Vector Boson Scattering at e^+e^- machines & News from WHIZARD

Jürgen R. Reuter

DESY, Hamburg

Alboteanu/Kilian/JRR, JHEP 0811 (2008) 010;
Beyer/Kilian/Krstonošić/Mönig/JRR/Schmitt/Schröder, EPJC 48 (2006), 353;
JRR/Kilian/Sekulla, 1307.8170; Kilian/JRR/Ohl/Sekulla, 1408.6207 + in prep.
Kilian/Ohl/JRR, EPJ C71 (2011) 1742

CLIC 2015 Workshop, CERN, Jan. 29th, 2015
Motivation

- After discovery of light Higgs boson: what is left to do?
- Mechanism behind generating Higgs vev missing (\Rightarrow Higgs physics)
- Dynamics of EW interactions: \Rightarrow Multiboson Interactions (MBI)
- Anomalous Triple Gauge Couplings: dibosons
- Anomalous Quartic Gauge Couplings: tribosons, VV scattering
- Existing studies assume: $\mathcal{P}(e^-) = 80 - 90\%$, $\mathcal{P}(e^+) = 30 - 60\%$
 - Longitudinal polarization of beams: $(V - A)$ couplings of W/Z
 - e_L and e_R different multiplets \Rightarrow access completely different couplings

F. Gianotti, CLIC-Workshop 2014, CERN

Motivation

- After discovery of light Higgs boson: what is left to do?
- Mechanism behind generating Higgs vev missing (\Rightarrow Higgs physics)
- Dynamics of EW interactions: \Rightarrow Multiboson Interactions (MBI)
- Anomalous Triple Gauge Couplings: dibosons
- Anomalous Quartic Gauge Couplings: tribosons, VV scattering
- Existing studies assume: $\mathcal{P}(e^-) = 80 - 90\%$, $\mathcal{P}(e^+) = 30 - 60\%$
 - Longitudinal polarization of beams: $(V - A)$ couplings of W/Z
 - e_L and e_R different multiplets \Rightarrow access completely different couplings
- Higgs suppression makes VBS a prime candidate for BSM searches
Motivation

- After discovery of light Higgs boson: what is left to do?
- Mechanism behind generating Higgs vev missing (\Rightarrow Higgs physics)
- Dynamics of EW interactions: \Rightarrow Multiboson Interactions (MBI)
- Anomalous Triple Gauge Couplings: dibosons
- Anomalous Quartic Gauge Couplings: tribosons, VV scattering
- Existing studies assume: $P(e^-) = 80 - 90\%$, $P(e^+) = 30 - 60\%$
 - Longitudinal polarization of beams: $(V - A)$ couplings of W/Z
 - e_L and e_R different multiplets \Rightarrow access completely different couplings
- Higgs suppression makes VBS a prime candidate for BSM searches

F. Gianotti, CLIC-Workshop 2014, CERN

Exploration of E-frontier \Rightarrow look for heavy objects, including high-mass V_LV_L scattering:
- requires as much integrated luminosity as possible (cross-section goes like $1/s$)
Motivation

- After discovery of light Higgs boson: what is left to do?
- Mechanism behind generating Higgs vev missing (⇒ Higgs physics)
- Dynamics of EW interactions: \(\Rightarrow \) Multiboson Interactions (MBI)
- Anomalous Triple Gauge Couplings: dibosons
- Anomalous Quartic Gauge Couplings: tribosons, VV scattering
- Existing studies assume: \(\mathcal{P}(e^-) = 80 - 90\%, \mathcal{P}(e^+) = 30 - 60\% \)
 - Longitudinal polarization of beams: \((V - A) \) couplings of \(W/Z \)
 - \(e_L \) and \(e_R \) different multiplets ⇒ access completely different couplings
- Higgs suppression makes VBS a prime candidate for BSM searches

- F. Gianotti, CLIC-Workshop 2014, CERN

**Exploration of E-frontier ⇒ look for heavy objects, including high-mass \(V_LV_L \) scattering:
- requires as much integrated luminosity as possible (cross-section goes like \(1/s \))**

Extensions of the SM

- Lagrangian of the EW SM (no fermions/QCD here):

\[
\mathcal{L}_{EW} = -\frac{1}{2} \text{tr} [W_{\mu\nu} W^{\mu\nu}] - \frac{1}{4} B_{\mu\nu} B^{\mu\nu} + (D_\mu \Phi)^\dagger (D^\mu \Phi) + \mu^2 \Phi^\dagger \Phi - \lambda (\Phi^\dagger \Phi)^2
\]

with building blocks:

\[
D_\mu = \partial_\mu + \frac{i}{2} g \tau^I W_\mu^I + \frac{i}{2} g' B_\mu
\]

\[
W_{\mu\nu} = \frac{i}{2} g \tau^I (\partial_\mu W^I_\nu - \partial_\nu W^I_\mu + g \epsilon_{IJK} W^J_\mu W^K_\nu)
\]

\[
B_{\mu\nu} = \frac{i}{2} g' (\partial_\mu B_\nu - \partial_\nu B_\mu)
\]

- Any EFT has higher-dimensional operators:

Weinberg, 1979

\[
\mathcal{L} = \mathcal{L}_{SM} + \sum_i \left[\frac{a_i}{\Lambda} O_i^{(5)} + \frac{c_i}{\Lambda^2} O_i^{(6)} + \frac{e_i}{\Lambda^4} O_i^{(8)} \ldots \right]
\]

- without more fundamental theory \(\Rightarrow\) no clue on the scale (neither on the coefficients)
Classification of Operators (I): Dim 6

(always ν^2 subtracted)

- Dimension-6 operators (CP-conserving)
 \[
 O_{WWW} = \text{Tr}[W_{\mu\nu}W^{\nu\rho}W^{\mu}_\rho]
 \]
 \[
 O_W = (D_\mu \Phi)^\dagger W^{\mu\nu} (D_\nu \Phi)
 \]
 \[
 O_B = (D_\mu \Phi)^\dagger B^{\mu\nu} (D_\nu \Phi)
 \]
 \[
 O_{\partial \Phi} = \partial_\mu (\Phi^\dagger \Phi) \partial^\mu (\Phi^\dagger \Phi)
 \]
 \[
 O_{\Phi W} = (\Phi^\dagger \Phi) \text{Tr}[W^{\mu\nu}W_{\mu\nu}]
 \]
 \[
 O_{\Phi B} = (\Phi^\dagger \Phi) B^{\mu\nu} B_{\mu\nu}
 \]

- Dimension-6 operators (CP-violating)
 \[
 O_{\tilde{W}WW} = \Phi^\dagger \tilde{W}_{\mu\nu} W^{\mu\nu} \Phi
 \]
 \[
 O_{\tilde{B}BB} = \Phi^\dagger \tilde{B}_{\mu\nu} B^{\mu\nu} \Phi
 \]
 \[
 O_{\tilde{W}WW} = \text{Tr}[\tilde{W}_{\mu\nu}W^{\nu\rho}W^{\mu}_\rho]
 \]
 \[
 O_{\tilde{W}} = (D_\mu \Phi)^\dagger \tilde{W}^{\mu\nu} (D_\nu \Phi)
 \]

