The Monte Carlo Event Generator WHIZARD

Jürgen R. Reuter

DESY Hamburg

CLIC workshop, CERN, Feb 4th, 2014

WHIZARD in a Nutshell

WHIZARD is a universal event generator for elementary processes at colliders:

- ▶ e^+e^- : LEP and TESLA/NLC \Rightarrow ILC, CLIC, TLEP ...
- ▶ pp: Tevatron \Rightarrow LHC, HL/E-LHC, VLHC, XXX . . .

It contains

- O'Mega: Automatic matrix elements for arbitrary elementary processes, supports SM and many BSM extensions
- Phase-space parameterization module
- VAMP: Generic adaptive integration and (unweighted) event generation
- Intrinsic support or external interfaces for: Feynman rules, beam properties, cascade decays, shower, hadronization, analysis, event file formats, etc., etc.
- Free-format steering language SINDARIN

- 1.0 Project started around 1999: Studies for electroweak multi-particle processes at TESLA (W, Higgs, Z)
 Event samples for LC studies at SLAC
- 1.9 Full SM w/ QCD, beam properties, SUSY/BSM, event formats
- 2.1 QCD shower+matching, FeynRules support, internal density-matrix formalism (cascade decays), language SINDARIN as user interface, OpenMP parallelization, . . . (production version)
- 2.2 Major refactoring of internals (same user interface), event sample reweighting, inclusive processes and selective decay chains (public beta version)
- Plan Improve LC support; NLO + matching; improve user interface ⇒ adapt to specific needs of user groups

The WHIZARD Event Generator – Release 2.1

- Multi-Channel Monte-Carlo integration
- Efficient phase space and event generation (weighted & unweighted)
- Optimized tree-level matrix elements (O'Mega)
 - $-e^+e^- \rightarrow t\bar{t}H \rightarrow b\bar{b}b\bar{b}ii\ell\nu$ (110,000 diagrams)
 - $-e^+e^- \rightarrow ZHH \rightarrow ZWWWW \rightarrow bb + 8i$ (12.000,000 diagrams)
 - $pp \to \ell\ell + nj, n = 0, 1, 2, 3, 4, \dots$ (2,100,000 diagrams with 4 jets + flavors)
 - $pp \to \tilde{\chi}_1^0 \tilde{\chi}_1^0 bbbb$ (32,000 diagrams, 22 color flows, $\sim 10,000$ PS channels)
 - $pp \rightarrow VVjj \rightarrow jj\ell\ell\nu\nu$ incl. anomalous TGC/QGC
 - Test case $qq \rightarrow 9q$ (224,000,000 diagrams)

WHIZARD 2.1.1 release: Sep. 18, 2012

Old series: WHIZARD 1.97 (development stopped with 1.94)

The WHIZARD team: F. Bach, B. Chokoufé, W. Kilian, T. Ohl, JRR, M. Sekulla, F.

Staub, C. Weiss,

Web address: http://projects.hepforge.org/whizard

Standard Reference: Kilian/Ohl/JRR, EPJC 71 (2011) 1742, arXive:0708.4233

The WHIZARD Event Generator – Release 2.2

- Multi-Channel Monte-Carlo integration
- Efficient phase space and event generation (weighted & unweighted)
- Optimized tree-level matrix elements (O'Mega)
 - $-e^+e^- \rightarrow t\bar{t}H \rightarrow b\bar{b}b\bar{b}ii\ell\nu$ (110,000 diagrams)
 - $-e^+e^- \rightarrow ZHH \rightarrow ZWWWW \rightarrow bb + 8i$ (12.000,000 diagrams)
 - $pp \to \ell\ell + nj, n = 0, 1, 2, 3, 4, \dots$ (2,100,000 diagrams with 4 jets + flavors)
 - $pp \to \tilde{\chi}_1^0 \tilde{\chi}_1^0 bbbb$ (32,000 diagrams, 22 color flows, $\sim 10,000$ PS channels)
 - nn → VVii → iiℓℓνν incl. anomalous TGC/QGC
 - Test case $qq \rightarrow 9q$ (224,000,000 diagrams)

WHIZARD 2.2.0 $_{\beta}$ release: Feb. 3, 2014 (CLIC)

Old series: WHIZARD 1.97 (development stopped with 1.94)

The WHIZARD team: F. Bach, B. Chokoufé, W. Kilian, T. Ohl, JRR, M. Sekulla, F.

