(\Phi_{n+1})$$

• POWHEG generate events according to the formula:

$$d\sigma = \overline{B}(\Phi_n) \left[\Delta_R^{\text{NLO}}(k_T^{\min}) + \Delta_R^{\text{NLO}}(k_T) \frac{R(\Phi_{n+1})}{B(\Phi_n)} d\Phi_{\text{rad}} \right]$$

• Uses the modified Sudakov form factor:

$$\Delta_R^{\text{NLO}}(k_T) = \exp\left[-\int d\Phi_{\text{rad}} \frac{R(\Phi_{n+1})}{B(\Phi_n)} \theta(k_T(\Phi_{n+1}) - k_T)\right]$$

Automated POWHEG Matching in WHIZARD

- Soft gluon emissions before hard emission generate large logs
- Perturbative α_s : $|\mathcal{M}_{\text{soft}}|^2 \sim \frac{1}{k_T^2} \rightarrow \log \frac{k_T^{\max}}{k_T^{\min}}$
- Consistent matching of NLO matrix element with shower
- POWHEG method: hardest emission first [Nason et al.]
- Complete NLO events

$$\overline{B}(\Phi_n) = B(\Phi_n) + V(\Phi_n) + \int d\Phi_{\rm rad} R(\Phi_{n+1})$$

• POWHEG generate events according to the formula:

$$d\sigma = \overline{B}(\Phi_n) \left[\Delta_R^{\text{NLO}}(k_T^{\min}) + \Delta_R^{\text{NLO}}(k_T) \frac{R(\Phi_{n+1})}{B(\Phi_n)} d\Phi_{\text{rad}} \right]$$

Uses the modified Sudakov form factor:

$$\Delta_R^{\text{NLO}}(k_T) = \exp\left[-\int d\Phi_{\text{rad}} \frac{R(\Phi_{n+1})}{B(\Phi_n)} \theta(k_T(\Phi_{n+1}) - k_T)\right]$$

- Hardest emission: k_T^{\max} ; shower with imposing a veto
- $\overline{B} < 0$ if virtual and real terms larger than Born: shouldn't happen in perturbative regions
- Reweighting such that $\overline{B} > 0$ for all events
- POWHEG: Positive Weight Hardest Emission Generator own implementation in WHIZARD

POWHEG Matching, example: e⁺e⁻ to dijets

ACAT 2016, Valparaíso, 18.01.16

0.4

0.5

0.6

Oblateness

LO+Pythia8

0.3

0.3

0.4

0.5

LO+Pythia8

POWHEG+PYTHIA8

0.6

Minor

POWHEG+PYTHIA8

Automation of NLO QCD in WHIZARD

Resonance mappings for NLO processes

- Amplitudes (except for pure QCD/QED) contain resonances (Z,W, H, t)
- In general: resonance masses *not* respected by modified kinematics of subtraction terms
- Collinear (and soft) radiation can lead to mismatch between Born and subtraction terms

Automation of NLO QCD in WHIZARD

Resonance mappings for NLO processes

- Amplitudes (except for pure QCD/QED) contain resonances (Z, W, H, t)
- In general: resonance masses *not* respected by modified kinematics of subtraction terms
- Collinear (and soft) radiation can lead to mismatch between Born and subtraction terms
- Algorithm to include resonance histories [Ježo/Nason, 1509.09071]
- Avoids double logarithms in the resonances' width
- Most important for narrow resonances $(H \rightarrow bb)$
- Separate treatment of Born and real terms, soft mismatch

A

Resonance mappings for NLO processes

- Amplitudes (except for pure QCD/QED) contain resonances (Z,W, H, t)
- In general: resonance masses *not* respected by modified kinematics of subtraction terms
- Collinear (and soft) radiation can lead to mismatch between Born and subtraction terms
- Algorithm to include resonance histories [Ježo/Nason, 1509.09071]
 Avoids double logarithms in the resonances' width
- Most important for narrow resonances $(H \rightarrow bb)$
- Separate treatment of Born and real terms, soft mismatch

Automation of NLO QCD in WHIZARD ACAT 20

Resonance mappings for NLO processes

- Amplitudes (except for pure QCD/QED) contain resonances (Z,W,H,t)
- In general: resonance masses not respected by modified kinematics of subtraction terms
- Collinear (and soft) radiation can lead to mismatch between Born and subtraction terms
- Algorithm to include resonance histories [Ježo/Nason, 1509.09071]
- Avoids double logarithms in the resonances' width
- Most important for narrow resonances $(H \rightarrow bb)$
- Separate treatment of Born and real terms, soft mismatch

