J. R. Reuler

The Monte Carlo Event Generator WHIZARD

Jürgen R. Reuter

DESY Hamburg

LC Top Workshop, LPNHE Paris, Mar 6th, 2014

WHIZARD is a universal event generator for elementary processes at colliders:

- ▶ e^+e^- : LEP and TESLA/NLC \Rightarrow ILC, CLIC, TLEP ...
- ▶ pp: Tevatron \Rightarrow LHC, HL/E-LHC, VLHC, XXX . . .

It contains

- O'Mega: Automatic matrix elements for arbitrary elementary processes, supports SM and many BSM extensions
- 2. Phase-space parameterization module
- VAMP: Generic adaptive integration and (unweighted) event generation
- Intrinsic support or external interfaces for: Feynman rules, beam properties, cascade decays, shower, hadronization, analysis, event file formats, etc., etc.
- Free-format steering language SINDARIN

Milestones

- 1.0 Project started around 1999: Studies for electroweak multi-particle processes at TESLA (W, Higgs, Z) Event samples for LC studies at SLAC
- 1.9 Full SM w/ QCD, beam properties, SUSY/BSM, event formats
- 2.1 QCD shower+matching, FeynRules support, internal density-matrix formalism (cascade decays), language SINDARIN as user interface, OpenMP parallelization, ... (production version)
- 2.2 Major refactoring of internals (same user interface), event sample reweighting, inclusive processes and selective decay chains (public beta version/release candidate)
- Plan Improve LC support; NLO + matching; improve user interface ⇒ adapt to specific needs of user groups

- 1.0 Project started around 1999: Studies for electroweak multi-particle processes at TESLA (W, Higgs, Z)
- 1.9 Full SM w/ QCD, beam properties, SUSY/BSM, event formats

Event samples for LC studies at SLAC

- 2.1 QCD shower+matching, FeynRules support, internal density-matrix formalism (cascade decays), language SINDARIN as user interface, OpenMP parallelization, . . . (previous version)
- 2.2 Major refactoring of internals (same user interface), event sample reweighting, inclusive processes and selective decay chains (production version)
- Plan Improve LC support; NLO + matching; improve user interface ⇒ adapt to specific needs of user groups

- Multi-Channel Monte-Carlo integration
- Efficient phase space and event generation (weighted & unweighted)
- Optimized tree-level matrix elements (O'Mega)
 - $e^+e^- \rightarrow t \bar{t} H \rightarrow b \bar{b} b \bar{b} j j \ell \nu$ (110,000 diagrams)
 - $-e^+e^- \rightarrow ZHH \rightarrow ZWWWW \rightarrow bb + 8j$ (12,000,000 diagrams)
 - $pp o \ell\ell + nj,\, n=0,1,2,3,4,\dots$ (2,100,000 diagrams with 4 jets + flavors)
 - $pp o ilde{\chi}^0_1 ilde{\chi}^0_1 bbbb$ (32,000 diagrams, 22 color flows, $\sim 10,000$ PS channels)
 - $pp
 ightarrow VVjj
 ightarrow jj\ell\ell\nu\nu$ incl. anomalous TGC/QGC
 - lacktriangledown Test case gg o 9g (224,000,000 diagrams)

WHIZARD 2.1.1 release: Sep. 18, 2012

Old series: WHIZARD 1.97 (development stopped with 1.94)

The WHIZARD team: F. Bach, B. Chokoufé, W. Kilian, T. Ohl, JRR, M. Sekulla, F.

Staub, C. Weiss,

Web address: http://projects.hepforge.org/whizard

Standard Reference: Kilian/Ohl/JRR, EPJC 71 (2011) 1742, arXive:0708.4233

- Multi-Channel Monte-Carlo integration
- Efficient phase space and event generation (weighted & unweighted)
- Optimized tree-level matrix elements (O'Mega)
 - $e^+e^- \rightarrow t \bar{t} H \rightarrow b \bar{b} b \bar{b} j j \ell \nu$ (110,000 diagrams)
 - $-e^+e^- \rightarrow ZHH \rightarrow ZWWWW \rightarrow bb + 8j$ (12,000,000 diagrams)
 - $pp
 ightarrow \ell\ell + nj,\, n=0,1,2,3,4,\dots$ (2,100,000 diagrams with 4 jets + flavors)
 - $pp o ilde{\chi}^0_1 ilde{\chi}^0_1 bbbb$ (32,000 diagrams, 22 color flows, $\sim 10,000$ PS channels)
 - $pp
 ightarrow VVjj
 ightarrow jj\ell\ell\nu\nu$ incl. anomalous TGC/QGC
 - $\hbox{ \color{red} \blacksquare Test case gg $\to 9g$ (224,000,000 diagrams) }$