Staub, C. Weiss,

Web address: http://projects.hepforge.org/whizard

Standard Reference: Kilian/Ohl/JRR, EPJC 71 (2011) 1742, arXive:0708.4233

The WHIZARD Event Generator – Release 2.2

- Multi-Channel Monte-Carlo integration
- Efficient phase space and event generation (weighted & unweighted)
- Optimized tree-level matrix elements (O'Mega)
 - $-e^+e^- \rightarrow t\bar{t}H \rightarrow b\bar{b}b\bar{b}ii\ell\nu$ (110,000 diagrams)
 - $-e^+e^- \rightarrow ZHH \rightarrow ZWWWW \rightarrow bb + 8i$ (12.000,000 diagrams)
 - $pp \rightarrow \ell\ell + ni, n = 0, 1, 2, 3, 4, \dots$ (2,100,000 diagrams with 4 jets + flavors)
 - $pp \to \tilde{\chi}_1^0 \tilde{\chi}_1^0 bbbb$ (32,000 diagrams, 22 color flows, $\sim 10,000$ PS channels)
 - nn → VVii → iiℓℓνν incl. anomalous TGC/QGC
 - Test case $qq \rightarrow 9q$ (224,000,000 diagrams)

WHIZARD 2.2.0 release: (Feb. $3 + \epsilon$), 2014

Old series: WHIZARD 1.97 (development stopped with 1.94)

The WHIZARD team: F. Bach, B. Chokoufé, W. Kilian, T. Ohl, JRR, M. Sekulla, F.

Staub, C. Weiss, + 2 bachelors

Web address: http://projects.hepforge.org/whizard

Standard Reference: Kilian/Ohl/JRR, EPJC 71 (2011) 1742, arXive:0708.4233

WHIZARD 2: Status 2010-14 – Technical Features

- WHIZARD 2: code basically rewritten, only Fortran 2003 and 0' Caml
- Clean modularization of code/(First) object-oriented implementation
- OpenMP parallelization
- Operation modes:
 - Dynamic linking (default mode) with on-the-fly generation of process code
 - Static linking (for batch clusters)
 - Library mode, callable from C/C++/Python/...
 - Interactive mode: WHIZARD works as a Shell WHISH
- Standard conformance: uses autotools: automake/autoconf/libtool
- Large self test suite
- Version control (svn) at HepForge: use of ticket system and bug tracker
- Continuous integration system (jenkins) linked with svn repository

- Download WHIZARD from http://www.hepforge.org/ archive/whizard/whizard-2.2.0_beta.tar.gz and unpack it
- WHIZARD intended to be centrally installed on a system,
 e.g. in /usr/local (or locally on user account)
- Create build directory and configure
 External programs (LHAPDF, StdHEP, HepMC) might need flags
- make, make install
- Create SINDARIN steering file (in any working directory)
- Run whizard (in working directory)
- Supported event formats: HepMC, StdHEP, LHEF, LHA, div.
 ASCII formats

```
PASS: slha_interface.run
PASS: subevt_expr.run
PASS: process stacks.run
PASS: cascades.run
PASS: processes.run
PASS: decays.run
PASS: events.run
PASS: eio_base.run
PASS: rt data.run
PASS: dispatch.run
PASS: process_configurations.run
PASS: event weights 1.run
PASS: integrations.run
PASS: simulations.run
PASS: process libraries.run
PASS: compilations.run
PASS: prclib_interfaces.run
PASS: commands.run
PASS: helicity.run
PASS: prc_omega.run
PASS: gedtest 1.run
PASS: beam_setup_1.run
PASS: reweight_1.run
PASS: colors.run
PASS: lhef_1.run
PASS: alphas.run
PASS: smtest 1.run
PASS: hepmc.run
PASS: restrictions.run
PASS: pdf builtin.run
PASS: stdhep 1.run
Testsuite summary for WHIZARD 2.2.0_beta
```

