
 J.R.Reuter Extreme computations with Virtual Machines ACAT 2016, Valparaíso, 21.01.16

Jürgen R. Reuter, DESY

Making extreme computations
possible with virtual machines

Chokoufé/Ohl/JRR, Comput.Phys.Commun.
196 (2015) 58-69

 J.R.Reuter WHIZARD for e+e- Physics IHEP Workshop 2015, Beijing, 14.10.2015

Motivation: why extreme computations?

CMS 8 TeV event: 13 jets
anti-kT , R = 0.5, pT,min > 50 GeV

• Modern collider experiments need matrix
elements (MEs) of tremendous multiplicity

• Tree-level MEs needed in corrections to the
parton shower (merging) and for k real emissions
in NkLO fixed order calculations

• Examples: access to top Yukawa at ILC/CLIC:

e+e� ! bbbb+ 4j

e+e� ! bb`⌫` + 6j

e+e� ! bb+ 8j

• Automated efficient ME generators provide every
multiplicity (in principle) Alpha [Caravaglios/Moretti,

1995], O’Mega [Ohl/JRR, 2000], Helac [Papadopoulos, 2001],
Comix [Gleisberg/Hoeche, 2008]

• Direct numerical implementations of recursions less flexible
• Traditional method: use meta programming to combine fast code & full flexibility

 Algebraic expression from high-level language: Form, Mathematica, OCaml, Python, …
 Evaluation in numerical fast language: C, Fortran, …
 Examples: O’Mega [Ohl/JRR, 2000], Madgraph [Alwall et al., 2008], FormCalc [Hahn/Perez-Victoria, 1998],
GoSam [van Deurzen et al., 2013], …

 J.R.Reuter WHIZARD for e+e- Physics IHEP Workshop 2015, Beijing, 14.10.2015

What to do with complex processes?

• BUT: analytic expressions of complex (multi-jet) processes can reach GiB size,

• gg ➝ 6g reaches size of 4 GB in O’Mega [Kilian/Ohl/JRR/Speckner, 1206.3700]

• No hope for higher multiplicities …

• Possible solution: Virtual Machine (VM) circumvents compilation of large code completely

• VM easy to implement and parallelize, similar performance than compiled code

• VM is no OS emulation in this context … … … [Chokoufé/Ohl/JRR, 1411.3834]

 J.R.Reuter WHIZARD for e+e- Physics IHEP Workshop 2015, Beijing, 14.10.2015

What is a Virtual Machine (VM)

 A Virtual Machine (VM) in our context is a compiled program (interpreter)

 The VM is able to read instructions from disk

 The VM performs arbitrary number of operations of a finite instruction set

 Instructions can be stored as byte code (encoded as numbers in ASCII file)

 VM can be regarded as machine with registers and instructions what to do
on the registers

 Similar to a CPU, but on a higher level:
 registers are e.g. arrays of momenta and wave functions
 instructions are e.g. scalar products of momenta and wave functions

 J.R.Reuter WHIZARD for e+e- Physics IHEP Workshop 2015, Beijing, 14.10.2015

Contents of the byte code

 VM should be constructed dynamically (for user-defined processes)

 ⟹ provide header with number of objects to be allocated

 [optionally: version numbers to specify the physical model, comments on the
 creation of the byte code, tables with precomputed properties (information
 over helicity, color, flavor]

 Then: body of instructions (non-trivial information how to compute a process)

 First object of instruction is the opcode: specifies which operation is executed

usually by addresses of registers, for example:

1 7 4 3 ⇔ momentum(7) = momentum(4) + momentum(3)

 J.R.Reuter WHIZARD for e+e- Physics IHEP Workshop 2015, Beijing, 14.10.2015

Interpreter (VM per se)

 Simple (compiled) program: reads first byte code into memory

 VM decode function loops over instructions with given input values

 Translation of byte code to machine code (very) fast compared to execution
 (execution consists of large number of complex scalar products)

 Adapting interpreter to a new process/matrix element requires

 VM is compiled once fast: handy for validation (checking many small
processes), inevitable for (very) large processes

• Specification of static information (spin tables, color tables etc.)

