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Motivation: why extreme computations?

CMS 8 TeV event: 13 jets
anti-kT , R = 0.5, pT,min > 50 GeV

• Modern collider experiments need matrix 
elements (MEs) of tremendous multiplicity

• Tree-level MEs needed in corrections to the 
parton shower (merging) and for k real emissions 
in NkLO fixed order calculations

• Examples:  access to top Yukawa at ILC/CLIC:

e+e� ! bbbb+ 4j

e+e� ! bb`⌫` + 6j

e+e� ! bb+ 8j

• Automated efficient ME generators provide every 
multiplicity (in principle)  Alpha [Caravaglios/Moretti, 

1995], O’Mega [Ohl/JRR, 2000], Helac [Papadopoulos, 2001],  
Comix [Gleisberg/Hoeche, 2008]

•  Direct numerical implementations of recursions less flexible 
•  Traditional method:   use meta programming to combine fast code & full flexibility

 Algebraic expression from high-level language:  Form, Mathematica, OCaml, Python, …
 Evaluation in numerical fast language:    C, Fortran, …  
 Examples:   O’Mega [Ohl/JRR, 2000], Madgraph [Alwall et al., 2008], FormCalc [Hahn/Perez-Victoria, 1998], 
GoSam [van Deurzen et al.,  2013], …
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What to do with complex processes?

•  BUT:  analytic expressions of complex (multi-jet) processes can reach GiB size, 

•   gg  ➝ 6g  reaches size of 4 GB in O’Mega  [Kilian/Ohl/JRR/Speckner, 1206.3700]

•   No hope for higher multiplicities … 

•   Possible solution:  Virtual Machine (VM) circumvents compilation of large code completely

•   VM easy to implement and parallelize,  similar performance than compiled code

•   VM is no OS emulation in this context … … …         [Chokoufé/Ohl/JRR, 1411.3834]
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What is a Virtual Machine (VM)

  A Virtual Machine (VM) in our context is a compiled program (interpreter)

  The VM is able to read instructions from disk 

  The VM performs arbitrary number of operations of a finite instruction set

  Instructions can be stored as byte code (encoded as numbers in ASCII file)

  VM can be regarded as machine with registers and instructions what to do 
on the registers

  Similar to a CPU, but on a higher level:
               registers are e.g.  arrays of momenta and wave functions
               instructions are e.g. scalar products of momenta and wave functions
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Contents of the byte code

   VM should be constructed dynamically  (for user-defined processes)

   ⟹  provide header with number of objects to be allocated

   [optionally:  version numbers to specify the physical model,  comments on the 
        creation of the byte code, tables with precomputed properties (information
        over helicity, color, flavor]

   Then: body of instructions (non-trivial information how to compute a process)

   First object of instruction is the opcode:  specifies which operation is executed

usually by addresses of registers,  for example:

1 7 4 3   ⇔   momentum(7) = momentum(4) + momentum(3)
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Interpreter (VM per se)

   Simple (compiled) program:   reads first byte code into memory

   VM decode function loops over instructions with given input values

   Translation of byte code to machine code (very) fast compared to execution
     (execution consists of large number of complex scalar products)

   Adapting interpreter to a new process/matrix element requires

   VM is compiled once fast:   handy for validation (checking many small 
processes),  inevitable for (very) large processes 

•  Specification of static information (spin tables, color tables etc.)

•   Writing the selection statements for the decode function 
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Parallelization in the Virtual Machine 

 Group instructions into   
building blocks:  minimize 
number of synchronization 
points

 Divide computation into levels

 All building blocks commute in 
every level

(i.e.  only one thread is 
writing to register per level)
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Parallelization in High Energy Physics

  Usual assumption:   trivial parallelizability of computations by computing
         multiple phase space points at once 
             (phase space integration  ≡  momenta, helicities, colors, flavors)

   Extreme computations:  objects of single phase space point might already 
   fill up your cache)

   Computing multiple points at once can induce traffic jam between RAM and
         CPU  ⟹   might even be slower than single core performance 

   VM is a straightforward implementation of the   
   parallel computation of a single phase space point 
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The Optimizing Matrix Element Generator (O’Mega)

pos1 ele2 muo3 amu4gam5 gam6

gam12 pos15 pos16 ele25 ele26 gam34muo35 muo36amu45 amu46

ele234ele256 gam345 gam346muo356 amu456

*

   O’Mega [Ohl, 2000; Moretti/Ohl/JRR, 2001; JRR, 2002]  computes amplitudes with
        1-particle off-shell wave functions (1POWs)

diagrams lead to a loss of numerical precision, stressing further the need for
eliminating redundancies.