<table>
<thead>
<tr>
<th></th>
<th>ZWW</th>
<th>AWW</th>
<th>HWW</th>
<th>HZZ</th>
<th>HZA</th>
<th>HAA</th>
<th>WWWWW</th>
<th>ZZWW</th>
<th>ZAWW</th>
<th>AAWW</th>
</tr>
</thead>
<tbody>
<tr>
<td>O_{WWW}</td>
<td>✓</td>
</tr>
<tr>
<td>O_W</td>
<td>✓</td>
</tr>
<tr>
<td>O_B</td>
<td>✓</td>
</tr>
<tr>
<td>$O_{\Phi d}$</td>
<td>✓</td>
</tr>
<tr>
<td>$O_{\Phi W}$</td>
<td>✓</td>
</tr>
<tr>
<td>$O_{\Phi B}$</td>
<td>✓</td>
</tr>
<tr>
<td>$O_{\tilde{W}WW}$</td>
<td>✓</td>
</tr>
<tr>
<td>$O_{\tilde{W}}$</td>
<td>✓</td>
</tr>
<tr>
<td>$O_{\tilde{W}WW}$</td>
<td>✓</td>
</tr>
<tr>
<td>$O_{\tilde{B}BB}$</td>
<td>✓</td>
</tr>
</tbody>
</table>
Classification of Operators (II): Dim 8 (always v^2 subtracted)

- Dimension-8 operators (only $D_\mu \Phi$)

$$\mathcal{O}_{S,0} = \left[(D_\mu \Phi)^\dagger D_\nu \Phi\right] \times \left[(D_\mu \Phi)^\dagger D_\nu \Phi\right],$$
$$\mathcal{O}_{S,1} = \left[(D_\mu \Phi)^\dagger D_\mu \Phi\right] \times \left[(D_\nu \Phi)^\dagger D_\nu \Phi\right],$$

- Dimension-8 operators (only field strength/mixed)

$$\mathcal{O}_{T,0} = \text{Tr} \left[W_{\mu\nu} W^{\mu\nu}\right] \cdot \text{Tr} \left[W_{\alpha\beta} W^{\alpha\beta}\right],$$
$$\mathcal{O}_{T,1} = \text{Tr} \left[W_{\alpha\nu} W^{\mu\beta}\right] \cdot \text{Tr} \left[W_{\mu\beta} W^{\alpha\nu}\right],$$
$$\mathcal{O}_{T,2} = \text{Tr} \left[W_{\alpha\mu} W^{\mu\beta}\right] \cdot \text{Tr} \left[W_{\beta\nu} W^{\nu\alpha}\right],$$
$$\mathcal{O}_{T,5} = \text{Tr} \left[W_{\mu\nu} W^{\mu\nu}\right] \cdot B_{\alpha\beta} B^{\alpha\beta},$$
$$\mathcal{O}_{T,6} = \text{Tr} \left[W_{\alpha\nu} W^{\mu\beta}\right] \cdot B_{\mu\beta} B^{\alpha\nu},$$
$$\mathcal{O}_{T,7} = \text{Tr} \left[W_{\alpha\mu} W^{\mu\beta}\right] \cdot B_{\beta\nu} B^{\nu\alpha},$$
$$\mathcal{O}_{T,8} = B_{\mu\nu} B^{\mu\nu} B_{\alpha\beta} B^{\alpha\beta},$$
$$\mathcal{O}_{T,9} = B_{\alpha\mu} B^{\mu\beta} B_{\beta\nu} B^{\nu\alpha}.$$
Classification of Operators (III)

<table>
<thead>
<tr>
<th>$O_{S,0/1}$</th>
<th>WWWW</th>
<th>WWZZ</th>
<th>ZZZZ</th>
<th>WWAZ</th>
<th>WWAA</th>
<th>ZZZA</th>
<th>ZZAA</th>
<th>ZAAA</th>
<th>AAAA</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
</tr>
<tr>
<td>$O_{M,0/1/6/7}$</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$O_{M,2/3/4/5}$</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$O_{T,0/1/2}$</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$O_{T,5/6/7}$</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$O_{T,8/9}$</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

- Dim. 8 operators generate aQGCs, but not aTGCs
- generate neutral quartics
- Redundancy of the operators:
 - Equations of motion: $D_\mu W^{\mu\nu} = \Phi^\dagger (D^\nu \Phi) - (D^\nu \Phi)^\dagger \Phi + \ldots$
 - Gauge symmetry structure: $[D_\mu, D_\nu] \Phi \propto W_{\mu\nu} \Phi$
 - Integration by parts (up to total derivatives)
 - Leads to relations like:

$$O_B = O_W + \frac{1}{2} O_{WW} - \frac{1}{2} O_{BB}$$
$$O_{BW} = -2 O_W - O_{WW}$$
$$O_{\partial W} = -4 O_{WWW} + \text{gauge-fermion operators}$$
EFT coefficients vs. anomalous couplings

- Switch operator bases (vertex-dep.): Snowmass EW White Paper, 1310.6708

\[
\begin{align*}
\text{WWWW-Vertex:} & \quad \alpha_4 = \frac{f_{S,0}}{\Lambda^4} \frac{v^4}{8} \\
\alpha_4 + 2 \cdot \alpha_5 &= \frac{f_{S,1}}{\Lambda^4} \frac{v^4}{8} \\
\text{WWZZ-Vertex:} & \quad \alpha_4 = \frac{f_{S,0}}{\Lambda^4} \frac{v^4}{16} \\
& \quad \alpha_5 = \frac{f_{S,1}}{\Lambda^4} \frac{v^4}{16} \\
\text{ZZZZ-Vertex:} & \quad \alpha_4 + \alpha_5 = \left(\frac{f_{S,0}}{\Lambda^4} + \frac{f_{S,1}}{\Lambda^4} \right) \frac{v^4}{16}
\end{align*}
\]

- Full agreement among generators: VBF@NLO, WHIZARD, Madgraph
Vector Boson Scattering at e^+e^- machines

Signal

Irreducible bkgd.

(Partially) reducible bkgd.
Vector Boson Scattering

1 TeV, 1 ab$^{-1}$, full 6f final states, 80% e_{R}^-, 60% e_{L}^+ polarization, binned likelihood

Contributing channels: $WW \rightarrow WW$, $WW \rightarrow ZZ$, $WZ \rightarrow WZ$, $ZZ \rightarrow ZZ$

<table>
<thead>
<tr>
<th>Process</th>
<th>Subprocess</th>
<th>σ [fb]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e^+e^- \rightarrow \nu_e\bar{\nu}_e q\bar{q} q\bar{q}$</td>
<td>$WW \rightarrow WW$</td>
<td>23.19</td>
</tr>
<tr>
<td>$e^+e^- \rightarrow \nu_e\bar{\nu}_e q\bar{q} q\bar{q}$</td>
<td>$WW \rightarrow ZZ$</td>
<td>7.624</td>
</tr>
<tr>
<td>$e^+e^- \rightarrow \nu\bar{\nu} q\bar{q} q\bar{q}$</td>
<td>$V \rightarrow VVV$</td>
<td>9.344</td>
</tr>
<tr>
<td>$e^+e^- \rightarrow e^+e^- q\bar{q} q\bar{q}$</td>
<td>$ZZ \rightarrow ZZ$</td>
<td>132.3</td>
</tr>
<tr>
<td>$e^+e^- \rightarrow e^+e^- q\bar{q} q\bar{q}$</td>
<td>$ZZ \rightarrow W+\bar{W}$</td>
<td>414.</td>
</tr>
<tr>
<td>$e^+e^- \rightarrow b\bar{b}X$</td>
<td>$e^+e^- \rightarrow t\bar{t}$</td>
<td>331.768</td>
</tr>
<tr>
<td>$e^+e^- \rightarrow q\bar{q} q\bar{q}$</td>
<td>$e^+e^- \rightarrow W+W-$</td>
<td>3560.108</td>
</tr>
<tr>
<td>$e^+e^- \rightarrow q\bar{q} q\bar{q}$</td>
<td>$e^+e^- \rightarrow ZZ$</td>
<td>173.221</td>
</tr>
<tr>
<td>$e^+e^- \rightarrow e\nu q\bar{q}$</td>
<td>$e^+e^- \rightarrow e\nu W$</td>
<td>279.588</td>
</tr>
<tr>
<td>$e^+e^- \rightarrow e^+e^- q\bar{q}$</td>
<td>$e^+e^- \rightarrow e^+e^- Z$</td>
<td>134.935</td>
</tr>
<tr>
<td>$e^+e^- \rightarrow X$</td>
<td>$e^+e^- \rightarrow q\bar{q}$</td>
<td>1637.405</td>
</tr>
</tbody>
</table>