PASS: 162 # SKIP: 0 # XFAIL: 1

FAIL: 0 # XPASS: 0

WHIZARD self tests:

PASS: rng_base.run PASS: selectors.run PASS: phs wood.run

PASS: mci_vamp.run PASS: particle_specifiers.run PASS: prclib_stacks.run

make check-am
make check-TESTS
PASS: expressions.run
PASS: beams.run
PASS: stoteme.run
PASS: state_matrices.run
PASS: beam_structures.run
PASS: beam_structures.run
PASS: models.run
[.....]
PASS: bb forests.run

WHIZARD Manual

Online only 2.1 Manual for now, 2.2 ships with distr.

Physics aspects/improvements in WHIZARD 2

 SINDARIN (Scripting INtegration, Data Analysis, Results display and INterfaces) allows for arbitrary expressions for cuts and scales etc. (examples later)

```
cuts = any 5 degree < Theta < 175 degree
        [select if abs (Eta) < eta cut [lepton]]
cuts = anv E > 2 * mW [extract index 2
                         [sort by Pt [lepton]]]
```

- Process libraries: processes of different BSM models can be used in parallel
- Decay cascades including full spin correlations (cf. later)
- FeynRules interface

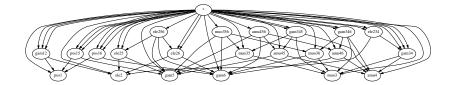
Christensen/Duhr/Fuks/JRR/Speckner, EPJC 72 (2012) 1990

- MLM jet matching
- Event-dependent scales in PDFs and running α_s
- Parton Shower: p_T -ordered and analytic

Kilian/JRR/Schmidt/Wiesler, JHEP 1204 (2012) 013

Ohl/JRR, 2001

Replace forest of tree diagrams by Directed Acyclical Graph (DAG) of the algebraic expression (including color).

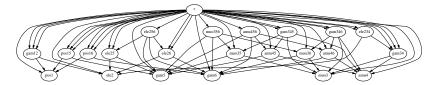

$$ab(ab+c) = \underbrace{a}_{a} \underbrace{b}_{a} \underbrace{c}_{b} = \underbrace{a}_{a} \underbrace{b}_{b}$$

Ohl/JRR, 2001

 Ω

Replace forest of tree diagrams by
 Directed Acyclical Graph (DAG) of the algebraic expression (including color).

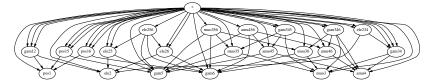
▶ LC example: $e^+e^- \rightarrow \mu^+\mu^-\gamma\gamma$



Ohl/JRR, 2001

Replace forest of tree diagrams by
 Directed Acyclical Graph (DAG) of the algebraic expression (including color).

▶ LC example: $e^+e^- \rightarrow \mu^+\mu^-\gamma\gamma$


Specification of order of strong or EW coupling (2.2.x)

Ohl/JRR, 2001

 Ω

Replace forest of tree diagrams by
 Directed Acyclical Graph (DAG) of the algebraic expression (including color).