Due to the large number of processes that have to be studied in order
to unleash the potential of modern experiments, the construction of these
representations must be possible algorithmically on a computer and should
not require human ingenuity for each new application.

O’Mega [1] is a compiler for tree-level scattering amplitudes that satis es
these requirements. O’Mega is independent of the target language and can
support code in any programming language for which a simple output module
has been written. To support a physics model, O’Mega requires as input only
the Feynman rules and the relations among coupling constants.

Similar to earlier numerical approaches [2, 3], O’Mega reduces the growth
in calculational e ort from a factorial of the number of particles to an ex-
ponential. The symbolic nature of O’Mega, however, increases its exibility.
Indeed, O’Mega can emulate both [2, 3] and produces code that is empirically
at least twice as fast.

2 1POWs And Keystones

One Particle O -shell Wave functions (1POWs) are obtained from Greens-
functions by applying the LSZ reduction formula to all but one line:

W q1,... ,qm

p1,... ,pn
(x) = (q1), . . . , (qm); out (x) (p1), . . . , (pn); in . (1)

The 1POW W q,q
p (x) = (q), (q ); out (x) (p); in in lowest order of 3-

theory, is given—for illustration—by

x

p q

q =

x

p q

q +

x

p q

q +

x

p q

q (2)

At tree-level, the set of all 1POWs for a given set of external momenta can
be constructed recursively [4]

x

n =
k+l=n

x

k l
, (3)

2

  Possible to construct set of all currents recursively (tree-/1-loop level)

  Keystones K  to replace sum 
      over Feynman diagrams

 Calculation forms Directed Acyclical Graphs (DAGs), optimized to consist only of  
        the minimal number of connections by  O’Mega

F (n)X

i=1

Di =

P (n)X

k,l,m=1

K(3)
fkflfm

(pk, pl, pm)Wfk(pk)Wfl(pl)Wfm(pm)
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Layout of the general infrastructure

O'Mega

0 0 0 0 0 0 0 0
1 0 0 5 1 2 0 0
1 0 0 6 1 3 0 0
11 0 1 1 1 0 0 0
11 0 1 3 1 0 0 0
12 0 1 2 3 0 0 0
13 0 1 2 4 0 0 0
13 0 1 4 4 0 0 0
14 0 1 1 2 0 0 0
0 0 0 0 0 0 0 0
34 0 0 2 5 0 2 0
-1 1 -1 2 1 3 0 0
35 0 0 3 5 0 2 0
-1 1 -1 3 1 1 0 0
34 0 0 1 6 0 2 0
-1 1 -1 1 2 1 0 0
35 0 0 4 6 0 2 0
-1 1 -1 4 2 3 0 0
0 0 0 0 0 0 0 0
2 -1 0 1 1 0 0 0
-1 1 -1 3 2 4 0 0
-1 -1 -1 1 1 4 0 0
2 -1 0 2 1 0 0 0
-1 1 -1 2 2 2 0 0
-1 -1 -1 4 1 2 0 0

OVM
interpreter

Phase space point

matrix element
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Byte code generation in O’Mega/OCaml 

  Feynman rules form finite set of instructions 

  Good candidates for translation into byte code 

  Ordering of instructions needed

  OCaml compares abstract objects (wave functions, momenta, amplitudes)

  Fortran arrays ordered according to their index position 

  Take set of objects:  apply mapping to natural numbers using the given order2.2. BYTECODE PRODUCTION IN O’MEGA

code coupl coe� lhs rhs1 rhs2 rhs3 rhs4

ADD MOMENTA 0 0 p lhs p rhs1 p rhs2 p rhs3 0
LOAD X PDG 0 wf outer ind 0 0 amp
PROPAGATE Y PDG width wf p 0 0 amp
FUSE Z coupl coe� lhs rhs1 rhs2 rhs3 rhs4
CALC BRAKET sign 0 amp sym 0 0 0

Table 2.1.: HepBC cheat sheet. Each instruction line consists of eight variables which
have a di�erent meaning depending on the first control code. In general, the objects on
the left hand side (lhs) is constructed from the right hand side (rhs). The possible values
for X, Y and Z can be seen in Eq. (2.2.1). The value for width indicates which type of
width is used while its value and the one of the mass is inferred from the PDG code.
outer ind denotes spin and momentum index of the wave function.