• Writing the selection statements for the decode function

 J.R.Reuter WHIZARD for e+e- Physics IHEP Workshop 2015, Beijing, 14.10.2015

Parallelization in the Virtual Machine

 Group instructions into
building blocks: minimize
number of synchronization
points

 Divide computation into levels

 All building blocks commute in
every level

(i.e. only one thread is
writing to register per level)

 J.R.Reuter WHIZARD for e+e- Physics IHEP Workshop 2015, Beijing, 14.10.2015

Parallelization in High Energy Physics

 Usual assumption: trivial parallelizability of computations by computing
 multiple phase space points at once
 (phase space integration ≡ momenta, helicities, colors, flavors)

 Extreme computations: objects of single phase space point might already
 fill up your cache)

 Computing multiple points at once can induce traffic jam between RAM and
 CPU ⟹ might even be slower than single core performance

 VM is a straightforward implementation of the
 parallel computation of a single phase space point

 J.R.Reuter WHIZARD for e+e- Physics IHEP Workshop 2015, Beijing, 14.10.2015

The Optimizing Matrix Element Generator (O’Mega)

pos1 ele2 muo3 amu4gam5 gam6

gam12 pos15 pos16 ele25 ele26 gam34muo35 muo36amu45 amu46

ele234ele256 gam345 gam346muo356 amu456

*

 O’Mega [Ohl, 2000; Moretti/Ohl/JRR, 2001; JRR, 2002] computes amplitudes with
 1-particle off-shell wave functions (1POWs)

diagrams lead to a loss of numerical precision, stressing further the need for
eliminating redundancies.

Due to the large number of processes that have to be studied in order
to unleash the potential of modern experiments, the construction of these
representations must be possible algorithmically on a computer and should
not require human ingenuity for each new application.

O’Mega [1] is a compiler for tree-level scattering amplitudes that satis es
these requirements. O’Mega is independent of the target language and can
support code in any programming language for which a simple output module
has been written. To support a physics model, O’Mega requires as input only
the Feynman rules and the relations among coupling constants.

Similar to earlier numerical approaches [2, 3], O’Mega reduces the growth
in calculational e ort from a factorial of the number of particles to an ex-
ponential. The symbolic nature of O’Mega, however, increases its exibility.
Indeed, O’Mega can emulate both [2, 3] and produces code that is empirically
at least twice as fast.

2 1POWs And Keystones

One Particle O -shell Wave functions (1POWs) are obtained from Greens-
functions by applying the LSZ reduction formula to all but one line:

W q1,... ,qm

p1,... ,pn
(x) = (q1), . . . , (qm); out (x) (p1), . . . , (pn); in . (1)

The 1POW W q,q
p (x) = (q), (q); out (x) (p); in in lowest order of 3-

theory, is given—for illustration—by

x

p q

q =

x

p q

q +

x

p q

q +

x

p q

q (2)

At tree-level, the set of all 1POWs for a given set of external momenta can
be constructed recursively [4]

x

n =
k+l=n

x

k l
, (3)

2

 Possible to construct set of all currents recursively (tree-/1-loop level)

 Keystones K to replace sum
 over Feynman diagrams

 Calculation forms Directed Acyclical Graphs (DAGs), optimized to consist only of
 the minimal number of connections by O’Mega

F (n)X

i=1

Di =

P (n)X

k,l,m=1

K(3)
fkflfm

(pk, pl, pm)Wfk(pk)Wfl(pl)Wfm(pm)

 J.R.Reuter WHIZARD for e+e- Physics IHEP Workshop 2015, Beijing, 14.10.2015

Layout of the general infrastructure

O'Mega

0 0 0 0 0 0 0 0
1 0 0 5 1 2 0 0
1 0 0 6 1 3 0 0
11 0 1 1 1 0 0 0
11 0 1 3 1 0 0 0
12 0 1 2 3 0 0 0
13 0 1 2 4 0 0 0
13 0 1 4 4 0 0 0
14 0 1 1 2 0 0 0
0 0 0 0 0 0 0 0
34 0 0 2 5 0 2 0
-1 1 -1 2 1 3 0 0
35 0 0 3 5 0 2 0
-1 1 -1 3 1 1 0 0
34 0 0 1 6 0 2 0
-1 1 -1 1 2 1 0 0
35 0 0 4 6 0 2 0
-1 1 -1 4 2 3 0 0
0 0 0 0 0 0 0 0
2 -1 0 1 1 0 0 0
-1 1 -1 3 2 4 0 0
-1 -1 -1 1 1 4 0 0
2 -1 0 2 1 0 0 0
-1 1 -1 2 2 2 0 0
-1 -1 -1 4 1 2 0 0