$SU(2)_c$ conserved case, all channels

<table>
<thead>
<tr>
<th>coupling</th>
<th>$\sigma -$</th>
<th>$\sigma +$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$16\pi^2\alpha_4$</td>
<td>-1.41</td>
<td>1.38</td>
</tr>
<tr>
<td>$16\pi^2\alpha_5$</td>
<td>-1.16</td>
<td>1.09</td>
</tr>
</tbody>
</table>

$SU(2)_c$ broken case, all channels

<table>
<thead>
<tr>
<th>coupling</th>
<th>$\sigma -$</th>
<th>$\sigma +$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$16\pi^2\alpha_4$</td>
<td>-2.72</td>
<td>2.37</td>
</tr>
<tr>
<td>$16\pi^2\alpha_5$</td>
<td>-2.46</td>
<td>2.35</td>
</tr>
<tr>
<td>$16\pi^2\alpha_6$</td>
<td>-3.93</td>
<td>5.53</td>
</tr>
<tr>
<td>$16\pi^2\alpha_7$</td>
<td>-3.22</td>
<td>3.31</td>
</tr>
<tr>
<td>$16\pi^2\alpha_{10}$</td>
<td>-5.55</td>
<td>4.55</td>
</tr>
</tbody>
</table>
Vector Boson Scattering: Observables

Study of WW scattering @ 1.6 TeV

Boos/Kilian/He/Mühlleitner/Pukhov/Zerwas, hep-ph/9708310
Vector Boson Scattering: Observables

Study of WW scattering @ 1.6 TeV

Boos/Kilian/He/Mühlleitner/Pukhov/Zerwas, hep-ph/9708310
Vector Boson Scattering: Observables

Study of WW scattering @ 1.6 TeV
Boos/Kilian/He/Mühlleitner/Pukhov/Zerwas, hep-ph/9708310
Simplified Models for VBS (and VVV): Resonances

- Resonances in all accessible spin/isospin channels
- Couplings to the Higgs and gauge sectors are unrelated and arbitrary
- Still include anomalous couplings
- Unitarization (later)

New physics in electroweak sector:

- Narrow resonances ⇒ particles (weakly interacting model)
- Wide resonances ⇒ continuum (strongly interacting model)

$SU(2)_c$ custodial symmetry (weak isospin, broken by hypercharge $g'
eq 0$ and fermion masses)

<table>
<thead>
<tr>
<th></th>
<th>$J = 0$</th>
<th>$J = 1$</th>
<th>$J = 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I = 0$</td>
<td>σ^0 (Higgs ?)</td>
<td>ω^0 (γ'/Z' ?)</td>
<td>f^0 (Graviton ?)</td>
</tr>
<tr>
<td>$I = 1$</td>
<td>π^\pm, π^0 (2HDM ?)</td>
<td>ρ^\pm, ρ^0 (W'/Z' ?)</td>
<td>a^\pm, a^0</td>
</tr>
<tr>
<td>$I = 2$</td>
<td>$\phi^{\pm\pm}, \phi^\pm, \phi^0$ (Higgs triplet ?)</td>
<td>—</td>
<td>$t^{\pm\pm}, t^\pm, t^0$</td>
</tr>
</tbody>
</table>

- $I = 0$: resonant in W^+W^- and ZZ scattering
- $I = 1$: resonant in W^+Z and W^-Z scattering
- $I = 2$: resonant in W^+W^+ and W^-W^- scattering
Example: a Scalar Resonance [Not counting ϕ with $M = 126$ GeV.]

- Mass M_{σ}.
- Coupling to the Higgs sector (Higgs and longitudinal W/Z):
 \[
g_{L}^{\sigma} (D_{\mu} \Phi)^{\dagger} (D^{\mu} \Phi) \sigma
 \]
- Coupling to the gauge sector (transversal W/Z):
 \[
g_{T}^{\sigma} \text{tr} [W^{\mu\nu} W_{\mu\nu}] \sigma
 \]

Possible Origin: 2HDM isosinglet (renormalizable)

\[
g_{L}^{\sigma} = O \left(\frac{1}{M_{\sigma}} \right) \quad \text{[tree]}, \quad g_{T}^{\sigma} = O \left(\frac{1}{4\pi M_{\sigma}} \right) \quad \text{[loop]}
\]

Possible Origin: new strong interactions

\[
g_{L}^{\sigma} = O \left(\frac{1}{M_{\sigma}} \right) \quad \text{[tree]}, \quad g_{T}^{\sigma} = O \left(\frac{1}{M_{\sigma}} \right) \quad \text{[tree]}
\]
Interpretation as limits on resonances

Consider the width to mass ratio, \(f_\sigma = \Gamma_\sigma / M_\sigma \)

SU(2) conserving scalar singlet

\[
M_\sigma = v \left(\frac{4\pi f_\sigma}{3\alpha_5} \right)^{\frac{1}{4}}
\]

SU(2) broken vector triplet

needs input from TGC covariance matrix

\[
M_{\rho\pm} = v \left(\frac{12\pi\alpha_4 f_{\rho\pm}}{\alpha_4^2 + 2(\alpha_2^\lambda)^2 + s_w^2(\alpha_4^\lambda)^2 / (2c_w^2)} \right)^{\frac{1}{4}}
\]

\(f = 1.0 \) (full), 0.8 (dash), 0.6 (dot-dash), 0.3 (dot)

upper/lower limit from \(\lambda_Z \), grey area: magnetic moments

Final result:

<table>
<thead>
<tr>
<th>Spin</th>
<th>(I = 0)</th>
<th>(I = 1)</th>
<th>(I = 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.55</td>
<td>–</td>
<td>1.95</td>
</tr>
<tr>
<td>1</td>
<td>–</td>
<td>2.49</td>
<td>–</td>
</tr>
<tr>
<td>2</td>
<td>3.29</td>
<td>–</td>
<td>4.30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spin</th>
<th>(I = 0)</th>
<th>(I = 1)</th>
<th>(I = 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.39</td>
<td>1.55</td>
<td>1.95</td>
</tr>
<tr>
<td>1</td>
<td>1.74</td>
<td>2.67</td>
<td>–</td>
</tr>
<tr>
<td>2</td>
<td>3.00</td>
<td>3.01</td>
<td>5.84</td>
</tr>
</tbody>
</table>
Unitarizing S matrices

- Cayley transform of S matrix: \[S = \frac{1+iK/2}{1-iK/2} \] Heitler, 1941; Schwinger, 1948

- "K" matrix: translates to transition operator: \[T = \frac{K}{1-iK/2} \]

- Works beyond perturbation theory, but allows perturbative expansion

- Diagonalize S matrix (partial waves):
 \[\mathcal{M}(s, t, u) = 32\pi \sum_{\ell} (2\ell + 1) A_\ell(s) P_\ell(\cos \theta) \] ("Power spectrum")

- Complex eigenvalues: \[t = 2a \quad k = 2a_K \Rightarrow a_K = \frac{a}{1+ia} \]

- Corresponds to stereographic projection:

- Coulomb singularities Bloch/Nordsieck, 1937; Yennie/Frautschi/Suura, 1961
Unitarization Primer