2.2. Bytecode production in O’Mega

The bytecode has been designed in a way such that it is in principle human readable

if the meanings of the numbers are known. Tab. 2.1 summarizes the basic operations

which are needed. Together with the sets of external particles X, propagators Y and

fusions Z

X �
�
U, UBAR, V, VBAR, VECTOR, CONJ VECTOR

⇥

Y �
�
PSI, PSIBAR, UNITARITY, FEYNMAN, COL FEYNMAN

⇥
(2.2.1)

Z �
�
VEC PSIBAR PSI, PSI VEC PSI, PSIBAR PSIBAR VEC,GLU GLU GLU, WFS V4

⇥
,

the language of the VM for QCD is defined. This very limited set of instructions

as well as the objects in a calculation can each be identified unambiguously with an

integer. The explicit values for the control codes of Tab. 2.1 can be found in the source

code of the OVM [Cho13]. The construction of momenta with up to three summands is

to some extent arbitrary but seems to be a sweet spot between caching intermediate

results and minimizing lines of bytecode, thereby decode calls and memory. Note,

that the information about amp in LOAD X and PROPAGATE Y is only useful for

color MC and was not available in the native Fortran code. At the top of the HepBC

file, a header notes the version of the VM and model library to be used as well as

the numbers of objects which have to be allocated like momenta and wave functions.

The appropriate model library has to specify mass, width and coupl arrays which

hold the numeric values for the di�erent types of particles and interactions. While

for particles the Particle Data Group particle codes (PDG) [Ber12] can be used to

identify the array entries, for the couplings an arbitrary but fixed ordering has to be

5
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Performance of byte code generation 

  Byte code is produced faster than compiled code
  Byte code uses less RAM than compiled code
  Byte code is a lot smaller than native (Fortran) source code 
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Performance of byte code generation 

  Byte code is produced faster than compiled code
  Byte code uses less RAM than compiled code
  Byte code is a lot smaller than native (Fortran) source code 

  Looking at (extreme) process   gg  ➝  6g

Memory requirements for code production reduced from 2.17 GiB to 1.34 GiB

Code production time is reduced from 11 min 52 sec to 3 min 35 sec
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Performance of byte code generation 

  Byte code is produced faster than compiled code
  Byte code uses less RAM than compiled code
  Byte code is a lot smaller than native (Fortran) source code 

2. O’MEGA VIRTUAL MACHINE

process BC size Fortran size t
compile

gg � gggggg 428MB 4.0GB -
gg � ggggg 9.4MB 85MB 483(18) s
gg � qq̄q�q̄�q��q̄��g 3.2MB 27MB 166(15) s
e+e⇥ � e+e⇥e+e⇥e+e⇥e+e⇥e+e⇥ 0.7MB 1.9MB 32.46(13) s

Table 2.2.: The compilation times were measured on a laptop with i7-2720QM,
6 GB PC3-10600 DDR3-RAM and a Samsung 840 SSD. The 2g � 6g process fails to
compile due to lacking memory.

would be that the Fortran compiler leads to ine�cient code compared to the line by

line decoding in terms of a VM. There is though no clear evidence for this.

Figure 2.4.: The execution time per phase space point tpsp of the OVM with one and
four cores as well as the native Fortran code, normalized for each process to the native
Fortran code. The addtional overhead associated with the creation of a VM, i.e. reading
the process from disc, allocation of memory and saving tables to memory, induces slightly
slower excecution times for the 2 � 2 process. However, already for three particles in
the final state, the improved memory layout can compensate this and for five particles
the OVM is more than a factor of two faster. This benchmark has been performed with
mere calls to calculate the full amplitude while no color sum is performed in each phase
space point.

2.5.1. Comparison to MadGraph

Since MadGraph[AHM11] is a popular choice for the generation of tree level amplitudes,

a benchmark with OVM seems appropriate.

12

  Looking at (extreme) process   gg  ➝  6g

Memory requirements for code production reduced from 2.17 GiB to 1.34 GiB

Code production time is reduced from 11 min 52 sec to 3 min 35 sec
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Performance of byte code generation 

  Byte code is produced faster than compiled code
  Byte code uses less RAM than compiled code
  Byte code is a lot smaller than native (Fortran) source code 

 No big changes for smaller processes

2. O’MEGA VIRTUAL MACHINE

process BC size Fortran size t
compile

gg � gggggg 428MB 4.0GB -
gg � ggggg 9.4MB 85MB 483(18) s
gg � qq̄q�q̄�q��q̄��g 3.2MB 27MB 166(15) s
e+e⇥ � e+e⇥e+e⇥e+e⇥e+e⇥e+e⇥ 0.7MB 1.9MB 32.46(13) s

Table 2.2.: The compilation times were measured on a laptop with i7-2720QM,
6 GB PC3-10600 DDR3-RAM and a Samsung 840 SSD. The 2g � 6g process fails to
compile due to lacking memory.

would be that the Fortran compiler leads to ine�cient code compared to the line by

line decoding in terms of a VM. There is though no clear evidence for this.