OVM
interpreter

Phase space point

matrix element

 J.R.Reuter WHIZARD for e+e- Physics IHEP Workshop 2015, Beijing, 14.10.2015

Byte code generation in O’Mega/OCaml

 Feynman rules form finite set of instructions

 Good candidates for translation into byte code

 Ordering of instructions needed

 OCaml compares abstract objects (wave functions, momenta, amplitudes)

 Fortran arrays ordered according to their index position

 Take set of objects: apply mapping to natural numbers using the given order2.2. BYTECODE PRODUCTION IN O’MEGA

code coupl coe� lhs rhs1 rhs2 rhs3 rhs4

ADD MOMENTA 0 0 p lhs p rhs1 p rhs2 p rhs3 0
LOAD X PDG 0 wf outer ind 0 0 amp
PROPAGATE Y PDG width wf p 0 0 amp
FUSE Z coupl coe� lhs rhs1 rhs2 rhs3 rhs4
CALC BRAKET sign 0 amp sym 0 0 0

Table 2.1.: HepBC cheat sheet. Each instruction line consists of eight variables which
have a di�erent meaning depending on the first control code. In general, the objects on
the left hand side (lhs) is constructed from the right hand side (rhs). The possible values
for X, Y and Z can be seen in Eq. (2.2.1). The value for width indicates which type of
width is used while its value and the one of the mass is inferred from the PDG code.
outer ind denotes spin and momentum index of the wave function.

2.2. Bytecode production in O’Mega

The bytecode has been designed in a way such that it is in principle human readable

if the meanings of the numbers are known. Tab. 2.1 summarizes the basic operations

which are needed. Together with the sets of external particles X, propagators Y and

fusions Z

X �
�
U, UBAR, V, VBAR, VECTOR, CONJ VECTOR

⇥

Y �
�
PSI, PSIBAR, UNITARITY, FEYNMAN, COL FEYNMAN

⇥
(2.2.1)

Z �
�
VEC PSIBAR PSI, PSI VEC PSI, PSIBAR PSIBAR VEC,GLU GLU GLU, WFS V4

⇥
,

the language of the VM for QCD is defined. This very limited set of instructions

as well as the objects in a calculation can each be identified unambiguously with an

integer. The explicit values for the control codes of Tab. 2.1 can be found in the source

code of the OVM [Cho13]. The construction of momenta with up to three summands is

to some extent arbitrary but seems to be a sweet spot between caching intermediate

results and minimizing lines of bytecode, thereby decode calls and memory. Note,

that the information about amp in LOAD X and PROPAGATE Y is only useful for

color MC and was not available in the native Fortran code. At the top of the HepBC

file, a header notes the version of the VM and model library to be used as well as

the numbers of objects which have to be allocated like momenta and wave functions.

The appropriate model library has to specify mass, width and coupl arrays which

hold the numeric values for the di�erent types of particles and interactions. While

for particles the Particle Data Group particle codes (PDG) [Ber12] can be used to

identify the array entries, for the couplings an arbitrary but fixed ordering has to be

5

 J.R.Reuter WHIZARD for e+e- Physics IHEP Workshop 2015, Beijing, 14.10.2015

Performance of byte code generation

 Byte code is produced faster than compiled code
 Byte code uses less RAM than compiled code
 Byte code is a lot smaller than native (Fortran) source code

 J.R.Reuter WHIZARD for e+e- Physics IHEP Workshop 2015, Beijing, 14.10.2015

Performance of byte code generation

 Byte code is produced faster than compiled code
 Byte code uses less RAM than compiled code
 Byte code is a lot smaller than native (Fortran) source code