Kilian/JRR/Ohl/Sekulla, 1408.6207

- Unitarization prescription not unique

- Padé (reordering pert. series) introduces artificial poles

- Form factors parameterize close-by new physics (additional parameters)

\[\frac{1}{\left(1 + \frac{s}{\Lambda_{FF}^2}\right)^n} \]

unphysical form factor scale \(\Lambda_{FF} \) and multipole order \(n \)

- minimal version \((K\text{ or } T\text{ matrix}) \Rightarrow\) just saturation no new parameters, does not rely on pert. expansion, stable against small perturbations

- Additional known features (resonances) should be implemented before unitarization
Unitarity Bound for α_4 AQGC

 Bounds for α_4

$\ell = 0 : \sqrt{s} \leq \left(\frac{6\pi}{\alpha_4} \right)^{\frac{1}{4}} v \approx \frac{0.5 \text{ TeV}}{\sqrt[4]{\alpha_4}}$

$\ell = 2 : \sqrt{s} \leq \left(\frac{60\pi}{\alpha_4} \right)^{\frac{1}{4}} v \approx \frac{0.9 \text{ TeV}}{\sqrt[4]{\alpha_4}}$

- **Bound depends on coupling α_4**

- **Use strongest bound**
Diboson invariant masses

General cuts: $M_{jj} > 500$ GeV; $\Delta \eta_{jj} > 2.4$; $p_T^j > 20$ GeV; $|\eta_j| < 4.5$
Diboson invariant masses

General cuts: $M_{jj} > 500 \text{ GeV}; \Delta \eta_{jj} > 2.4; p_T^j > 20 \text{ GeV}; |\eta_j| < 4.5$
p_T and angular distributions

$pp \rightarrow e^+ \mu^+ \nu_e \nu_\mu jj$, $\sqrt{s} = 14$ TeV, $\mathcal{L} = 1000$ fb$^{-1}$

Simulations with WHIZARD →

Not possible to use automated tool due to s-channel prescription

$F_{HD} = 30$ TeV$^{-2}$

General cuts: $M_{jj} > 500$ GeV; $\Delta \eta_{jj} > 2.4$; $p_T^j > 20$ GeV; $|\eta_j| < 4.5$, $p_T^\ell > 20$ GeV
p_T and angular distributions

$pp \rightarrow e^+ \mu^+ \nu_e \nu_\mu jj$, $\sqrt{s} = 14$ TeV, $\mathcal{L} = 1000$ fb$^{-1}$

Simulations with WHIZARD

Not possible to use automated tool due to s-channel prescription

$F_{S,0} = 480$ TeV$^{-4}$

General cuts: $M_{jj} > 500$ GeV; $\Delta \eta_{jj} > 2.4$; $p_T^j > 20$ GeV; $|\eta_j| < 4.5$, $p_T^{\ell} > 20$ GeV
p_T and angular distributions

$pp \rightarrow e^+\mu^+\nu_e\nu_\mu jj$, $\sqrt{s} = 14$ TeV, $\mathcal{L} = 1000$ fb$^{-1}$

Simulations with WHIZARD

Not possible to use automated tool due to s-channel prescription

$F_{S,1} = 480$ TeV$^{-4}$

General cuts: $M_{jj} > 500$ GeV; $\Delta\eta_{jj} > 2.4$; $p_T^j > 20$ GeV; $|\eta_j| < 4.5$, $p_T^\ell > 20$ GeV
And Triple Vector Boson Production?

Yes, the same Feynman graphs (in the SM), but... Tribosons:

- one external $W/Z/\gamma$ is always far off-shell
- Unitarization formalism not available
- different (anom.) couplings contribute (particularly for resonances)

\[
\sigma(e^+e^- \to VVV) \gtrsim \frac{1}{s}
\]
Limits usefulness to subprocess energies in the lower range where cross section of fusion process still small

\[
\sigma_{VBS}(e^+e^- \to \nu\bar{\nu}W^+W^-) \gtrsim \log(s)
\]

$e^+e^- \rightarrow ZZZ$

$e^+e^- \rightarrow WWZ$

$e^+e^- \rightarrow WW\gamma$

\Rightarrow Important physics independent w.r.t. VBS. Don’t just combine results!
Summary/Conclusions: e^+e^- VBS

- Access to (deviations from) EW sector via:
 - via diboson/triboson production and vector boson scattering

- Task: Unify LHC and LEP/ILC/CLIC descriptions (model-independent limit setting $(\alpha_4, \frac{f_{s,0}}{\Lambda^4_{NP}})$)

- Simplified Models: minimally unitarized operators

- Unitarization scheme: no additional structure to the theory (model dependence minimized)

- Sensitivity rises with number of new intermediate states:
 - LHC14 sensitivity limited in pure EW sector: $\sim 1 - X$ TeV (???)
 - ILC1000: $1.5 - 6$ TeV
 - (Tensor) Resonances very interesting Kilian/JRR/Sekulla, in preparation

- All simulations need to be updated (include light Higgs)

- Multi-TeV e^+e^- [+ pol. ?] probably best machine for VBS

- Crucial experimental tasks: hadronic W/Z separation at high energies, separation of longitudinal/transversal final W/Z
Advertisement: MBI 2015 @ DESY

2.-4. Sept. 2015, DESY, Hamburg
Switching gears: WHIZARD
WHIZARD in a Nutshell

WHIZARD universal event generator for processes at colliders: \(e^+e^- \), \(pp \), \(p\bar{p} \), \(\gamma\gamma \), \(ep \) etc.

1. O’Mega: Optimized automatic matrix elements for arbitrary elementary processes, supports SM and many BSM extensions
2. Phase-space parameterization module (very efficient PS)
3. VAMP: Generic adaptive Monte Carlo integration and (unweighted) event generation
4. CIRCE1/2: Lepton/[photon] collider beam spectra
5. Intrinsic support or external interfaces for: Feynman rules, beams cascade decays, shower, hadronization, analysis, event file formats, etc.
6. Free-format steering language SINDARIN

WHIZARD 2.2.3 release: Nov. 30, 2014
WHIZARD in a Nutshell

WHIZARD universal event generator for processes at colliders: e^+e^-, pp, $p\bar{p}$, $\gamma\gamma$, ep etc.

1. **O’Mega**: Optimized automatic matrix elements for arbitrary elementary processes, supports SM and many BSM extensions

2. Phase-space parameterization module (very efficient PS)

3. **VAMP**: Generic adaptive Monte Carlo integration and (unweighted) event generation

4. **CIRCE1/2**: Lepton/[photon] collider beam spectra

5. Intrinsic support or external interfaces for: Feynman rules, beams cascade decays, shower, hadronization, analysis, event file formats, etc.