▶ LC example: $e^+e^- \rightarrow \mu^+\mu^-\gamma\gamma$

- Specification of order of strong or EW coupling (2.2.x)
- ▶ Unification of model setup: only one binary (2.3)

Ohl/JRR, 2001

Replace forest of tree diagrams by
 Directed Acyclical Graph (DAG) of the algebraic expression (including color).

$$ab(ab+c) = \underbrace{a}_{a} \underbrace{b}_{a} \underbrace{c}_{b} = \underbrace{a}_{a} \underbrace{b}_{b} \underbrace{c}_{c}$$

► LC example: $e^+e^- \rightarrow \mu^+\mu^-\gamma\gamma$

- Specification of order of strong or EW coupling (2.2.x)
- Unification of model setup: only one binary (2.3)
- ► Teaser: new algorithm for generating loop diagrams (2.4 ?)

Beams and hard matrix elements

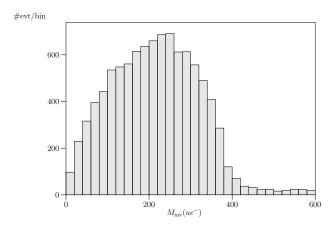
- Hadron Colliders structured beams
 - LHAPDF interface (5.x for now), most prominent PDFs directly included
 - QCD ISR and FSR (2 diff. own implementations, interface to PYTHIA)
 - Matching matrix elements/showers (MLM)
 - Underlying event/multiple interactions (proof of principle)
- Hadronic events/hadronic decays + hadronic (QED) FSR
 - through PYTHIA 6 interface [or PYTHIA8/HERWIG in prep.]
- Lepton Colliders structured beams
 - QED ISR (Skrzypek/Jadach, Kuraev/Fadin, incl. p_T distributions)
 - arbitrarily polarized beams (density matrices)
 - Beamstrahlung (CIRCE module) more later
 - Photon collider spectra (CIRCE2 module)
 - external beam spectra can be read in (files/generating code)

Hard matrix elements:

- ▶ Particle spins: $0, \frac{1}{2}, 1, \frac{3}{2}, 2$
- Lorentz structures: hugh set of hard-coded structures
- Fully general Lorentz structures foreseen for 2.3.0
- ► Color structures: 3, 3, 8, [6]
- Color flow formalism Stelzer/Willenbrock, 2003; Kilian/Ohl/JRR/Speckner, 2011
- General color structures 6, 10, $\epsilon_{ijk}\phi^i\phi$

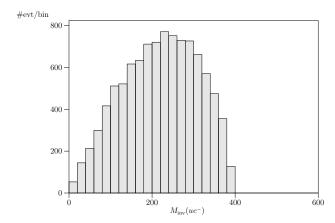
WHIZARD - Overview over BSM Models

MODEL TYPE	with CKM matrix	trivial CKM
QED with e, μ, τ, γ	-	QED
QCD with d, u, s, c, b, t, g	_	QCD
Standard Model	SM_CKM	SM
SM with anomalous gauge coupl.	SM_ac_CKM	SM_ac
SM with anomalous top coupl.	SMtop_CKM	SMtop
SM with K matrix	_	SM_KM
SM ext. for VV scattering	_	VBS
SM with Z'		Zprime
2HDM	2HDM_CKM	2HDM
MSSM	MSSM_CKM	MSSM
MSSM with gravitinos	_	MSSM_Grav
NMSSM	NMSSM_CKM	NMSSM
extended SUSY models	_	PS/E/SSM
Littlest Higgs	_	Littlest
Littlest Higgs with ungauged $U(1)$	_	Littlest_Eta
Littlest Higgs with T parity	_	Littlest_Tpar
Simplest Little Higgs (anomaly-free)	_	Simplest
Simplest Little Higgs (universal)	_	Simplest_univ
3-site model	_	Threeshl
UED	_	UED
SM with gravitino and photino	_	GravTest
Augmentable SM template	_	Template


new models easily: FeynRules interface Christensen/Duhr/Fuks/JRR/Speckner, 1010.3251
Interface to SARAH in the SUSY Toolbox staub, 0909.2863; Ohl/Porod/Speckner/Staub, 1109.5147