 Looking at (extreme) process gg ➝ 6g

Memory requirements for code production reduced from 2.17 GiB to 1.34 GiB

Code production time is reduced from 11 min 52 sec to 3 min 35 sec

 J.R.Reuter WHIZARD for e+e- Physics IHEP Workshop 2015, Beijing, 14.10.2015

Performance of byte code generation

 Byte code is produced faster than compiled code
 Byte code uses less RAM than compiled code
 Byte code is a lot smaller than native (Fortran) source code

2. O’MEGA VIRTUAL MACHINE

process BC size Fortran size t
compile

gg � gggggg 428MB 4.0GB -
gg � ggggg 9.4MB 85MB 483(18) s
gg � qq̄q�q̄�q��q̄��g 3.2MB 27MB 166(15) s
e+e⇥ � e+e⇥e+e⇥e+e⇥e+e⇥e+e⇥ 0.7MB 1.9MB 32.46(13) s

Table 2.2.: The compilation times were measured on a laptop with i7-2720QM,
6 GB PC3-10600 DDR3-RAM and a Samsung 840 SSD. The 2g � 6g process fails to
compile due to lacking memory.

would be that the Fortran compiler leads to ine�cient code compared to the line by

line decoding in terms of a VM. There is though no clear evidence for this.

Figure 2.4.: The execution time per phase space point tpsp of the OVM with one and
four cores as well as the native Fortran code, normalized for each process to the native
Fortran code. The addtional overhead associated with the creation of a VM, i.e. reading
the process from disc, allocation of memory and saving tables to memory, induces slightly
slower excecution times for the 2 � 2 process. However, already for three particles in
the final state, the improved memory layout can compensate this and for five particles
the OVM is more than a factor of two faster. This benchmark has been performed with
mere calls to calculate the full amplitude while no color sum is performed in each phase
space point.

2.5.1. Comparison to MadGraph

Since MadGraph[AHM11] is a popular choice for the generation of tree level amplitudes,

a benchmark with OVM seems appropriate.

12

 Looking at (extreme) process gg ➝ 6g

Memory requirements for code production reduced from 2.17 GiB to 1.34 GiB

Code production time is reduced from 11 min 52 sec to 3 min 35 sec

 J.R.Reuter WHIZARD for e+e- Physics IHEP Workshop 2015, Beijing, 14.10.2015

Performance of byte code generation

 Byte code is produced faster than compiled code
 Byte code uses less RAM than compiled code
 Byte code is a lot smaller than native (Fortran) source code

 No big changes for smaller processes

2. O’MEGA VIRTUAL MACHINE

process BC size Fortran size t
compile

gg � gggggg 428MB 4.0GB -
gg � ggggg 9.4MB 85MB 483(18) s
gg � qq̄q�q̄�q��q̄��g 3.2MB 27MB 166(15) s
e+e⇥ � e+e⇥e+e⇥e+e⇥e+e⇥e+e⇥ 0.7MB 1.9MB 32.46(13) s

Table 2.2.: The compilation times were measured on a laptop with i7-2720QM,
6 GB PC3-10600 DDR3-RAM and a Samsung 840 SSD. The 2g � 6g process fails to
compile due to lacking memory.

would be that the Fortran compiler leads to ine�cient code compared to the line by

line decoding in terms of a VM. There is though no clear evidence for this.

Figure 2.4.: The execution time per phase space point tpsp of the OVM with one and
four cores as well as the native Fortran code, normalized for each process to the native
Fortran code. The addtional overhead associated with the creation of a VM, i.e. reading
the process from disc, allocation of memory and saving tables to memory, induces slightly
slower excecution times for the 2 � 2 process. However, already for three particles in
the final state, the improved memory layout can compensate this and for five particles
the OVM is more than a factor of two faster. This benchmark has been performed with
mere calls to calculate the full amplitude while no color sum is performed in each phase
space point.

2.5.1. Comparison to MadGraph

Since MadGraph[AHM11] is a popular choice for the generation of tree level amplitudes,

a benchmark with OVM seems appropriate.