WHIZARD complete automatic mplementation: example $e^+e^- \rightarrow \mu\mu bb$

It	Calls	Integral[fb]	Error[fb]	Err[%]	Acc	Eff[%]	Chi2 N	[It]	
1 11988 9.6811847E+00 6.42E+00 66.30 72.60* 0.65									
3	11936	2.4907574E+00 2.7605550E±00	6.54E-01	26.25	9.02* 28.68	0.09			
5	11908	2.4346151E+00	4.82E-01	19.80	21.57*	0.74			
5	59665	2.7539078E+00	1.97E-01	7.15	17.47	0.74	0.49	5	
standard FKS									

(ZZ, ZH histories)

Automation of NLO QCD in WHIZARD

A

Resonance mappings for NLO processes

- Amplitudes (except for pure QCD/QED) contain resonances (Z,W, H, t)
- In general: resonance masses *not* respected by modified kinematics of subtraction terms
- Collinear (and soft) radiation can lead to mismatch between Born and subtraction terms
- Algorithm to include resonance histories [Ježo/Nason, 1509.09071]
- Avoids double logarithms in the resonances' width
- Most important for narrow resonances $(H \rightarrow bb)$
- Separate treatment of Born and real terms, soft mismatch

WHIZARD complete automatic mplementation: example $e^+e^- \rightarrow \mu\mu bb$

It	Calls	Integral[fb]	Error[fb]	Err[%]	Acc	Eff[%]	Chi2 N	[It]	
1	11988	9.6811847E+00	6.42E+00	66.30	72.60*	0.65			
2 3	11959 11936	2.8539703E+00 2.4907574E+00	2.35E-01 6.54E-01	8.25 26.25	9.02* 28.68	0.69			
4	11908	2.7695559E+00	9.67E-01	34.91	38.09	0.30			
	110/4	2.45401512+00	4.020-01	19.00	21.5/+	0.74			
5 ======	59665	2.7539078E+00	1.97E-01	7.15	17.47	0.74	0.49	5	
standard FKS									

It	Calls	Integral[fb]	Error[fb]	Err[%]	Acc	Eff[%]	Chi2 N[I	t]	
1	11988	2.9057032E+00	8.35E-02	2.87	3.15*	7.90		1	
3	11962	2.9277880E+00	4.09E-02	1.40	1.52*	14.48			
4 5	11902 11874	2.8512337E+00 2.8855399E+00	3.98E-02 3.87E-02	1.40	1.52*	13.70			
5	59662	2.8842006E+00	2.04E-02	0.71	1.72	17.15	0.53	 5	

FKS with resonance mappings

Automation of NLO QCD in WHIZARD

ACAT 2016, Valparaíso, 18.01.16

(ZZ, ZH histories)

Examples: Top pairs and tth production

Automation of NLO QCD in WHIZARD

Top Threshold at lepton colliders

ILC top threshold scan best-known method to measure top quark mass, $\Delta M \sim 30-50 \text{ MeV}$

Heavy quark production at lepton colliders, qualitatively:

Threshold region: top velocity $v \sim \alpha_s \ll I$

 $\nu = \sqrt{\frac{\sqrt{s} - 2m_t + \mathrm{i}\Gamma_t}{m}}$

Automation of NLO QCD in WHIZARD

- Solution NRQCD is EFT for non-relativistic quark-antiquark systems: separate $M \cdot v$ and $M \cdot v^2$
- Integrate out hard quark and gluon d.o.f.: vNRQCD
- Segmentation of singular terms close to threshold (v = 0) Hoang et al. '99-'01; Beneke et al., '13-'14

- Phase space of two massive particles

$$R \equiv \frac{\sigma_{t\bar{t}}}{\sigma_{\mu\mu}} = v \sum_{k} \left(\frac{\alpha_s}{v}\right)^k \sum_{i} (\alpha_s \ln v)^i \times \left\{ 1 \left(\text{LL} \right); \ \alpha_s, v \left(\text{NLL} \right); \ \alpha_s^2, \alpha_s v, v^2 \left(\text{NNLL} \right) \right\}$$

(p/v)NRQCD EFT w/ RG improvement

Automation of NLO QCD in WHIZARD

- Solution NRQCD is EFT for non-relativistic quark-antiquark systems: separate $M \cdot v$ and $M \cdot v^2$
- Integrate out hard quark and gluon d.o.f.: vNRQCD
- Series Resummation of singular terms close to threshold (v = 0) Hoang et al. '99-'01; Beneke et al., '13-'14

at NLL differentially!