6. Free-format steering language **SINDARIN**

WHIZARD 2.2.4

release: Febr. 06, 2015

The **WHIZARD team**: F. Bach, B. Chokoufè, W. Kilian, T. Ohl, JRR, M. Sekulla, F. Staub, C. Weiss, DESY summer students

Web address: http://projects.hepforge.org/whizard

Standard Reference: Kilian/Ohl/JRR, EPJ C71 (2011) 1742, arXiv:0708.4233
WHIZARD 2: Status 2010-15 – Technical Features

- Fortran2003/2008 (gfortran 4.7.4 or newer) and OCaml (for MEs)

- WHIZARD core: separate interface from implementation
 - Complete object orientation
 - Replaceable modules with well-defined interface: matrix-elements, beam structure, phase space, integration, decays, shower, ...
 - Much easier to outsource small(er) projects
 - Much better self checks, regression testing and maintainability

- OpenMP parallelization

- Operation modes: dynamic linking, static linking, library mode, shell mode

- Standard conformance: uses autotools: automake/autoconf/libtool
 Installation: ./configure, make, make check, make install

- Large self test suite: unit tests, feature tests, run tests

- Version control (svn) at HepForge: use of ticket system and bug tracker

- Continuous integration system (jenkins) linked with svn repository
WHIZARD Manual

with distribution and online: http://whizard.hepforge.org/manual
Correlated lepton beam spectra with Circe2

- Guinea-Pig++ event files too short for high lumi simulations
- Fixed width histogramming struggles with steep distributions
- Circe1 too restrictive, assumes
 - factorized beam spectra: \(D_{p_1 p_2}(x_1, x_2) = D_{p_1}(x_1) D_{p_2}(x_2) \)
 - power laws in continuum: \(D(x) = d \cdot \delta(1 - x) + c \cdot x^\alpha(1 - x)^\beta \)
- Circe2 algorithm:
 - Adapt 2D factorized variable width histogram (à la VEGAS) to steep part of distribution
 - smooth the correlated fluctuations with a moderate gaussian filter to suppress artifacts from limited Guinea-Pig++ statistics
 - smooth separately continuum/boundary bins (avoid artificial beam energy spread)

Smoothing \(x_{e^+} = 1 \) boundary bin with Gaussian filters of width 3 and 10 bins, resp.
5 bins reasonable compromise for histograms with 100 bins.
[bins are not equidistant, shrink with power law towards the \(x_{e^-} = 1 \) boundary on RHS!]
Workflow Guinea-Pig++/Circe2/WHIZARD

1. Run Guinea-Pig++ with

 do_lumi=7; num_lumi=100000000; num_lumi_eg=100000000; num_lumi_gg=100000000;

 to produce lumi.[eg][eg].out with \((E_1, E_2)\) pairs.

 [Large event numbers, as Guinea-Pig++ will produce only a small fraction!]

2. Run circe2_tool.opt with steering file

 to produce correlated beam description

3. Run WHIZARD with SINDARIN input:

 beams = e1, E1 => circe2
 $circe2_file = "ilc500.circe"
 $circe2_design = "ILC"
 ?circe_polarized = false

 • Soon also files for polarized beams within distribution
Top quark threshold in e^+e^-

- e^+e^- top threshold scan offers best option for m_t
- now: analytic LL ttV form factor implemented
- default parameters: $M^{1S} = 172$ GeV, $\Gamma_t = 1.5$ GeV, $\alpha_s(M^{1S}) = 0.1077$
- analytic LL unstable far off-shell: top mass cut $\Delta M_t \leq 30$ GeV
Top quark threshold in e^+e^-

▶ e^+e^- top threshold scan offers best option for m_t

▶ now: analytic LL ttV form factor implemented

▶ default parameters: $M^{1S} = 172$ GeV, $\Gamma_t = 1.5$ GeV, $\alpha_s(M^{1S}) = 0.1077$

▶ analytic LL unstable far off-shell: top mass cut $\Delta M_t \leq 30$ GeV
Top quark threshold in e^+e^-

- Proper NLO/NLL matched implementation
- **TOPPIK code ships with WHIZARD**
- Own model: **SM_tt_threshold**
- Parameters: $w_{top}, m_{lS}, v_{soft}, \text{match}$

![Graph showing the top quark threshold in e^+e^-](image)

Matching scale

- $K_{\text{thresh}} \sim 0.7$
- $K_{\text{cont}} \sim 1.5$

Bach/Hoang/JRR/Stahlhofen/Teubner
courtesy to T. Teubner
Top quark threshold in e^+e^-

- Proper NLO/NLL matched implementation
 - **TOPPIK code ships with WHIZARD**
- Own model: `SM_tt_threshold`
- Parameters: $w_{top}, m_{1S}, v_{soft}, \text{match}$

“true” NLL threshold
Possible on short time scale: **v2.2.2**

“true” NLO continuum
Needs virtual NLO matrix elements: ~ 2015

“proper” NLL/NLO matching
At intermediate energy: ~ 2015

together with M Stahlhofen
Status of NLO automation in WHIZARD

- **BLHA(2) interface** MC / OLP programs

 Speckner/JRR/Weiss, 2014 ✓

- **First implementation:** GoSAM (also FeynArts/FormCalc, OpenLoops)

- **Work flow / Plans**

 - Automatic generation of subtraction terms Speckner, 2012; Kilian/JRR/Weiss, 2014

 - proof-of-concept code in WHIZARD 2.2
Status of NLO automation in WHIZARD

- BLHA(2) interface MC / OLP programs
 Speckner/JRR/Weiss, 2014 ✓

- First implementation: GoSAM (also FeynArts/FormCalc,OpenLoops)

- Work flow / Plans
 - Automatic generation of subtraction terms
 Speckner, 2012; Kilian/JRR/Weiss, 2014
 - proof-of-concept code in WHIZARD 2.2
 - first FKS then CS dipole subtraction will be available
 - Special (first) focus on e^+e^- physics: top, Higgs, EW processes, BSM
 - First examples: $e^+e^- \rightarrow q\bar{q}$ and $e^+e^- \rightarrow \ell^+\ell^-q\bar{q}, \ell\nu q\bar{q}, e^+e^- \rightarrow t\bar{t}$
Status of NLO automation in WHIZARD

- BLHA(2) interface MC / OLP programs

 ▶ First implementation: GoSAM (also FeynArts/FormCalc, OpenLoops)

- Work flow / Plans
 - Automatic generation of subtraction terms
 Speckner, 2012; Kilian/JRR/Weiss, 2014
 - proof-of-concept code in WHIZARD 2.2
 - first FKS then CS dipole subtraction will be available
 - Special (first) focus on e^+e^- physics: top, Higgs, EW processes, BSM
 - First examples: $e^+e^- \rightarrow q\bar{q}$ and $e^+e^- \rightarrow \ell^-\ell^+ q\bar{q}, \ell\nu q\bar{q}, e^+e^- \rightarrow t\bar{t}$
 - Plan: PowHeg box formalism for NLO processes (w/ Matching)
 - Release: WHIZARD 3.0
WHIZARD Outlook: upcoming releases 2.3 – 2.4 – 3.0

► New features in production version 2.2

- LHAPDF 6 support, FastJet interface ✓
- ILC TDR beam spectra, CLIC (correlated) spectra (CIRCE1/2) ✓
- Direct Guinea-Pig interface ✓
- LCIO support test phase ✓
- Complete Reweighting of Event Samples (incl. LHEF 2013) ✓
- Process containers: inclusive production samples (e.g. SUSY) ✓
- Automatic generation of decays, depending on the model ✓
- Simplified models for electroweak vector bosons (w/ light Higgs) ✓
- O’Mega Virtual Machine: faster + (much) smaller code Chokoufé/Ohl/JRR ✓

Features in preparation: 2.3 – 2.4 – 3.0

- BSM: general Lorentz structures in matrix-element generator (O’Mega)
- Performance: parallelization, flavor sums, MC over helicities/colors, PS, etc.
- (N)LL/(N)LO matched e^+e^- top threshold Bach/Hoang/JRR/Stahlhofen/Teubner
- New syntax/features decays and chains (steering unstable particles):
 $\text{process } higgsstr = e_1, E_1 \Rightarrow (Z \Rightarrow e_2, E_2), (H \Rightarrow b, \bar{b})$
- Improved matching/merging for jets/photons Chokoufé/JRR/Kilian/Weiss, ca. 2015
- Specification of QCD and electroweak order
- Automatic QCD NLO corrections (test phase)
- Matched $e^+e^- \rightarrow X$ at LO/NLO, POWHEG box Chokoufé/JRR/Weiss, 2015
WHIZARD Outlook: upcoming releases 2.3 – 2.4 – 3.0