WHIZARD 2.2.0 $_{\beta}$ release: Feb. 3, 2014 (CLIC)

Old series: WHIZARD 1.97 (development stopped with 1.94)

The WHIZARD team: F. Bach, B. Chokoufé, W. Kilian, T. Ohl, JRR, M. Sekulla, F.

Staub, C. Weiss,

Web address: http://projects.hepforge.org/whizard

Standard Reference: Kilian/Ohl/JRR, EPJC 71 (2011) 1742, arXive:0708.4233

- Multi-Channel Monte-Carlo integration
- Efficient phase space and event generation (weighted & unweighted)
- Optimized tree-level matrix elements (O'Mega)

```
- e^+e^- \rightarrow t \bar{t} H \rightarrow b \bar{b} b \bar{b} j j \ell \nu (110,000 diagrams)
```

$$-e^+e^- \rightarrow ZHH \rightarrow ZWWWW \rightarrow bb + 8j$$
 (12,000,000 diagrams)

-
$$pp
ightarrow \ell\ell + nj,\, n=0,1,2,3,4,\dots$$
 (2,100,000 diagrams with 4 jets + flavors)

-
$$pp o ilde{\chi}^0_1 ilde{\chi}^0_1 bbbb$$
 (32,000 diagrams, 22 color flows, $\sim 10,000$ PS channels)

-
$$pp
ightarrow VVjj
ightarrow jj\ell\ell\nu\nu$$
 incl. anomalous TGC/QGC

lacktriangledown Test case gg o 9g (224,000,000 diagrams)

WHIZARD 2.2.0 release: (Mar. $6 + \epsilon$), 2014

Old series: WHIZARD 1.97 (development stopped with 1.94)

The WHIZARD team: F. Bach, B. Chokoufé, W. Kilian, T. Ohl, JRR, M. Sekulla, F.

Staub, C. Weiss, + 2 bachelors

Web address: http://projects.hepforge.org/whizard

Standard Reference: Kilian/Ohl/JRR, EPJC 71 (2011) 1742, arXive:0708.4233

WHIZARD 2: Status 2010-14 – Technical Features

- WHIZARD 2: code basically rewritten, only Fortran 2003 and 0' Caml
- Clean modularization of code/(First) object-oriented implementation
- OpenMP parallelization
- Operation modes:
 - Dynamic linking (default mode) with on-the-fly generation of process code
 - Static linking (for batch clusters)
 - Library mode, callable from C/C++/Python/...
 - Interactive mode: WHIZARD works as a Shell WHISH
- Standard conformance: uses autotools: automake/autoconf/libtool
- Large self test suite
- Version control (svn) at HepForge: use of ticket system and bug tracker
- Continuous integration system (jenkins) linked with svn repository

WHIZARD self tests:

WHIZARD 2 – Installation and Run

- Download WHIZARD from http://www.hepforge.org/ archive/whizard/whizard-2.2.0 beta.tar.gz and unpack it
- WHIZARD intended to be centrally installed on a system. e.g. in /usr/local (or locally on user account)
- Create build directory and configure External programs (LHAPDF, StdHEP, HepMC) might need flags
- make. make install
- Create SINDARIN steering file (in any working directory)
- Run whizard (in working directory)
- Supported event formats: HepMC, StdHEP, LHEF, LHA, div. ASCII formats

```
make check-am
make check-TESTS
PASS: expressions.run
PASS: beams.run
PASS: cputime.run
PASS: state_matrices.run
PASS: interactions.run
PASS: beam structures.run
PASS: models.run
PASS: phs forests.run
PASS: rng_base.run
PASS: selectors.run
PASS: phs wood.run
PASS: mci_vamp.run
PASS: particle_specifiers.run
PASS: prclib_stacks.run
PASS: slha_interface.run
PASS: subevt_expr.run
PASS: process stacks.run
PASS: cascades.run
PASS: processes.run
PASS: decays.run
PASS: events.run
PASS: eio_base.run
PASS: rt data.run
PASS: dispatch.run
PASS: process_configurations.run
PASS: event weights 1.run
PASS: integrations.run
PASS: simulations.run
PASS: process libraries.run
PASS: compilations.run
PASS: prclib_interfaces.run
PASS: commands.run
PASS: helicity.run
PASS: prc_omega.run
PASS: gedtest 1.run
PASS: beam_setup_1.run
PASS: reweight_1.run
PASS: colors.run
PASS: lhef_1.run
PASS: alphas.run
PASS: smtest 1.run
PASS: hepmc.run
PASS: restrictions.run
PASS: pdf builtin.run
PASS: stdhep 1.run
Testsuite summary for WHIZARD 2.2.0
```

```
# PASS: 180
 SKIP: 0
# XFAIL: 1
# FAIL:
 XPASS: 0
```

WHIZARD Manual

Online only 2.1 Manual for now, 2.2 ships with distr.

Ohl/JRR, 2001

Replace forest of tree diagrams by Directed Acyclical Graph (DAG) of the algebraic expression (including color).

Ohl/JRR, 2001

Replace forest of tree diagrams by
 Directed Acyclical Graph (DAG) of the algebraic expression (including color).

▶ LC example: $e^+e^- \rightarrow \mu^+\mu^-\gamma\gamma$

Ohl/JRR, 2001

 Ω

Replace forest of tree diagrams by
 Directed Acyclical Graph (DAG) of the algebraic expression (including color).

▶ LC example: $e^+e^- \rightarrow \mu^+\mu^-\gamma\gamma$

Specification of order of strong or EW coupling (2.2.x)

Ohl/JRR, 2001

Replace forest of tree diagrams by
 Directed Acyclical Graph (DAG) of the algebraic expression (including color).

▶ LC example: $e^+e^- \rightarrow \mu^+\mu^-\gamma\gamma$

- Specification of order of strong or EW coupling (2.2.x)
- ▶ Unification of model setup: only one binary (2.3)

Ohl/JRR, 2001

 Ω

Replace forest of tree diagrams by
 Directed Acyclical Graph (DAG) of the algebraic expression (including color).

$$ab(ab+c) = \underbrace{a}_{a} \underbrace{b}_{a} \underbrace{c}_{b} = \underbrace{a}_{b} \underbrace{b}_{c}$$

LC example: $e^+e^- \rightarrow \mu^+\mu^-\gamma\gamma$

- Specification of order of strong or EW coupling (2.2.x)
- Unification of model setup: only one binary (2.3)
- ► Teaser: new algorithm for generating loop diagrams (2.4 ?)

Beams and hard matrix elements

- Hadron Colliders structured beams
 - LHAPDF interface (5.x for now), most prominent PDFs directly included
 - QCD ISR and FSR (2 diff. own implementations, interface to PYTHIA)
 - Matching matrix elements/showers
 - Underlying event/multiple interactions (proof of principle)
- Hadronic events/hadronic decays + hadronic (QED) FSR (ext.)
- Lepton Colliders structured beams
 - QED ISR (Skrzypek/Jadach, Kuraev/Fadin, incl. p_T distributions)
 - arbitrarily polarized beams (density matrices)
 - Beamstrahlung (CIRCE module) more later
 - Photon collider spectra (CIRCE2 module)
 - external beam spectra can be read in (files/generating code)

Hard matrix elements:

- ▶ Particle spins: $0, \frac{1}{2}, 1, \frac{3}{2}, 2$
- Lorentz structures: hugh set of hard-coded structures
- Fully general Lorentz structures foreseen for 2.3.0
- ► Color structures: 3, $\overline{3}$, 8, [6]
- ► Color flow formalism Stelzer/Willenbrock, 2003; Kilian/Ohl/JRR/Speckner, 2011
- ▶ General color structures 6, 10, $\epsilon_{iik}\phi^i\phi^j\phi^k$