Automation of NLO QCD in WHIZARD

- Solution NRQCD is EFT for non-relativistic quark-antiquark systems: separate $M \cdot v$ and $M \cdot v^2$
- Integrate out hard quark and gluon d.o.f.: vNRQCD
- Segmentation of singular terms close to threshold (v = 0) Hoang et al. '99-'01; Beneke et al., '13-'14

Automation of NLO QCD in WHIZARD

- Solution NRQCD is EFT for non-relativistic quark-antiquark systems: separate $M \cdot v$ and $M \cdot v^2$
- Integrate out hard quark and gluon d.o.f.: vNRQCD
- Segmentation of singular terms close to threshold (v = 0) Hoang et al. '99-'01; Beneke et al., '13-'14

Top Threshold in WHIZARD

- Implement resummed threshold effects as effective vertex [form factor] in WHIZARD
- $G^{v,a}(0,p_t,E+i\Gamma_t,\nu)$ from TOPPIK code [Jezabek/Teubner], included in <code>WHIZARD</code>

• Default parameters:
$$\begin{split} M^{1S} &= 172 \text{ GeV}, \quad \Gamma_t^{\text{NLO}} = 1.409 \text{ GeV} \\ \alpha_s(M_Z) &= 0.118 \end{split}$$

$$\begin{split} M^{1S} &= M_t^{pole} (1 - \Delta_{(Coul.)}^{LL/NLL}) \end{split}$$

Top Threshold in WHIZARD

- Implement resummed threshold effects as effective vertex [form factor] in WHIZARD
- $G^{v,a}(0,p_t,E+i\Gamma_t,\nu)$ from TOPPIK code [Jezabek/Teubner], included in <code>WHIZARD</code>

• Default parameters:

$$\begin{split} M^{1S} &= 172 \text{ GeV}, \quad \Gamma_t^{\text{NLO}} = 1.409 \text{ GeV} \\ \alpha_s(M_Z) &= 0.118 \end{split}$$

$$\begin{split} M^{1S} &= M_t^{pole} (1 - \Delta_{(Coul.)}^{LL/NLL}) \end{split}$$

Automation of NLO QCD in WHIZARD

Top Threshold in WHIZARD

- Implement resummed threshold effects as effective vertex [form factor] in WHIZARD
- $G^{v,a}(0, p_t, E + i\Gamma_t, \nu)$ from TOPPIK code [Jezabek/Teubner], included in WHIZARD

• Default parameters: $M^{1S} = 172 \text{ GeV}, \quad \Gamma_t^{\text{NLO}} = 1.409 \text{ GeV}$ $\alpha_s(M_Z) = 0.118$

$$M^{1S} = M_t^{pole} (1 - \Delta_{(Coul.)}^{LL/NLL})$$

Theory uncertainties from scale variations: hard and soft scale

 $\mu_h = h \cdot m_t \qquad \mu_s = f \cdot m_t v$

J.R.Reuter

Automation of NLO QCD in WHIZARD

Sanity checks: correct limit for $\alpha_s \longrightarrow 0$, stable against variation of cutoff ΔM [15-30 GeV]

Why include LL/NLL in a Monte Carlo event generator?

Important effects: beamstrahlung; ISR; LO electroweak terms More exclusive observables accessible

Automation of NLO QCD in WHIZARD

Sanity checks: correct limit for $\alpha_s \longrightarrow 0$, stable against variation of cutoff ΔM [15-30 GeV]

Why include LL/NLL in a Monte Carlo event generator?

Important effects: beamstrahlung; ISR; LO electroweak terms More exclusive observables accessible

J.R.Reuter

Automation of NLO QCD in WHIZARD

Sanity checks: correct limit for $\alpha_s \longrightarrow 0$, stable against variation of cutoff ΔM [15-30 GeV]

Why include LL/NLL in a Monte Carlo event generator? Important effects: beamstrahlung; ISR; LO electroweak terms More exclusive observables accessible

Forward-backward asymmetry (norm. \Rightarrow good shape stability)

 $A_{fb} := \frac{\sigma(p_z^t > 0) - \sigma(p_z^t) < 0)}{\sigma(p_z^t > 0) + \sigma(p_z^t < 0)}$

Automation of NLO QCD in WHIZARD

- Transition region between relativistic and resummation effects
- CLIC benchmark energies: 0.38 TeV, 1.4 TeV, 3.0 TeV
- Remove double-counting NLO / (N)LL

Automation of NLO QCD in WHIZARD

- Transition region between relativistic and resummation effects
- CLIC benchmark energies: 0.38 TeV, 1.4 TeV, 3.0 TeV
- Remove double-counting NLO / (N)LL