12

 Looking at (extreme) process gg ➝ 6g

Memory requirements for code production reduced from 2.17 GiB to 1.34 GiB

Code production time is reduced from 11 min 52 sec to 3 min 35 sec

 J.R.Reuter WHIZARD for e+e- Physics IHEP Workshop 2015, Beijing, 14.10.2015

Parallelization in recursive computations

1 2 3 4 5 6 7 8 9 10

1 2 5 6 7 8 9 10

5 6 7 81 2 3 4

1 2 3

Identify a level of the parallelization by counting external momenta

 J.R.Reuter WHIZARD for e+e- Physics IHEP Workshop 2015, Beijing, 14.10.2015

Speed of VM matrix elements — First glance

2 gl 3 gl 4 gl 5 gl
Final state

0.0

0.2

0.4

0.6

0.8

1.0

1.2
t p

sp
/
to

ld
p
sp

Old Fortran Code
OVM with 1 core
OVM with 4 cores

[gfortran 4.7.4, Intel i7-2720QM @ 2.2 GHz]

 J.R.Reuter WHIZARD for e+e- Physics IHEP Workshop 2015, Beijing, 14.10.2015

Speed of matrix elements — w/ two compilers

4 5 6 7
multiplicity n

1.0

1.5

2.0

ti
m

e
no

rm
al

iz
ed

to
g
f
o
r
t
r
a
n
-
O
3

,c
om

pi
le

d
gfortran-O3, compiled
gfortran-O3, VM
gfortran-O2, compiled
gfortran-O2, VM

ifort-O3, compiled
ifort-O3, VM
ifort-O2, compiled
ifort-O2, VM

2 ! (n � 2)g amplitudes
 [gfortran 4.7.4/ifort

14.0 on
Intel Xeon E5-2440 @ 2.4

GHz]

 Both VMs improve with
increasing multiplicity

 ifort has large offset for the
VM: needs profile-guided
optimization to resolve

 ifort v14.0 fails to
compile 2 ➝ 5 gluon
amplitude

 (even with -O0)

 J.R.Reuter WHIZARD for e+e- Physics IHEP Workshop 2015, Beijing, 14.10.2015

Speed of matrix elements — explaining the Scaling

0 1 2 3 4 5 6
multiplicity n

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

ti
m

e
no

rm
al

iz
ed

to
g
f
o
r
t
r
a
n
-
O
3

,c
om

pi
le

d

gfortran-O3, compiled
gfortran-O3, VM
gfortran-O2, compiled
gfortran-O2, VM

ifort-O3, compiled
ifort-O3, VM
ifort-O2, compiled
ifort-O2, VM

uu ! e+e�nj amplitudes Same scaling behavior

 Virtualisation costs constant

 VM does loop over levels
and instructions in the levels

 Source code is like an
unrolled version of this loop

 Double loop of VM has
higher probability to keep
decode function in
instruction cache

 J.R.Reuter WHIZARD for e+e- Physics IHEP Workshop 2015, Beijing, 14.10.2015

Speed of matrix elements

2 3 4 5 6 7 8 9
multiplicity n

1.0

1.5

2.0

2.5

3.0

ti
m

e
no

rm
al

iz
ed

to
g
f
o
r
t
r
a
n
-
O
3

,c
om

pi
le

d
gfortran-O3, compiled
gfortran-O3, VM
gfortran-O2, compiled
gfortran-O2, VM

ifort-O3, compiled
ifort-O3, VM
ifort-O2, compiled
ifort-O2, VM

e+e� ! n� amplitudes For pure QED with
 increasing multiplicity:
 Improvements in VM smaller

 More wave functions per
level: less to be done!