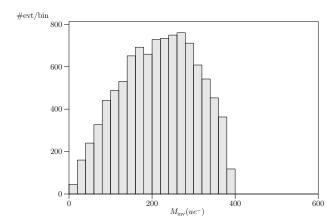
Input files: Basic features

```
model = SM
process helloworld = E1, e1 => t, tbar, H
compile
sarts = 500
beams = E1, e1 => circe1 => isr
integrate (halloween) { iterations = 5:10000, 2:10000 }
n \text{ events} = 10000
simulate (halloween) {
```


$$p + p \rightarrow \tilde{u}^* + \tilde{u} \rightarrow \tilde{u}^* + u + \tilde{e}^+ + e^-$$

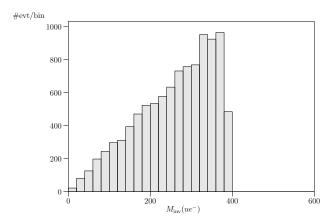
Full process:

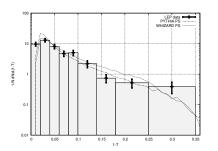
$$p + p \rightarrow \tilde{u}^* + \tilde{u} \rightarrow \tilde{u}^* + u + \tilde{e}^+ + e^-$$

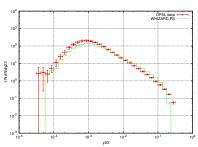

Factorized process w/ full spin correlations:

Example: LHC SUSY cascade decays

$$p + p \rightarrow \tilde{u}^* + \tilde{u} \rightarrow \tilde{u}^* + u + \tilde{e}^+ + e^-$$

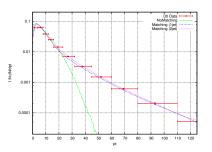

Factorized process w/ classical spin correlations:

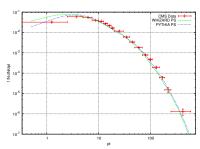

Example: LHC SUSY cascade decays


$$p + p \rightarrow \tilde{u}^* + \tilde{u} \rightarrow \tilde{u}^* + u + \tilde{e}^+ + e^-$$

Factorized process w/ no spin correlations:

- Analytic Parton Shower:
 - no shower veto: shower history is exactly known
 - allows reweighting and maybe more reliable error estimate
- new algorithm for initial state QCD radiation





matching with hard matrix elements, no "power-shower"

Analytic Parton Shower

- Analytic Parton Shower:
 - no shower veto: shower history is exactly known
 - allows reweighting and maybe more reliable error estimate
- new algorithm for initial state QCD radiation

matching with hard matrix elements, no "power-shower"

Status of NLO development in WHIZARD

BLHA interface: workflow

- Speckner, 2012
- Process definition in SINDARIN ⇒ WHIZARD writes contract file
- 2. NLO generator generates code, WHIZARD reads contract
- 3. NLO matrix element loaded as shared library
- First implementation: interfacing GoSAM and FeynArts/FormCalc
- Automatic generation of subtraction terms Speckner, 2012; JRR/Weiss, 2014
 - proof-of-concept code in WHIZARD 2.1
 - implementation in the context of the revised WHIZARD 2.2 core
 - both dipole and FKS subtraction will be available
 - Provide PowHeg box formalism for NLO processes

• Lost of WHIZARD members 2012: some features delayed in 2013 (pre-)release version $2.2.0_{\beta}$ available!