WHIZARD - Overview over BSM Models

MODEL TYPE	with CKM matrix	trivial CKM
QED with e, μ, τ, γ	_	QED
QCD with d, u, s, c, b, t, g	_	QCD
Standard Model	SM_CKM	SM
SM with anomalous gauge coupl.	SM_ac_CKM	SM_ac
SM with anomalous top coupl.	SMtop_CKM	SMtop
SM with anom. Higgs coupl.	_	SM_rx / NoH
SM ext. for VV scattering	-	SSC / AltH
SM with Z'	_	Zprime
2HDM	2HDM_CKM	2HDM
MSSM	MSSM_CKM	MSSM
MSSM with gravitinos	_	MSSM_Grav
NMSSM	NMSSM_CKM	NMSSM
extended SUSY models	_	PS/E/SSM
Littlest Higgs	_	Littlest
Littlest Higgs with ungauged $U(1)$	_	Littlest_Eta
Littlest Higgs with T parity	_	Littlest_Tpar
Simplest Little Higgs (anomaly-free)	_	Simplest
Simplest Little Higgs (universal)	_	Simplest_univ
3-site model	_	Threeshl
UED	_	UED
SM with gravitino and photino	_	GravTest
Augmentable SM template	_	Template

new models easily: FeynRules interface Christensen/Duhr/Fuks/JRR/Speckner, 1010.3251
Interface to SARAH in the SUSY Toolbox staub, 0909 2863: Obl/Popod/Speckner/Staub, 1109.5147.

model = SM

Input files: Basic features

```
process helloworld = E1, e1 => t, tbar, H
compile
```

```
sqrts = 500
beams = E1, e1 => circe1 => isr
```

```
integrate (helloworld) { iterations = 5:10000, 2:10000 }
n_events = 10000
```

```
simulate (helloworld)
```

Input files: Basic features

```
model = SM
process helloworld = E1, e1 => t, tbar, H
compile
sarts = 500
beams = E1, e1 => circe1 => isr
cuts = any 5 degree < Theta < 175 degree
         [select if abs (Eta) < eta_cut [lepton]]
cuts = any E > 2 * mW [extract index 2
         [sort by Pt [lepton]]]
integrate (helloworld) { iterations = 5:10000, 2:10000 }
n \text{ events} = 10000
simulate (helloworld)
```

Example: LHC SUSY cascade decays

$$p + p \rightarrow \tilde{u}^* + \tilde{u} \rightarrow \tilde{u}^* + u + \tilde{e}^+ + e^-$$

Full process:

$$p + p \rightarrow \tilde{u}^* + \tilde{u} \rightarrow \tilde{u}^* + u + \tilde{e}^+ + e^-$$

Factorized process w/ full spin correlations:

Example: LHC SUSY cascade decays

$$p + p \rightarrow \tilde{u}^* + \tilde{u} \rightarrow \tilde{u}^* + u + \tilde{e}^+ + e^-$$

Factorized process w/ classical spin correlations:

$$p + p \rightarrow \tilde{u}^* + \tilde{u} \rightarrow \tilde{u}^* + u + \tilde{e}^+ + e^-$$

Factorized process w/ no spin correlations:

- Analytic Parton Shower:
 - no shower veto: shower history is exactly known
 - allows reweighting and maybe more reliable error estimate
- new algorithm for initial state QCD radiation

matching with hard matrix elements, no "power-shower"

Analytic Parton Shower

- Analytic Parton Shower:
 - no shower veto: shower history is exactly known
 - allows reweighting and maybe more reliable error estimate
- new algorithm for initial state QCD radiation

matching with hard matrix elements, no "power-shower"

Status of NLO development in WHIZARD

BLHA interface: workflow

- Speckner, 2012
- Process definition in SINDARIN ⇒ WHIZARD writes contract file
- 2. NLO generator generates code, WHIZARD reads contract
- 3. NLO matrix element loaded as shared library
- First implementation: interfacing GoSAM and FeynArts/FormCalc
- Automatic generation of subtraction terms Speckner, 2012; Kilian/JRR/Weiss, 2014
 - proof-of-concept code in WHIZARD 2.1
 - implementation in the context of the revised WHIZARD 2.2 core
 - both dipole and FKS subtraction will be available
 - Provide PowHeg box formalism for NLO processes
 - Special focus on LC physics: top, Higgs, EW processes, BSM

Lost of WHIZARD members 2012: some features delayed in 2013 release candidate version 2.2.0_β/_rc available!