 Unrolled version can gain
 more from prefetching

 Be aware of the size:
 e+e− ➝ 9 γ 125 KiB
 gg ➝ 4 g 269 KiB

 J.R.Reuter WHIZARD for e+e- Physics IHEP Workshop 2015, Beijing, 14.10.2015

Quantitative Analysis of the Parallelization

 Amdahl’s Law divides an algorithm into a parallelizable part p and
strictly serial parts 1 - p

 Amdahl’s Law determines possible speedup s for a computation with
n cores

Consider the time on 1 and n cores, resp.: t(1), t(n)

 J.R.Reuter WHIZARD for e+e- Physics IHEP Workshop 2015, Beijing, 14.10.2015

Quantitative Analysis of the Parallelization

 Amdahl’s Law divides an algorithm into a parallelizable part p and
strictly serial parts 1 - p

 Amdahl’s Law determines possible speedup s for a computation with
n cores

Consider the time on 1 and n cores, resp.: t(1), t(n)

s ⌘ t(1)

t(n)
=

1

(1� p) + p
n

 1

1� p

 J.R.Reuter WHIZARD for e+e- Physics IHEP Workshop 2015, Beijing, 14.10.2015

Quantitative Analysis of the Parallelization

 Amdahl’s Law divides an algorithm into a parallelizable part p and
strictly serial parts 1 - p

 Amdahl’s Law determines possible speedup s for a computation with
n cores

Consider the time on 1 and n cores, resp.: t(1), t(n)

s ⌘ t(1)

t(n)
=

1

(1� p) + p
n

 1

1� p

 Idealized case: communication costs between n cores have been neglected in the
 denominator / c1 · n

⇥
+c2 · n2

⇤

 J.R.Reuter WHIZARD for e+e- Physics IHEP Workshop 2015, Beijing, 14.10.2015

Quantitative Analysis of the Parallelization

 Amdahl’s Law divides an algorithm into a parallelizable part p and
strictly serial parts 1 - p

 Amdahl’s Law determines possible speedup s for a computation with
n cores

Consider the time on 1 and n cores, resp.: t(1), t(n)

s ⌘ t(1)

t(n)
=

1

(1� p) + p
n

 1

1� p

 Idealized case: communication costs between n cores have been neglected in the
 denominator / c1 · n

⇥
+c2 · n2

⇤

 Compare parallelization of the amplitude (A) with parallel computation of single
complete phase space points (P)

 J.R.Reuter WHIZARD for e+e- Physics IHEP Workshop 2015, Beijing, 14.10.2015

1 2 3 4 5 6 7 8 9 10 11 12
threads N

2

4

6

8

10

sp
ee

du
p

s
p = 100%
n = 6 (PS)
n = 6 (A)
n = 7 (PS)
n = 7 (A)
n = 8 (PS)
n = 8 (A)
p = 95%

1 2 3 4 5 6 7 8 9 10 11 12
threads N

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ef
fic

ie
nc

y
s
/
n

Parallel performance of 2 ! (n � 2)g amplitudes

Quantitative Analysis of the Parallelization

 J.R.Reuter WHIZARD for e+e- Physics IHEP Workshop 2015, Beijing, 14.10.2015

Quantitative Analysis of the Parallelization

1 2 3 4 5 6 7 8 9 10 11 12
threads N

2

4

6

8

10

sp
ee

du
p

s
p = 100%
n = 4 (PS)
n = 4 (A)
n = 5 (PS)
n = 5 (A)
n = 6 (PS)
n = 6 (A)
p = 95%

1 2 3 4 5 6 7 8 9 10 11 12
threads N

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ef
fic

ie
nc

y
s/

n

Parallel performance of uu ! e+e�nj amplitudes

 J.R.Reuter WHIZARD for e+e- Physics IHEP Workshop 2015, Beijing, 14.10.2015

Quantitative Analysis of the Parallelization

1 2 3 4 5 6 7 8 9 10 11 12
threads N

2

4

6

8

10

sp
ee

du
p

s
p = 100%
n = 8 (PS)
n = 8 (A)
n = 9 (PS)
n = 9 (A)
n = 10 (PS)
n = 10 (A)
p = 95%

1 2 3 4 5 6 7 8 9 10 11 12
threads N

0.2

0.4

0.6

0.8

1.0

ef
fic

ie
nc

y
s/

n

Parallel performance of e+e� ! n� amplitudes

 J.R.Reuter Extreme computations with Virtual Machines ACAT 2016, Valparaíso, 21.01.16