- **New features in production version 2.2**
 - LHAPDF 6 support, FastJet interface ✓
 - ILC TDR beam spectra, CLIC (correlated) spectra (CIRCE1/2) ✓
 - Direct Guinea-Pig interface ✓
 - LCIO support test phase ✓
 - Complete Reweighting of Event Samples (incl. LHEF 2013) ✓
 - Process containers: inclusive production samples (e.g. SUSY) ✓
 - Automatic generation of decays, depending on the model ✓
 - Simplified models for electroweak vector bosons (w/ light Higgs) ✓
 - O’Mega Virtual Machine: faster + (much) smaller code Chokoufé/Ohl/JRR ✓

- **Features in preparation: 2.3 – 2.4 – 3.0**
 - BSM: general Lorentz structures in matrix-element generator (O’Mega)
 - Performance: parallelization, flavor sums, MC over helicities/colors, PS, etc.
 - (N)LL/(N)LO matched e^+e^- top threshold Bach/Hoang/JRR/Stahlhofen/Teubner
 - New syntax/features decays and chains (steering unstable particles):
    ```
    process higgsstr = e1, E1 => (Z => e2, E2), (H => b, bbar)
    ```
 - Improved matching/merging for jets/photons Chokoufé/JRR/Kilian/Weiss, ca. 2015
 - Specification of QCD and electroweak order
 - Automatic QCD NLO corrections (test phase) Chokoufé/JRR/Weiss, 2015
 - Matched $e^+e^- \rightarrow X$ at LO/NLO, POWHEG box
2nd International WHIZARD Forum 16.-18.3.2015

- SM and BSM physics
- LHC, ILC, CLIC, FCC collider physics
- Matrix elements, models and effective theories
- QED/QCD/Weak Radiation and Merging
- Higher Orders: Automation and Interfacing
- User interfaces, computing and performance & Event formats
BACKUP SLIDES:
Effective EW Dim. 6 Operators

Hagiwara/Hikasa/Peccei/Zeppenfeld, 1987; Hagiwara/Ishihara/Szalapski/Zeppenfeld, 1993

\[
O_{JJ}^{(I)} = \frac{1}{\Lambda^2} \text{tr} \left[J^{(I)} \cdot J^{(I)} \right]
\]

\[
O'_{h,1} = \frac{1}{\Lambda^2} \left((D\Phi)^\dagger \Phi \right) \cdot \left(h^\dagger (D\Phi) \right) - \frac{v^2}{2} |D\Phi|^2
\]

\[
O'_{hh} = \frac{1}{\Lambda^2} \left(\Phi^\dagger \Phi - \frac{v^2}{2} \right) (D\Phi)^\dagger \cdot (D\Phi)
\]

\[
O'_{h,3} = \frac{1}{\Lambda^2} \frac{1}{3} \left(\Phi^\dagger \Phi - \frac{v^2}{2} \right)^3
\]
\[O_{\Phi W} = -\frac{1}{\Lambda^2} \frac{1}{2} (\Phi^\dagger \Phi - v^2/2) \text{tr} [W_{\mu\nu} W^{\mu\nu}] \]

\[O_B = \frac{1}{\Lambda^2} \frac{i}{2} (D_\mu \Phi)^\dagger B^{\mu\nu} (D_\nu \Phi) \]

\[O_{\Phi B} = -\frac{1}{\Lambda^2} \frac{1}{4} (\Phi^\dagger \Phi - v^2/2) B_{\mu\nu} B^{\mu\nu} \]

\[O_{Vq} = \frac{1}{\Lambda^2} \overline{q} h (\slash \! \! \! p h) q \]
Integrating out resonances

- Simplest example: scalar singlet σ:

$$\mathcal{L}_\sigma = -\frac{1}{2} [\sigma(M_\sigma^2 + \partial^2)\sigma - g_\sigma v\sigma \text{tr} [V_\mu V^\mu] - h_\sigma \text{tr} [TV_\mu] \text{tr}[TV^\mu]]$$

- Effective Lagrangian $\mathcal{L}_{\sigma}^{\text{eff}} = \frac{v^2}{8M_\sigma^2} \left[g_\sigma \text{tr} [V_\mu V^\mu] + h_\sigma \text{tr} [TV_\mu] \text{tr}[TV^\mu] \right]^2$

- leads to anomalous quartic couplings (aQGCs)

$$\alpha_5 = g_\sigma^2 \left(\frac{v^2}{8M_\sigma^2} \right) \quad \alpha_7 = 2g_\sigma h_\sigma \left(\frac{v^2}{8M_\sigma^2} \right) \quad \alpha_{10} = 2h_\sigma^2 \left(\frac{v^2}{8M_\sigma^2} \right)$$
Unitary Description of EW interactions

- Five possible cases:
 - Amplitude perturbative, close to zero, small imag. part (SM)
 - Amplitude rises, gets imag. part, strongly interacting regime (presence of at least one dim. 8 operator)
 - Amplitude approaches maximum absolute value asymptotically
 - Turn over: new resonance
 - New inelastic channels open: eff. form factor, extra channels observable in multi-vector boson processes
Unitary Description of EW interactions

- Five possible cases:
 - Amplitude perturbative, close to zero, small imag. part (SM)
 - Amplitude rises, gets imag. part, strongly interacting regime (presence of at least one dim. 8 operator)
 - Amplitude approaches maximum absolute value asymptotically
 - Turn over: new resonance
 - New inelastic channels open: eff. form factor, extra channels observable in multi-vector boson processes

- Interpretation of EFT operator coefficients changes: formally still low-energy coefficients of Taylor expansion ⇒ threshold parameters
- Complete description necessary (only) beyond threshold
Unitarity of Amplitudes

UV-incomplete theories could violate unitarity

Cross section:

$$\sigma = \int d\Omega \frac{d\sigma}{d\Omega} = \frac{1}{64\pi^2 s} |\mathcal{M}|^2$$

Optical Theorem (Unitarity of the S(cattering) Matrix):

$$\sigma_{\text{tot}} = \text{Im} [\mathcal{M}_{ii}(t = 0)] / s \quad t = -s(1 - \cos \theta)/2$$

Partial wave amplitudes:

$$\mathcal{M}(s, t, u) = 32\pi \sum_\ell (2\ell + 1) A_\ell(s) P_\ell(\cos \theta)$$

Assuming only elastic scattering:

$$\sigma_{\text{tot}} = \sum_\ell \frac{32\pi (2\ell + 1)}{s} |A_\ell|^2 \overset{!}{=} \sum_\ell \frac{32\pi (2\ell + 1)}{s} \text{Im} [A_\ell] \quad \Rightarrow \quad |A_\ell|^2 = \text{Im} [A_\ell]$$

Argand circle

$$|A(s) - i/2| = 1/2$$

Resonance:

$$A(s) = \frac{-M\Gamma_{el}}{s - M^2 + iM\Gamma_{tot}}$$

Counterclockwise circle, radius $$\frac{x_{el}}{2}$$

Pole at $$s = M^2 - iM\Gamma_{tot}$$
Unitarization Prescriptions

K-matrix unitarization prescription Gupta, 1950; Berger/Chanowitz, 1991

- Hermitian K-matrix interpreted as incompletely calculated approximation to true amplitude
- \Rightarrow Unitary S, T as a non-perturbative completion of this approximation
- Insert pert. expansion into expansion:

$$a = \frac{a_K}{1-ia_K} \Rightarrow a^{(n)} = \frac{a_0^{(1)} + \text{Re}a_0^{(2)} + \ldots}{1-i(a_0^{(1)} + \text{Re}a_0^{(2)} + \ldots)}$$

- Prescription does a partial resummation of perturbative series
- Example Dyson resummation:

$$a^{(0)}_K(s) = \frac{\lambda s - m^2}{s - m^2} \to a^{(0)}(s) = \frac{\lambda}{s - m^2 - i\lambda}$$