- Lost of WHIZARD members 2012: some features delayed in 2013 release candidate version 2.2.0_β/_rc available!
- WHIZARD core: insert an extra abstraction layer, consistently separate interface from implementation
 Complete object orientation
 - Replaceable modules with well-defined interface: matrix-elements, beam structure, phase space, integration, decays, shower, ...
 - ► Much easier to contribute new parts to the code ⇒ Industrialization
 - Technical changes hidden from the user
 - Much better self checks, regression testing and maintainability

- Lost of WHIZARD members 2012: some features delayed in 2013 release candidate version 2.2.0_\(\beta/\)_rc available!
- WHIZARD core: insert an extra abstraction layer, consistently separate interface from implementation
 Complete object orientation
 - Replaceable modules with well-defined interface: matrix-elements, beam structure, phase space, integration, decays, shower, ...
 - ► Much easier to contribute new parts to the code ⇒ Industrialization
 - Technical changes hidden from the user
 - Much better self checks, regression testing and maintainability
- Revised models for BSM interactions of electroweak vector bosons (w/ light Higgs)
- Process containers: inclusive production samples (e.g. SUSY)
- Automatic generation of decays, depending on the model

- Lost of WHIZARD members 2012: some features delayed in 2013 release candidate version 2.2.0_β/_rc available!
- WHIZARD core: insert an extra abstraction layer, consistently separate interface from implementation
 Complete object orientation
 - Replaceable modules with well-defined interface: matrix-elements, beam structure, phase space, integration, decays, shower, ...
 - ► Much easier to contribute new parts to the code ⇒ Industrialization
 - ► Technical changes hidden from the user
 - Much better self checks, regression testing and maintainability
- Revised models for BSM interactions of electroweak vector bosons (w/ light Higgs)
- Process containers: inclusive production samples (e.g. SUSY)
- Automatic generation of decays, depending on the model
- New syntax/features decays and chains:

```
process higgsstr = e1, E1 => (Z => e2, E2), (H => b, bbar) 
process inclusive = e1, E1 => (Z, h) + (Z, H) + (A, H)
```

- Specification of QCD and electroweak order
- Improvements to the SINDARIN steering language

Difficulties of LC beam simulation

- E = 3000 GeV (luminosity spectrum peak)
- E = 1500 GeV (Z peak and lumi spectrum)
- $E = M_Z$ (Z resonance)
- $E \approx 30 \text{ GeV}$ (due to $e^+e^- \rightarrow \gamma^* \rightarrow b\bar{b}$)

- E = 3000 GeV (luminosity spectrum peak)
- E = 1500 GeV (Z peak and lumi spectrum)
- $E = M_Z$ (Z resonance)
- $E \approx 30 \text{ GeV}$ (due to $e^+e^- \rightarrow \gamma^* \rightarrow b\bar{b}$)
- Simulation with WHIZARD (2.1.1)
- Beam spectrum properly described in WHIZARD

New (LC-related) features / Plans

LCIO support

- courtesy of F. Gaede
- ILC TDR beam spectra within CIRCE1 courtesy of A. Hartin / J. List / G. Wilson

- also more than the official ILC TDR spectra (200 GeV and below)
- CLIC spectra: a lot more difficult: also available
- Direct Guinea-Pig/Lumilinker interface

courtesy of D. Schulte/T. Barklow

New (LC-related) features / Plans

LCIO support

- courtesy of F. Gaede
- ILC TDR beam spectra within CIRCE1 courtesy of A. Hartin / J. List / G. Wilson