Implementation / Usage in WHIZARD

WHIZARD v2.2.8 (22.11.2015) http://whizard.hepforge.org <whizard@desy.de>

WHIZARD Team: Wolfgang Kilian, Thorsten Ohl, JRR, Simon Braß/Bijan Chokoufé/Marco Sekulla/Soyoung
Shim/Florian Staub/Christian Weiss/Zhijie Zhao + 2 Master EPJ C71 (2011) 1742

• Universal event generator for lepton and hadron colliders

• Modular package: - Phase space parameterization (resonances, collinear emission, Coulomb etc.)
- O’Mega optimized matrix element generator (recursiveness via Directed

Acyclical Graphs)
 Compiled matrix element code & O’Mega Virtual Machine (OVM)

- Color flow formalism Stelzer/Willenbrock, 2003; Kilian/Ohl/JRR/Speckner, 2011

- VAMP: adaptive multi-channel Monte Carlo integrator
- CIRCE1/2: generator/simulation tool for lepton collider beam spectra
- Lepton beam ISR Kuraev/Fadin, 2003; Skrzypek/Jadach, 1991

Available for the following models:
 SM, SM_CKM, SM_Higgs, Zprime, QCD, QED, 2HDM, 2HDM_CKM, HSExt

http://desy.de

 J.R.Reuter Extreme computations with Virtual Machines ACAT 2016, Valparaíso, 21.01.16

Application on GPUs ?

 GPUs allow highly efficient 4-vector calculations (speed-ups of 50-100 reported)

 GPUs suffer from problem of finite (small) size of its kernel

 VM could be the perfect tool for such computations

 Existing studies: performance degrades with growing multiplicity ⟹

 code has to be split into smaller programs [Hagiwara/Kanzaki/Li/Okamura/Stelzer, 1305.0708]

 Decode function of VM remains sufficiently small

 Possible remaining obstacle: Efficiency of memory management

 Reduce communication costs: transfer instructions and VM to GPU only once

 Strategy:

 J.R.Reuter Extreme computations with Virtual Machines ACAT 2016, Valparaíso, 21.01.16

Application on GPUs ?

 GPUs allow highly efficient 4-vector calculations (speed-ups of 50-100 reported)

 GPUs suffer from problem of finite (small) size of its kernel

 VM could be the perfect tool for such computations

 Existing studies: performance degrades with growing multiplicity ⟹

 code has to be split into smaller programs [Hagiwara/Kanzaki/Li/Okamura/Stelzer, 1305.0708]

 Decode function of VM remains sufficiently small

 Possible remaining obstacle: Efficiency of memory management

 Reduce communication costs: transfer instructions and VM to GPU only once

 Strategy: • Send only quantum numbers and momenta to GPU
• Receive the amplitudes as complex numbers from the GPU
• Phase space integration / reweighting etc. happens on the CPU

 J.R.Reuter Extreme computations with Virtual Machines ACAT 2016, Valparaíso, 21.01.16

Conclusions & Outlook

 Virtual Machines allow to compute directly

 No compile time needed (hours/days for complicated processes)

 Implementation for High Energy Physics: O’Mega Virtual Machine
[Chokoufé/Ohl/JRR, Comput.Phys.Commun. 196 (2015) 58-69]

 OVM included in event generator WHIZARD 2.2

 (Very) complicated processes benefit from/need parallelization of single
phase space points straightforward in the VM

 Execution times same order as compiled code (sometimes even faster)

 Might allow to run on graphic cards: ME [OVM] on GPU, MC core on CPU

 Idea very general: summation, algebraic operations, etc.

 J.R.Reuter Extreme computations with Virtual Machines ACAT 2016, Valparaíso, 21.01.16

BACKUP SLIDES

 J.R.Reuter Extreme computations with Virtual Machines ACAT 2016, Valparaíso, 21.01.16

Implementation of (OMP) parallelisation

Also the color sum has to be parallelized, too:

 J.R.Reuter Extreme computations with Virtual Machines ACAT 2016, Valparaíso, 21.01.16

Byte code in detail

 J.R.Reuter Extreme computations with Virtual Machines ACAT 2016, Valparaíso, 21.01.16

Byte code in detail