Drawbacks of (original) K-matrix:

- Needs to construct self-adjoint K-matrix as intermediate step
- Problem if S-matrix is not diagonal, or ...

 there are non-perturbative contributions

T-matrix unitarization

- a_0 complex approximation to eigenvalue of true T matrix
- use again pseudo-stereographic projection (intersection of Argand circle with line $a_0 i$)

- Results in:

$$a = \frac{\text{Re}a_0}{1-ia_0^*} \Rightarrow a^{(n)} = \frac{a_0^{(1)} + \text{Re}a_0^{(2)} + \ldots}{1-i(a_0^{(1)} + \text{Re}a_0^{(2)} - \text{Im}a_0^{(2)} + \ldots)}$$
Form Factor

\[
\text{Form Factor} = \frac{1}{\left(1 + \frac{s}{\Lambda_{FF}^2}\right)^n}
\]

- Use Form Factor to suppress breaking of unitarity
- Can be generally used for arbitrary anomalous operator
- Need "Fine Tuning"

\[n\] Chosen to prevent breaking of Unitarity

\[\Lambda_{FF}\] Calculate highest possible value that satisfy real Unitarity bound (0th partial wave)

Parameters
K-Matrix

K-Matrix Unitarisation

\[\mathcal{A}_K(s) = \frac{1}{\text{Re}(\frac{1}{\mathcal{A}(s)}) - i} \]

\[= \frac{\mathcal{A}(s)}{1 - i\mathcal{A}(s)} \quad \text{if} \quad \mathcal{A}(s) \in \mathbb{R} \]

- Projection of elastic amplitudes onto Argand-Circle
- At high energies the amplitude saturises
- Is usable for complex amplitudes
- Not dependent on additional parameters
Alternative Unitarization Prescriptions

- **Comparison of T-matrix and (original) K-matrix:**
 - T-matrix does not rely on perturbation theory
 - Special treatment for non-normal T matrices (eigenvalues having imaginary parts larger than i; Riesz-Dunford operator calculus)
 1. T matrix description leads to point on the Argand circle
 2. For real $a \Rightarrow$ (original) K-matrix case
 3. a_0 on Argand circle \Rightarrow left invariant

- **Thales circle construction:**

 ![Thales Circle Diagram](image)

 - Defined via $\left| a - \frac{aK}{2} \right| = \frac{aK}{2} \Rightarrow a = \frac{1}{\text{Re}(\frac{1}{a_0})} - i$
 - avoids non-normal matrices, but not single-valued around $a = 0$
Alternative Unitarization Prescriptions

- Comparison of T-matrix and (original) K-matrix:
 - T-matrix does not rely on perturbation theory
 - Special treatment for non-normal T matrices (eigenvalues having imaginary parts larger than i; Riesz-Dunford operator calculus)
 1. T matrix description leads to point on the Argand circle
 2. For real $a \Rightarrow$ (original) K-matrix case
 3. a_0 on Argand circle \Rightarrow left invariant

- Thales circle construction:

 - Defined via $|a - \frac{aK}{2}| = \frac{aK}{2} \Rightarrow a = \frac{1}{\text{Re} \left(\frac{1}{a_0} \right) - i}$
 - Avoids non-normal matrices, but not single-valued around $a = 0$
Alternative Unitarization Prescriptions

▶ **Comparison of** T-matrix and (original) K-matrix:

- T-matrix does not rely on perturbation theory
- Special treatment for non-normal T matrices (eigenvalues having imaginary parts larger than i; Riesz-Dunford operator calculus)
 1. T matrix description leads to point on the Argand circle
 2. For real $a \Rightarrow$ (original) K-matrix case
 3. a_0 on Argand circle \Rightarrow left invariant

▶ **Thales circle construction:**

- Defined via $|a - \frac{aK}{2}| = \frac{aK}{2} \Rightarrow a = \frac{1}{\text{Re}(\frac{1}{a_0}) - i}$
- avoids non-normal matrices, but not single-valued around $a = 0$
ILC Results: Triboson production

\[e^+ e^- \rightarrow W W Z / Z Z Z, \text{ dep. on } (\alpha_4 + \alpha_6), (\alpha_5 + \alpha_7), \alpha_4 + \alpha_5 + 2(\alpha_6 + \alpha_7 + \alpha_{10}) \]

Polarization populates longitudinal modes, suppresses SM bkgd.

Simulation with WHIZARD Kilian/Ohl/JRR

1 TeV, 1 ab\(^{-1}\), full 6-fermion final states, SIMDET fast simulation

Observables: \(M^2_{WW}, M^2_{WZ}, \angle(e^-, Z) \)

A) unpol., B) 80% \(e^-_R \), C) 80% \(e^-_R \), 60% \(e^+_L \)

32 % hadronic decays

Durham jet algorithm

Bkgd. \(t \bar{t} \rightarrow 6 \) jets

Veto against \(E^2_{\text{mis}} + p^2_{\perp,\text{mis}} \)

No angular correlations yet
ILC Results: Triboson production

\[e^+ e^- \rightarrow WWZ/ZZZ, \text{ dep. on } (\alpha_4 + \alpha_6), (\alpha_5 + \alpha_7), \alpha_4 + \alpha_5 + 2(\alpha_6 + \alpha_7 + \alpha_{10}) \]

Polarization populates longitudinal modes, suppresses SM bkgd.

Simulation with WHIZARD

Kilian/Ohl/JR

1 TeV, 1 ab\(^{-1}\), full 6-fermion final states, SIMDET fast simulation

Observables: \(M_{WW}^2, M_{WZ}^2, \langle e^-, Z \rangle \)

A) unpol., B) 80% \(e^R \), C) 80% \(e^R \), 60% \(e^L \)

<table>
<thead>
<tr>
<th>(16\pi^2 \times)</th>
<th>WWZ</th>
<th>ZZZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>no pol.</td>
<td>(e^-) pol.</td>
<td>both pol.</td>
</tr>
<tr>
<td>(\Delta \alpha_4^+)</td>
<td>9.79</td>
<td>4.21</td>
</tr>
<tr>
<td>(\Delta \alpha_4^-)</td>
<td>-4.40</td>
<td>-3.34</td>
</tr>
<tr>
<td>(\Delta \alpha_5^+)</td>
<td>3.05</td>
<td>2.69</td>
</tr>
<tr>
<td>(\Delta \alpha_5^-)</td>
<td>-7.10</td>
<td>-6.40</td>
</tr>
</tbody>
</table>

32 % hadronic decays

Durham jet algorithm

Bkgd. \(t\bar{t} \rightarrow 6 \) jets

Veto against \(E_{\text{mis}}^2 + p_{\perp,\text{mis}}^2 \)

No angular correlations yet
The WHIZARD Event Generator – Release 2.2

1.0 Project started around 1999: Studies for electroweak multi-particle processes at TESLA (W, Higgs, Z)

1.5 Event samples for LC studies at SLAC

1.9 Full SM w/ QCD, beam properties, SUSY/BSM, event formats

2.1 QCD shower+matching, FeynRules support, internal density-matrix formalism (cascade decays), SINDARIN as user interface, OpenMP, ...