- also more than the official ILC TDR spectra (200 GeV and below)
- CLIC spectra: a lot more difficult: also available
- Direct Guinea-Pig/Lumilinker interface

courtesy of D. Schulte/T. Barklow

BSM: general Lorentz structures in matrix-element generator (O'Mega)

New (LC-related) features / Plans

LCIO support

- courtesy of F. Gaede
- ILC TDR beam spectra within CIRCE1 courtesy of A. Hartin / J. List / G. Wilson

- also more than the official ILC TDR spectra (200 GeV and below)
- CLIC spectra: a lot more difficult: also available
- Direct Guinea-Pig/Lumilinker interface

courtesy of D. Schulte/T. Barklow

- BSM: general Lorentz structures in matrix-element generator (O'Mega)
- Complete Reweighting of Event Samples (incl. LHEF 2013)
- Working on performance gain: multi-leg, parallelization, smaller expressions etc. MC over helicities, colors, PS, etc. etc. etc.

LCIO support

- courtesy of F. Gaede
- ILC TDR beam spectra within CIRCE1 courtesy of A. Hartin / J. List / G. Wilson

- also more than the official ILC TDR spectra (200 GeV and below)
- CLIC spectra: a lot more difficult: also available
- Direct Guinea-Pig/Lumilinker interface

courtesy of D. Schulte/T. Barklow

- BSM: general Lorentz structures in matrix-element generator (O'Mega)
- Complete Reweighting of Event Samples (incl. LHEF 2013)
- Working on performance gain: multi-leg, parallelization, smaller expressions etc. MC over helicities, colors, PS, etc. etc. etc.
- Improved matching for jets

Chokoufé/JRR/Weiss, ca. 2014

Matched $e^+e^- \rightarrow \text{jets}$ at LO and NLO,

POWHEG box formalism

Chokoufé/JRR/Weiss, ca. 2015

New (LC-related) features / Plans

LCIO support

- courtesy of F. Gaede
- ILC TDR beam spectra within CIRCE1 courtesy of A. Hartin / J. List / G. Wilson

- also more than the official ILC TDR spectra (200 GeV and below)
- CLIC spectra: a lot more difficult: also available
- Direct Guinea-Pig/Lumilinker interface

courtesy of D. Schulte/T. Barklow

- BSM: general Lorentz structures in matrix-element generator (O'Mega)
- Complete Reweighting of Event Samples (incl. LHEF 2013)
- Working on performance gain: multi-leg, parallelization, smaller expressions etc. MC over helicities, colors, PS, etc. etc. etc.
- Improved matching for jets

Chokoufé/JRR/Weiss, ca. 2014

Matched $e^+e^- \rightarrow \text{jets}$ at LO and NLO, POWHEG box formalism

Chokoufé/JRR/Weiss, ca. 2015

▶ Threshold resummation for $e^+e^- \rightarrow t\bar{t}$, W^+W^- etc.

Bach/Hoang/JRR/Stahlhofen:

Bach/JRR/Schwinn

New (LC-related) features / Plans

LCIO support

- courtesy of F. Gaede
- ILC TDR beam spectra within CIRCE1 courtesy of A. Hartin / J. List / G. Wilson

- also more than the official ILC TDR spectra (200 GeV and below)
- CLIC spectra: a lot more difficult: also available
- Direct Guinea-Pig/Lumilinker interface

courtesy of D. Schulte/T. Barklow

- BSM: general Lorentz structures in matrix-element generator (O'Mega)
- Complete Reweighting of Event Samples (incl. LHEF 2013)
- Working on performance gain: multi-leg, parallelization, smaller expressions etc. MC over helicities, colors, PS, etc. etc. etc.
- Improved matching for jets

Chokoufé/JRR/Weiss, ca. 2014

Matched $e^+e^- \rightarrow \text{jets}$ at LO and NLO,

POWHEG box formalism

Chokoufé/JRR/Weiss, ca. 2015

▶ Threshold resummation for $e^+e^- \rightarrow t\bar{t}$, W^+W^- etc.

Bach/Hoang/JRR/Stahlhofen:

Bach/JRR/Schwinn

cf. Fabian's talk yesterday!

Questions to the User Community?