- Lost of WHIZARD members 2012: some features delayed in 2013 (pre-)release version $2.2.0_{\beta}$ available!
- WHIZARD core: insert an extra abstraction layer, consistently separate interface from implementation
 Complete object orientation
 - Replaceable modules with well-defined interface: matrix-elements, beam structure, phase space, integration, decays, shower, ...
 - ▶ Much easier to contribute new parts to the code ⇒ Industrialization
 - ► Technical changes hidden from the user
 - Modern programming techniques: unit tests, pair programming etc.
 - Much better self checks, regression testing and maintainability

- Lost of WHIZARD members 2012: some features delayed in 2013 (pre-)release version $2.2.0_{\beta}$ available!
- WHIZARD core: insert an extra abstraction layer, consistently separate interface from implementation
 Complete object orientation
 - Replaceable modules with well-defined interface: matrix-elements, beam structure, phase space, integration, decays, shower, ...
 - ► Much easier to contribute new parts to the code ⇒ Industrialization
 - ► Technical changes hidden from the user
 - Modern programming techniques: unit tests, pair programming etc.
 - Much better self checks, regression testing and maintainability
- Revised models for BSM interactions of electroweak vector bosons (w/ light Higgs)
- Process containers: inclusive production samples (e.g. SUSY)
- Automatic generation of decays, depending on the model

- Lost of WHIZARD members 2012: some features delayed in 2013 (pre-)release version $2.2.0_{\beta}$ available!
- WHIZARD core: insert an extra abstraction layer, consistently separate interface from implementation
 Complete object orientation
 - Replaceable modules with well-defined interface: matrix-elements, beam structure, phase space, integration, decays, shower, . . .
 - ► Much easier to contribute new parts to the code ⇒ Industrialization
 - ► Technical changes hidden from the user
 - Modern programming techniques: unit tests, pair programming etc.
 - Much better self checks, regression testing and maintainability
- Revised models for BSM interactions of electroweak vector bosons (w/ light Higgs)
- Process containers: inclusive production samples (e.g. SUSY)
- Automatic generation of decays, depending on the model
- New syntax/features decays and chains:

```
process higgsstr = e1, E1 => (Z => e2, E2), (H => b, bbar)  \label{eq:process} process inclusive = e1, E1 => (Z, h) + (Z, H) + (A, H)
```

- Specification of QCD and electroweak order
- Improvements to the SINDARIN steering language

LCIO support (C++ interface)

courtesy of F. Gaede

Lumi-linker interface

courtesy of T. Barklow

Support for ILC beam spectra within CIRCE1

courtesy of G. Wilson

LCIO support (C++ interface)

courtesy of F. Gaede

Lumi-linker interface

- courtesy of T. Barklow
- Support for ILC beam spectra within CIRCE1
- courtesy of G. Wilson
- BSM: general Lorentz structures in matrix-element generator (O'Mega)
- Parsing of UFO files

LCIO support (C++ interface)

courtesy of F. Gaede

Lumi-linker interface

courtesy of T. Barklow

Support for ILC beam spectra within CIRCE1

courtesy of G. Wilson

- BSM: general Lorentz structures in matrix-element generator (O'Mega)
- Parsing of UFO files
- Complete Reweighting of Event Samples (incl. LHEF 2013)
- Working on performance gain: multi-leg, parallelization, smaller expressions etc. MC over helicities, colors, PS, etc. etc. etc.

LCIO support (C++ interface)

courtesy of F. Gaede

Lumi-linker interface

- courtesy of T. Barklow
- Support for ILC beam spectra within CIRCE1
- courtesy of G. Wilson
- BSM: general Lorentz structures in matrix-element generator (O'Mega)
- Parsing of UFO files
- Complete Reweighting of Event Samples (incl. LHEF 2013)
- Working on performance gain: multi-leg, parallelization, smaller expressions etc. MC over helicities, colors, PS, etc. etc. etc.
- CKKW(-L) matching for jets

Chokoufé/JRR/Weiss, ca. 2014

Matched $e^+e^- \rightarrow$ jets at LO and NLO, POWHEG box formalism 2015

Chokoufé/JRR/Weiss, ca.