2.2 Major refactoring, event reweighting, inclusive processes and selective decay chains (production version)

Plan Improve e^+e^- support; NLO + matching; improve user interface ⇒ adapt to specific needs of user groups
Beams and hard matrix elements

- **Hadron Colliders structured beams**
 - LHAPDF interface, most prominent PDFs directly included
 - QCD ISR and FSR (2 diff. own implementations, interface to PYTHIA)
 - Matching/merging matrix elements/showers
 - Underlying event/multiple interactions (proof of principle)

- **Hadronic events/hadronic decays + hadronic (QED) FSR (ext.)**

- **Lepton Colliders structured beams**
 - Beam structure (CIRCE1/2 module) more later
 - Arbitrarily polarized beams (density matrices)
 - QED ISR (Skrzypek/Jadach, Kuraev/Fadin, incl. p_T distributions [caveat!])
 - [Photon collider spectra (CIRCE2 module)]

- **Hard matrix elements:**
 - Particle spins: $0, \frac{1}{2}, 1, \frac{3}{2}, 2$
 - Lorentz structures: hugh set of hard-coded structures
 - Fully general Lorentz structures foreseen for 2.3.0
 - Color structures: $3, \bar{3}, 8, [6]$
 - Color flow formalism
 - General color structures $6, 10, \epsilon_{ijk} \phi^i \phi^j \phi^k$

Stelzer/Willenbrock, 2003; Kilian/Ohl/JRR/Speckner, 2011
WHIZARD – Overview over Physics Models

<table>
<thead>
<tr>
<th>MODEL TYPE</th>
<th>with CKM matrix</th>
<th>trivial CKM</th>
</tr>
</thead>
<tbody>
<tr>
<td>QED with (e, \mu, \tau, \gamma)</td>
<td>–</td>
<td>QED</td>
</tr>
<tr>
<td>QCD with (d, u, s, c, b, t, g)</td>
<td>–</td>
<td>QCD</td>
</tr>
<tr>
<td>Standard Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM with anomalous gauge coupl.</td>
<td>SM_CKM</td>
<td>SM</td>
</tr>
<tr>
<td>SM with anomalous top coupl.</td>
<td>SM_top_CKM</td>
<td>SMtop</td>
</tr>
<tr>
<td>SM for (e^+e^-) top threshold</td>
<td>–</td>
<td>SM_tt_threshold</td>
</tr>
<tr>
<td>SM with anom. Higgs coupl.</td>
<td>–</td>
<td>SM_rx / NoH</td>
</tr>
<tr>
<td>SM ext. for VV scattering</td>
<td>–</td>
<td>SSC / AltH</td>
</tr>
<tr>
<td>SM with (Z')</td>
<td>–</td>
<td>Zprime</td>
</tr>
<tr>
<td>2HDM</td>
<td>2HDM_CKM</td>
<td>2HDM</td>
</tr>
<tr>
<td>MSSM</td>
<td>MSSM_CKM</td>
<td>MSSM</td>
</tr>
<tr>
<td>MSSM with gravitinos</td>
<td>–</td>
<td>MSSM_Grav</td>
</tr>
<tr>
<td>NMSSM</td>
<td>NMSSM_CKM</td>
<td>NMSSM</td>
</tr>
<tr>
<td>extended SUSY models</td>
<td>–</td>
<td>PS/E/SSM</td>
</tr>
<tr>
<td>Littlest Higgs</td>
<td>–</td>
<td>Littlest</td>
</tr>
<tr>
<td>Littlest Higgs with ungauged (U(1))</td>
<td>–</td>
<td>Littlest_Eta</td>
</tr>
<tr>
<td>Littlest Higgs with (T) parity</td>
<td>–</td>
<td>Littlest_Tpar</td>
</tr>
<tr>
<td>Simplest Little Higgs (anomaly-free/univ.)</td>
<td>–</td>
<td>Simplest[_univ]</td>
</tr>
<tr>
<td>3-site model</td>
<td>–</td>
<td>Threeshl</td>
</tr>
<tr>
<td>UED</td>
<td>–</td>
<td>UED</td>
</tr>
<tr>
<td>SM with gravitino and photino</td>
<td>–</td>
<td>GravTest</td>
</tr>
<tr>
<td>Augmentable SM template</td>
<td>–</td>
<td>Template</td>
</tr>
</tbody>
</table>

new models easily: FeynRules interface [Christensen/Duhr/Fuks/JRR/Speckner, 1010.3251]

Interface to SARAH in the SUSY Toolbox [Staub, 0909.2863; Ohl/Porod/Speckner/Staub, 1109.5147]
WHIZARD – Overview over Physics Models

<table>
<thead>
<tr>
<th>MODEL TYPE</th>
<th>with CKM matrix</th>
<th>trivial CKM</th>
</tr>
</thead>
<tbody>
<tr>
<td>QED with e, μ, τ, γ</td>
<td>-</td>
<td>QED</td>
</tr>
<tr>
<td>QCD with d, u, s, c, b, t, g</td>
<td>-</td>
<td>QCD</td>
</tr>
<tr>
<td>Standard Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM with anomalous gauge coupl.</td>
<td>SM_CKM</td>
<td>SM</td>
</tr>
<tr>
<td>SM with anomalous top coupl.</td>
<td>SM_ac_CKM</td>
<td>SM_ac</td>
</tr>
<tr>
<td>SM for $e^+ e^- \rightarrow$ top threshold</td>
<td>-</td>
<td>SM_tt_threshold</td>
</tr>
<tr>
<td>SM with anom. Higgs coupl.</td>
<td>-</td>
<td>SM_rx / NoH</td>
</tr>
<tr>
<td>SM ext. for VV scattering</td>
<td>-</td>
<td>SSC / AltH</td>
</tr>
<tr>
<td>SM with Z'</td>
<td>-</td>
<td>Zprime</td>
</tr>
<tr>
<td>2HDM</td>
<td>2HDM_CKM</td>
<td>2HDM</td>
</tr>
<tr>
<td>MSSM</td>
<td>MSSM_CKM</td>
<td>MSSM</td>
</tr>
<tr>
<td>MSSM with gravitinos</td>
<td>-</td>
<td>MSSM_Grav</td>
</tr>
<tr>
<td>NMSSM</td>
<td>NMSSM_CKM</td>
<td>NMSSM</td>
</tr>
<tr>
<td>extended SUSY models</td>
<td>-</td>
<td>PS/E/SSM</td>
</tr>
<tr>
<td>Littlest Higgs</td>
<td>-</td>
<td>Littlest</td>
</tr>
<tr>
<td>Littlest Higgs with ungauged $U(1)$</td>
<td>-</td>
<td>Littlest_Eta</td>
</tr>
<tr>
<td>Littlest Higgs with T' parity</td>
<td>-</td>
<td>Littlest_Tpar</td>
</tr>
<tr>
<td>Simplest Little Higgs (anomaly-free/univ.)</td>
<td>-</td>
<td>Simplest[univ]</td>
</tr>
<tr>
<td>3-site model</td>
<td>-</td>
<td>Threeshl</td>
</tr>
<tr>
<td>UED</td>
<td>-</td>
<td>UED</td>
</tr>
<tr>
<td>SM with gravitino and photino</td>
<td>-</td>
<td>GravTest</td>
</tr>
<tr>
<td>Augmentable SM template</td>
<td>-</td>
<td>Template</td>
</tr>
</tbody>
</table>

new models easily: FeynRules interface
Christensen/Duhr/Fuks/JRR/Speckner, 1010.3251

Interface to SARAH in the SUSY Toolbox
Staub, 0909.2863; Ohl/Porod/Speckner/Staub, 1109.5147

JRR et al. 1408.6207
Talk LCWS14 EW session 7.10.
Analytic Parton Shower

- Analytic Parton Shower:
 - no shower veto: shower history is exactly known
 - allows reweighting and maybe more reliable error estimate

- new algorithm for initial state QCD radiation

- matching with hard matrix elements, no "power-shower"
Analytic Parton Shower

- **Analytic Parton Shower:**
 - no shower veto: shower history is exactly known
 - allows reweighting and maybe more reliable error estimate

- new algorithm for initial state QCD radiation

- matching with hard matrix elements, no "power-shower"

- Improvement/Tuning/Merging with higher-order matrix elements