- ► LCIO: what are the needs for the format? spin info? color correlations?? Reweighting options?
- Interface to beam setup: details?
- External code for structure functions, analysis, cuts? What form?
- Other indispensable features for mass production missing?
- ▶ Wish list !?

- ► LCIO: what are the needs for the format? spin info? color correlations?? Reweighting options?
- Interface to beam setup: details?
- External code for structure functions, analysis, cuts? What form?
- Other indispensable features for mass production missing?
- ▶ Wish list !?
- Email requests via whizard@desy.de

Questions to the User Community?

- ▶ LCIO: what are the needs for the format? spin info? color correlations?? Reweighting options?
- Interface to beam setup: details?
- External code for structure functions, analysis, cuts? What form?
- Other indispensable features for mass production missing?
- Wish list !?
- ► Email requests via whizard@desy.de
- ▶ WHIZARD developer and user workshop: Würzburg 16.-18.3.2015

WHIZARD workshop 16.-18.3.2015

Würzburg baroque castle:

"fake" Versailles from "Les trois mousquetaires" (2011)

Summary and Outlook

- WHIZARD 2 for LC (and LHC/FCC whatever) physics
- Versatile, user-friendly tool for SM & BSM physics
- Highest-possible support for LC beam structures
- Covers the whole SM, and most possible paths beyond
- Shooting out after a long technical overhaul
- Expect continuous improvement

Summary and Outlook

- WHIZARD 2 for LC (and LHC/FCC whatever) physics
- Versatile, user-friendly tool for SM & BSM physics
- Highest-possible support for LC beam structures
- Covers the whole SM, and most possible paths beyond
- Shooting out after a long technical overhaul
- Expect continuous improvement
 - WHIZARD 2.2.0_β/_rc available now

- ► WHIZARD 2 for LC (and LHC/FCC whatever) physics
- Versatile, user-friendly tool for SM & BSM physics
- Highest-possible support for LC beam structures
- Covers the whole SM, and most possible paths beyond
- ► Shooting out after a long technical overhaul
- Expect continuous improvement
 - WHIZARD 2.2.0_ β /_rc available now
 - WHIZARD 2.2.0 in a few weeks

Summary and Outlook

- ► WHIZARD 2 for LC (and LHC/FCC whatever) physics
- Versatile, user-friendly tool for SM & BSM physics
- Highest-possible support for LC beam structures
- Covers the whole SM, and most possible paths beyond
- ► Shooting out after a long technical overhaul
- Expect continuous improvement
 - WHIZARD 2.2.0_β/_rc available now
 - WHIZARD 2.2.0 in a few weeks
 - WHIZARD 2.2.x-2.x.x on a regular basis !!!

Let us know of your needs!

whizard@desy.de

Theory predictions

Reality ... (?) ...

"I SPEND A LOT OF TIME ON THIS TASK. I SHOULD WRITE A PROGRAM AUTOMATING IT!"

LC Ton Workshop, LPNHE Paris, 06 03 2014

The MC Event Generator WHIZARD

BACKUP SLIDES:

WHIZARD histograms

WHIZARD data analysis

March 16, 2007

Process: qqttdec $(u\bar{u} \rightarrow b\bar{b}W^+W^-)$

$$\sqrt{s} = 500.0 \text{ GeV}$$
 $\int \mathcal{L} = 0.2754 \times 10^{-01} \text{ fb}^{-1}$

 $\sigma_{\rm cut} = 36305$. $\pm 0.115 \times 10^{+04}$ fb $[\pm 3.16 \%]$ $n_{\rm cyt, \ cut} = 1000$ [100.00 %]

New completely general syntax in WHIZARD 2.x

```
$title = "Jet Energy in $pp\to \ell\bar\nu j$"
$x label = "$E$/GeV"
histogram e_jet (0 GeV, 80 GeV, 2 GeV)
analysis = record pt_lepton (eval Pt [extract index 1 [sort by Pt [lepton]]]);
           record pt_jet (eval Pt [extract index 1 [sort by Pt [jet]]]);
           record e_lepton (eval E [extract index 1 [sort by Pt [lepton]]]);
           record e_jet (eval E [extract index 1 [sort by Pt [jet]]])
```