LCIO support (C++ interface)

courtesy of F. Gaede

Lumi-linker interface

courtesy of T. Barklow

Support for ILC beam spectra within CIRCE1

courtesy of G. Wilson

- BSM: general Lorentz structures in matrix-element generator (O'Mega)
- Parsing of UFO files
- Complete Reweighting of Event Samples (incl. LHEF 2013)
- Working on performance gain: multi-leg, parallelization, smaller expressions etc. MC over helicities, colors, PS, etc. etc. etc.
- CKKW(-L) matching for jets

Chokoufé/JRR/Weiss, ca. 2014

Matched $e^+e^- \rightarrow$ jets at LO and NLO, POWHEG box formalism 2015

Chokoufé/JRR/Weiss, ca.

Threshold resummation for $e^+e^- \to W^+W^-$, $t\bar{t}$ etc.

Bach/Hoang/JRR/Stahlhofen, ca. 2014

LCIO support (C++ interface)

courtesy of F. Gaede

Lumi-linker interface

courtesy of T. Barklow

Support for ILC beam spectra within CIRCE1

courtesy of G. Wilson

- BSM: general Lorentz structures in matrix-element generator (O'Mega)
- Parsing of UFO files
- Complete Reweighting of Event Samples (incl. LHEF 2013)
- Working on performance gain: multi-leg, parallelization, smaller expressions etc. MC over helicities, colors, PS, etc. etc. etc.
- CKKW(-L) matching for jets

Chokoufé/JRR/Weiss, ca. 2014

Matched $e^+e^- \rightarrow$ jets at LO and NLO, POWHEG box formalism 2015

Chokoufé/JRR/Weiss, ca.

Threshold resummation for $e^+e^- \rightarrow W^+W^-$, $t\bar{t}$ etc. First plots for *tt* threshold for Paris workshop!

Bach/Hoang/JRR/Stahlhofen, ca. 2014

- ► LCIO: what are the needs for the format? spin info? color correlations?? Reweighting options?
- ► Interface to beam setup: details? Guinea Pig output? Other forms of beam parameterizations?
- External code for structure functions, analysis, cuts? Still needed? What form?
- Other indispensable features for mass production missing?
- ► Wish list !?

- ► LCIO: what are the needs for the format? spin info? color correlations?? Reweighting options?
- ► Interface to beam setup: details? Guinea Pig output? Other forms of beam parameterizations?
- External code for structure functions, analysis, cuts? Still needed? What form?
- Other indispensable features for mass production missing?
- ▶ Wish list !?
- ► Email requests via whizard@desy.de

Questions to the User Community?

- ► LCIO: what are the needs for the format? spin info? color correlations?? Reweighting options?
- Interface to beam setup: details? Guinea Pig output? Other forms of beam parameterizations?
- External code for structure functions, analysis, cuts? Still needed? What form?
- Other indispensable features for mass production missing?
- ▶ Wish list !?
- ► Email requests via whizard@desy.de
- WHIZARD developer and user workshop: Würzburg 03/2015

Summary and Outlook

- WHIZARD 2 for LC (and LHC/FCC whatever) physics
- Versatile, user-friendly tool for SM & BSM physics
- Highest-possible support for LC beam structures
- Covers the whole SM, and most possible paths beyond
- ► Shooting out after a long technical overhaul
- Expect continuous improvement

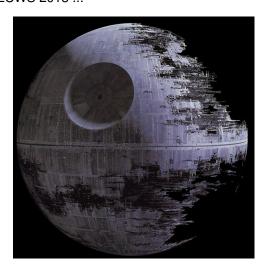
Summary and Outlook

- WHIZARD 2 for LC (and LHC/FCC whatever) physics
- Versatile, user-friendly tool for SM & BSM physics
- Highest-possible support for LC beam structures
- Covers the whole SM, and most possible paths beyond
- ► Shooting out after a long technical overhaul
- Expect continuous improvement
 - WHIZARD 2.2.0_β available now