Figure 2.4.: The execution time per phase space point tpsp of the OVM with one and
four cores as well as the native Fortran code, normalized for each process to the native
Fortran code. The addtional overhead associated with the creation of a VM, i.e. reading
the process from disc, allocation of memory and saving tables to memory, induces slightly
slower excecution times for the 2 � 2 process. However, already for three particles in
the final state, the improved memory layout can compensate this and for five particles
the OVM is more than a factor of two faster. This benchmark has been performed with
mere calls to calculate the full amplitude while no color sum is performed in each phase
space point.

2.5.1. Comparison to MadGraph

Since MadGraph[AHM11] is a popular choice for the generation of tree level amplitudes,

a benchmark with OVM seems appropriate.

12

  Looking at (extreme) process   gg  ➝  6g

Memory requirements for code production reduced from 2.17 GiB to 1.34 GiB

Code production time is reduced from 11 min 52 sec to 3 min 35 sec
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Parallelization in recursive computations

1 2 3 4 5 6 7 8 9 10

1 2 5 6 7 8 9 10

5 6 7 81 2 3 4

1 2 3

Identify a level of the parallelization by counting external momenta
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Speed of VM matrix elements — First glance

2 gl 3 gl 4 gl 5 gl
Final state
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[gfortran 4.7.4, Intel i7-2720QM @ 2.2 GHz]
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Speed of matrix elements — w/ two compilers
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gfortran-O3, compiled
gfortran-O3, VM
gfortran-O2, compiled
gfortran-O2, VM

ifort-O3, compiled
ifort-O3, VM
ifort-O2, compiled
ifort-O2, VM

2 ! (n � 2)g amplitudes
 [gfortran 4.7.4/ifort 

14.0  on 
Intel Xeon E5-2440 @ 2.4 

GHz ]

 Both VMs improve with 
increasing multiplicity

 ifort has large offset for the 
VM:  needs profile-guided 
optimization to resolve

 ifort v14.0  fails to 
compile 2 ➝ 5 gluon 
amplitude 

       (even with -O0)
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Speed of matrix elements — explaining the Scaling
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uu ! e+e�nj amplitudes Same scaling behavior

 Virtualisation costs constant

 VM does loop over levels 
and instructions in the levels

 Source code is like an  
unrolled version of this loop

 Double loop of  VM has 
higher probability to keep 
decode function in 
instruction cache
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Speed of matrix elements
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e+e� ! n� amplitudes  For pure QED with   
    increasing multiplicity:  
 Improvements in VM smaller

  More wave functions per  
level:  less to be done! 

  Unrolled version can gain 
      more from prefetching

  Be aware of the size: 
      e+e−  ➝ 9 γ     125 KiB
         gg  ➝ 4 g       269 KiB
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Quantitative Analysis of the Parallelization

  Amdahl’s Law divides an algorithm into a parallelizable part p    and  
strictly serial parts  1 - p 

  Amdahl’s Law determines possible speedup s for a computation with 
n cores

Consider the time on 1 and n cores, resp.:    t(1), t(n)
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Quantitative Analysis of the Parallelization

  Amdahl’s Law divides an algorithm into a parallelizable part p    and  
strictly serial parts  1 - p 

  Amdahl’s Law determines possible speedup s for a computation with 
n cores

Consider the time on 1 and n cores, resp.:    t(1), t(n)

s ⌘ t(1)

t(n)
=

1

(1� p) + p
n

 1

1� p
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Quantitative Analysis of the Parallelization

  Amdahl’s Law divides an algorithm into a parallelizable part p    and  
strictly serial parts  1 - p 

  Amdahl’s Law determines possible speedup s for a computation with 
n cores

Consider the time on 1 and n cores, resp.:    t(1), t(n)

s ⌘ t(1)

t(n)
=

1

(1� p) + p
n

 1

1� p

  Idealized case:   communication costs between n cores have been neglected in the   
 denominator   / c1 · n