Resummed formfactor, expanded to $\mathcal{O}(lpha_s)$

$$\nu = \sqrt{\frac{\sqrt{s} - 2m_t + i\Gamma_t}{m}} \qquad p = |\vec{p}| \qquad p_0 = E_t - m_t$$

$$F^{\text{expanded}}\left[\alpha_{\text{H}}, \ \alpha_{\text{S}}\right] = \alpha_{\text{H}}\left(-\frac{2C_{F}}{\pi}\right) + \alpha_{\text{S}}\left(\frac{\mathrm{i}C_{F}m\log\frac{mv+p}{mv-p}}{2p}\right)$$

- Transition region between relativistic and resummation effects
- CLIC benchmark energies: 0.38 TeV, 1.4 TeV, 3.0 TeV
- Remove double-counting NLO / (N)LL

Resummed formfactor, expanded to $\mathcal{O}(lpha_s)$

$$\nu = \sqrt{\frac{\sqrt{s} - 2m_t + i\Gamma_t}{m}} \qquad p = |\vec{p}| \qquad p_0 = E_t - m_t$$

$$F^{\text{expanded}}\left[\alpha_{\text{H}}, \ \alpha_{\text{S}}\right] = \alpha_{\text{H}}\left(-\frac{2C_{F}}{\pi}\right) + \alpha_{\text{S}}\left(\frac{\mathrm{i}C_{F}m\log\frac{mv+p}{mv-p}}{2p}\right)$$

Matching formula

.R.Reuter

$$\begin{split} \sigma_{\text{matched}} &= \sigma_{\text{QCD}} \left[\alpha_{\text{H}} \right] - \sigma_{\text{NRQCD}}^{\text{expanded}} \left[\alpha_{\text{H}}, \ \alpha_{\text{H}} \right] \\ &+ \sigma_{\text{NRQCD}}^{\text{expanded}} \left[\alpha_{\text{H}}, \ f_s \, \alpha_{\text{S}} + (1 - f_s) \, \alpha_{\text{H}} \right] \\ &+ \sigma_{\text{NRQCD}}^{\text{full}} \left[f_s \, \alpha_{\text{H}}, \ f_s \, \alpha_{\text{S}}, \ f_s \, \alpha_{\text{US}} \right] - \sigma_{\text{NRQCD}}^{\text{expanded}} \left[f_s \, \alpha_{\text{H}}, \ f_s \, \alpha_{\text{S}} \right] \end{split}$$

Automation of NLO QCD in WHIZARD

- Transition region between relativistic and resummation effects
- CLIC benchmark energies: 0.38 TeV, 1.4 TeV, 3.0 TeV
- Remove double-counting NLO / (N)LL

Resummed formfactor, expanded to $\mathcal{O}(lpha_s)$

$$\nu = \sqrt{\frac{\sqrt{s} - 2m_t + i\Gamma_t}{m}} \qquad p = |\vec{p}| \qquad p_0 = E_t - m_t$$

$$F^{\text{expanded}}\left[\alpha_{\text{H}}, \ \alpha_{\text{S}}\right] = \alpha_{\text{H}}\left(-\frac{2C_{F}}{\pi}\right) + \alpha_{\text{S}}\left(\frac{\mathrm{i}C_{F}m\log\frac{mv+p}{mv-p}}{2p}\right)$$

Matching formula

$$\begin{split} \sigma_{\text{matched}} &= \sigma_{\text{QCD}} \left[\alpha_{\text{H}} \right] - \sigma_{\text{NRQCD}}^{\text{expanded}} \left[\alpha_{\text{H}}, \ \alpha_{\text{H}} \right] \\ &+ \sigma_{\text{NRQCD}}^{\text{expanded}} \left[\alpha_{\text{H}}, \ f_s \, \alpha_{\text{S}} + (1 - f_s) \, \alpha_{\text{H}} \right] \\ &+ \sigma_{\text{NRQCD}}^{\text{full}} \left[f_s \, \alpha_{\text{H}}, \ f_s \, \alpha_{\text{S}}, \ f_s \, \alpha_{\text{US}} \right] - \sigma_{\text{NRQCD}}^{\text{expanded}} \left[f_s \, \alpha_{\text{H}}, \ f_s \, \alpha_{\text{S}} \right] \end{split}$$