Summary and Outlook

- ► WHIZARD 2 for LC (and LHC/FCC whatever) physics
- Versatile, user-friendly tool for SM & BSM physics
- Highest-possible support for LC beam structures
- Covers the whole SM, and most possible paths beyond
- ► Shooting out after a long technical overhaul
- Expect continuous improvement
 - WHIZARD 2.2.0_β available now
 - WHIZARD 2.2.0 in a few weeks

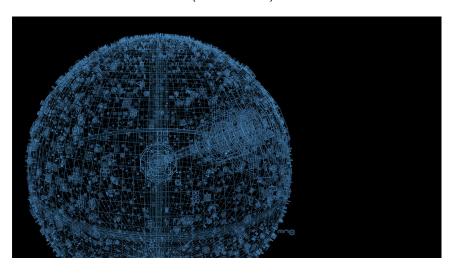
► WHIZARD 2 for LC (and LHC/FCC whatever) physics

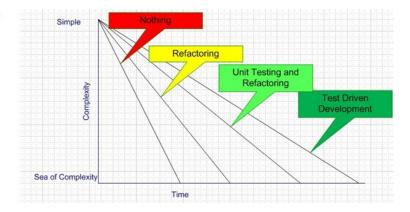

- Versatile, user-friendly tool for SM & BSM physics
- Highest-possible support for LC beam structures
- Covers the whole SM, and most possible paths beyond
- ► Shooting out after a long technical overhaul
- Expect continuous improvement
 - WHIZARD 2.2.0_β available now
 - WHIZARD 2.2.0 in a few weeks
 - WHIZARD 2.2.x-2.x.x on a regular basis !!!

Let us know of your needs!

whizard@desy.de

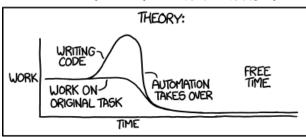
Status of LCWS 2013 ...

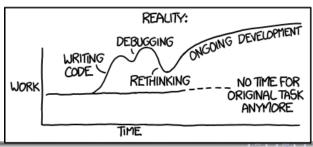

Status of LCWS 2013 ...


CLIC 2014... we are almost there ...(it's β than nothing) ...

... in a not too far future ... (a.k.a. March)

Theory predictions




Reality ... (?) ...

"I SPEND A LOT OF TIME ON THIS TASK.
I SHOULD WRITE A PROGRAM AUTOMATING IT!"

The MC Event Generator WHIZARD

CLIC Workshop, CERN, 04-02-2014

BACKUP SLIDES:

WHIZARD data analysis March 16, 2007 Process: qqttdec $(u\bar{u} \rightarrow b\bar{b}W^+W^-)$

 $\sqrt{s} = 500.0 \text{ GeV}$ $\int \mathcal{L} = 0.2754 \times 10^{-01} \text{ fb}^{-1}$ #evt/bin 300 200 -100 -165 160 M_{inv} [GeV] of (5) $\sigma_{tot} = 36305$. ± 310 . fb $[\pm 0.85 \%]$ $n_{\rm evt-tot} = 1000$

 $\sigma_{\text{cut}} = 36305$. ± 310.15 [± 0.35 %] $m_{\text{evt, tot}} = 1000$ $\sigma_{\text{cut}} = 36305$. $\pm 0.115 \times 10^{+04}$ fb [± 3.16 %] $n_{\text{evt, cut}} = 1000$ [100.00 %]

New completely general syntax in WHIZARD 2.x

```
%title = "Jet Energy in %pp\to \ell\bar\nu j$"
%x_label = "$E$/GeV"
histogram e_jet (0 GeV, 80 GeV, 2 GeV)
analysis = record pt_lepton (eval Pt [extract index 1 [sort by Pt [lepton]]);
record e_lepton (eval Pt [extract index 1 [sort by Pt [jet]]]);
record e_lepton (eval E [extract index 1 [sort by Pt [lepton]]]);
record e_jet (eval E [extract index 1 [sort by Pt [jet]]])
```