⇥
+c2 · n2

⇤



         J.R.Reuter               WHIZARD for e+e- Physics            IHEP Workshop 2015, Beijing, 14.10.2015 

Quantitative Analysis of the Parallelization

  Amdahl’s Law divides an algorithm into a parallelizable part p    and  
strictly serial parts  1 - p 

  Amdahl’s Law determines possible speedup s for a computation with 
n cores

Consider the time on 1 and n cores, resp.:    t(1), t(n)

s ⌘ t(1)

t(n)
=

1

(1� p) + p
n

 1

1� p

  Idealized case:   communication costs between n cores have been neglected in the   
 denominator   / c1 · n

⇥
+c2 · n2

⇤

  Compare parallelization of the amplitude (A) with parallel computation of single 
complete phase space points (P)
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Quantitative Analysis of the Parallelization
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Quantitative Analysis of the Parallelization
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Implementation / Usage in WHIZARD

WHIZARD v2.2.8  (22.11.2015)          http://whizard.hepforge.org <whizard@desy.de>

WHIZARD Team:    Wolfgang Kilian, Thorsten Ohl, JRR, Simon Braß/Bijan Chokoufé/Marco Sekulla/Soyoung 
Shim/Florian Staub/Christian Weiss/Zhijie Zhao + 2 Master  EPJ C71 (2011) 1742 

• Universal event generator for lepton and hadron colliders

•  Modular package:  - Phase space parameterization (resonances, collinear emission, Coulomb etc.)
- O’Mega optimized matrix element generator (recursiveness via Directed 

Acyclical Graphs)    
       Compiled matrix element code & O’Mega Virtual Machine (OVM)   

- Color flow formalism     Stelzer/Willenbrock, 2003; Kilian/Ohl/JRR/Speckner, 2011

-  VAMP:  adaptive multi-channel Monte Carlo integrator
- CIRCE1/2:  generator/simulation tool for lepton collider beam spectra 
-  Lepton beam ISR            Kuraev/Fadin, 2003; Skrzypek/Jadach, 1991

Available for the following models:  
   SM, SM_CKM, SM_Higgs, Zprime, QCD, QED, 2HDM, 2HDM_CKM, HSExt

http://desy.de
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Application on GPUs ?

  GPUs allow highly efficient 4-vector calculations (speed-ups of 50-100 reported)

  GPUs suffer from problem of finite (small) size of its kernel

  VM could be the perfect tool for such computations

  Existing studies:   performance degrades with growing multiplicity   ⟹  

   code has to be split into smaller programs   [Hagiwara/Kanzaki/Li/Okamura/Stelzer, 1305.0708]

  Decode function of VM remains sufficiently small 

  Possible remaining obstacle:    Efficiency of memory management 

  Reduce communication costs:  transfer instructions and VM to GPU only once

  Strategy:   
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Application on GPUs ?

  GPUs allow highly efficient 4-vector calculations (speed-ups of 50-100 reported)

  GPUs suffer from problem of finite (small) size of its kernel

  VM could be the perfect tool for such computations

  Existing studies:   performance degrades with growing multiplicity   ⟹  

   code has to be split into smaller programs   [Hagiwara/Kanzaki/Li/Okamura/Stelzer, 1305.0708]

  Decode function of VM remains sufficiently small 

  Possible remaining obstacle:    Efficiency of memory management 

  Reduce communication costs:  transfer instructions and VM to GPU only once

  Strategy:   •  Send only quantum numbers and momenta to GPU
•  Receive the amplitudes as complex numbers from the GPU
•  Phase space integration / reweighting etc. happens on the CPU
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Conclusions & Outlook

  Virtual Machines allow to compute directly 

  No compile time needed  (hours/days for complicated processes)

  Implementation for High Energy Physics: O’Mega Virtual Machine
[Chokoufé/Ohl/JRR, Comput.Phys.Commun. 196 (2015) 58-69]

  OVM included in event generator  WHIZARD 2.2 

 (Very) complicated processes benefit from/need parallelization of single 
phase space points      straightforward in the VM

 Execution times same order as compiled code (sometimes even faster)

 Might allow to run on graphic cards:  ME [OVM] on GPU,  MC core on CPU

 Idea very general:   summation,  algebraic operations,  etc.
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BACKUP SLIDES
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Implementation of (OMP) parallelisation

Also the color sum has to be parallelized, too:



         J.R.Reuter       Extreme computations with Virtual Machines         ACAT 2016, Valparaíso, 21.01.16 

Byte code in detail
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Byte code in detail