Switch-off function

$$f_s(v) = \begin{cases} 1 & v < v_1 \\ 1 - 2\frac{(v-v_1)^2}{(v_2 - v_1)^2} & v_1 < v < \frac{v_1 + v_2}{2} \\ 2\frac{(v-v_2)^2}{(v_2 - v_1)^2} & \frac{v_1 + v_2}{2} < v < v_2 \\ 0 & v > v_2 \end{cases}$$

J.R.Reuter

Automation of NLO QCD in WHIZARD

Threshold-continuum matching

Automation of NLO QCD in WHIZARD

Conclusions & Outlook

- WHIZARD 2.2 event generator for collider physics (ee, pp, ep)
- QCD) NLO automation: reals and subtraction terms (FKS) [+ virtuals externally] → WHIZARD 3.0
- Automated POWHEG matching (other schemes in progress)
- Automated Resonance Mapping in Subtractions / Resonance History
- Polarized results and decays available at NLO (QCD)
- allows to produce NLO fixed-order histograms
- Top threshold in e+e-: NLL NRQCD threshold / NLO

continuum matching

Conclusions & Outlook

- WHIZARD 2.2 event generator for collider physics (ee, pp, ep)
- QCD) NLO automation: reals and subtraction terms (FKS) [+ virtuals externally] → WHIZARD 3.0
- Automated POWHEG matching (other schemes in progress)
- Automated Resonance Mapping in Subtractions / Resonance History
- Polarized results and decays available at NLO (QCD)
- allows to produce NLO fixed-order histograms
- Top threshold in e+e-: NLL NRQCD threshold / NLO continuum matching

- Near Future projects: QCD in hadron collisions (fixed-order)
- Mid-term project: inclusion of tth threshold (resummation/threshold)
- Long term: QED/EW NLO, QED Shower, NNLO QCD

J.R.Reuter

Automation of NLO QCD in WHIZARD ACAT 2016,

Automation of NLO QCD in WHIZARD

BACKUP SLIDES

J.R.Reuter Automation of NLO QCD in WHIZARD

WHIZARD: Manual

Automation of NLO QCD in WHIZARD

Phase Space Setup

WHIZARD algorithm: heuristics to classify phase-space topology, adaptive multi-channel mapping \implies resonant, t-channel, radiation, infrared, collinear, off-shell

Complicated processes: factorization into production and decay with the unstable option

Automation of NLO QCD in WHIZARD

Decay processes / auto_decays

WHIZARD cannot only do scattering processes, but also decays

Example Energy distribution electron in muon decay:

```
model = SM
process mudec = e2 => e1, N1, n2
integrate (mudec)
histogram e e1 (0, 60 MeV, 1 MeV)
analysis = record e_e1 (eval E [e1])
n_{events} = 100000
simulate (mudec)
compile_analysis { $out_file = "test.dat" }
4000
      dN/dE_e(\mu^- \to e^- \bar{\nu}_e \nu_\mu)
3000
2000
1000
```

0.02

0

0

J.R.Reuter

Automation of NLO QCD in WHIZARD

0.04

GeV

0.06

Decay processes / auto_decays

WHIZARD cannot only do scattering processes, but also decays

Example Energy distribution electron in muon decay:

```
model = SM
process mudec = e^2 = e^1, N1, n2
integrate (mudec)
histogram e e1 (0, 60 MeV, 1 MeV)
analysis = record e_e1 (eval E [e1])
n events = 100000
simulate (mudec)
compile_analysis { $out_file = "test.dat" }
4000
      dN/dE_e(\mu^- \to e^- \bar{\nu}_e \nu_\mu)
3000
2000
1000
  0
```

0.02

Automatic integration of particle decays

```
auto_decays_multiplicity = 2
?auto_decays_radiative = false
```

```
unstable Wp () { ?auto_decays = true }
```

i	It	Calls	Integral[GeV] E	rror[GeV]	Err[%]	Acc
	1	100	2.2756406	E-01	0.00E+00	0.00	0.00*
	1	100	2.2756406	E-01	0.00E+00	0.00	0.00
ļ	Unst	able parti	cle W+: co	mputed	branching	ratios:	
	de de	cay_p24_1: cay_p24_2:	3.3337068	E-01 E-01	dbar, u sbar, c		
	de de	cay_p24_3: cay_p24_4:	1.1112356	E-01 E-01	e+, nue mu+, numu		
	de Tot	cay_p24_5:	1.1112356	E-01 1E+00	tau+, nut	au ted)	
			= 2.049000	0E+00	GeV (prese	t)	
	De	cay option	s: helicit	y trea	ted exactl	У	

ACAT 2016, Valparaíso, 18.01.16

0

Automation of NLO QCD in WHIZARD

0.04

GeV

0.06