TPOL Offline Analysis Update

Osamu Ota Tokyo Metropolitan University TPOL Analysis meeting 23.Feb.2005

OUTLINE

- The multi-parameter fitting.
- Study on the fitting range in η .
- Comparison with the data.
- Final parameter set.
- Results with all data.

(October.03~August.04).

- Systematic check.
- Summary.

The fitting method

- Exploit full information of TPOL CAL
 - Fit to 2D data (E, η)
- Fitting parameters
 - CAL related
 - Distance
 - Resolution / Calibration
 - Skew-factor
 - Beam related
 - Offset
 - Size
 - Laser related
 - Linear polarization

23/02/05

TPOL Analysis Meeting

Fit procedure

Study on the η range dependence

- At first, check with all parameters free.
 - η y parameters are free.
- The skew-factor is fixed to be 0.

$$\sigma_{\eta}(\eta_{true}, E_{true}) = a_{\sqrt{\frac{1 - \eta_{true}^{2}}{E_{true}}}} \left(1 \pm f_{skew} \sqrt{\sqrt{|\eta_{true}|E_{true}}}\right)$$

- The skew-factor reflects the asymmetry in η .
- Assume no asymmetry in η response between UP and DOWN.

η - y curve by Silicon

Stability check All parameters free

- Fitting range.
 +/-0.1~+/-0.8, 0.1 step.
- Parameters except the distance are almost stable in high η region.
- Next, check the η y curve from the fitting method.

Comparison the η – y curves

- The fitting method can not reproduce the η - y curve.
- → have to fix the η y parameters with the silicon measurement.

Stability check η - y parameters fix

- The energy resolution, the stochastic term. and the distance from the IP to the CAL are unstable in η .
- Fix to •
 - -23.77% for the energy resolution. (CERN test beam)

65m for the distance.

Stability check resolution & distance fixed

- Parameters are almost stable.
- So far, the η y parameters are extracted from the Normal mode.
- To decide the fitting range, also check from the Table scan mode.

Check η range dependence

- High η region
 - Uncertainty due to background events and low statistics.
- Low η region
 - Unstable due to small data used for the fitting.
- →Fitting region should be between +/-0.4 ~+/-0.6.
- Selected +/-0.5

Comparison the data and the fitting Histogram/Pull

- The fitting can not describe the data in each laser state perfectly, besides asymmetric structure in η .
- Polarization is sensitive to the LEFT-RIGHT in the end.
- Will consider the asymmetry later.

Final parameter set

η - y 4 parameters	the Normal mode
η range	+/- 0.5
beam offset	free
beam size	free
CAL calibration	free
distance	fixed to 65m
skew factor	fixed to 0.0
a (stochastic term)	fixed to 23.77%
b (constant term)	free

Results with all data

- LPOL/TPOL ratio.
- Beam dependence.
 Focus size (Beam size), Beam offset.
- Polarization from laser left and right.
 The skew-factor
- Other parameters
 - Calibration, resolution (constant term)
- Laser linear component

The LPOL/TPOL ratio

- TPOL and LPOL agree within 0.5%[©]
- With more averaging time, variation of L/T become getting smaller.
- No strange dips is seen in both the ratio
 and chi2/ndf.
 - \rightarrow Modeling is good for polarization analysis.

23/02/05

Focus dependence

- Focus size (Online)
 - Vertical beam width on the calorimeter surface.
- Beam size (Offline)
 - Vertical beam width at the Interaction Point.
- It is possible to check focus size dependence through the beam size.

• The fitting method can almost absorb the focus dependence, so that the Focus dependence is hardly seen.

Focus correction

Beam offset

• Check the beam offset to see if the fitting method can absorb the beam dependence.

- In the fitting method, no dependence is seen and the ratio is 1.
- Considering the focus and the offset, it can be concluded that the fitting method can absorb the beam dependence.

Polarization from laser left and right

- Polarization from left tends to be larger than polarization from right.
- Very weak effect to the LPOL/TPOL.
- Check this further, the skew-factor was considered.

More averaging time

Pulls with the skew-factor

The pulls are improved with the skew-factor, especially the laser right. Check the LPOL/TPOL ratio to see if the skew-factor is properly for the modeling. 23/02/05 TPOL Analysis Meeting 21

The LPOL/TPOL ratio with the skew-factor

More averaging time

The energy resolution

• In the fitting method, the stochastic term (a) was fixed to 23.8% (CERN), but the constant term (b) was free, since it depends on the experimental environment.

$$\frac{\sigma_E}{E} = \frac{a}{\sqrt{E}} \oplus b$$

Even if the constant term changes, the LPOL/TPOL ratio is 1.

Calibration effects (Fe, Feta)

$$U_{abs} = (Fe \times (1 + Feta)) \times U_{calo}$$
$$D_{abs} = (Fe \times (1 - Feta)) \times U_{calo}$$

- Fe and Feta reflect the imperfect calibration up and down.
- These parameters (constant term, Fe and Feta) have fluctuation, but no critical dependence to the LPOL/TPOL ratio.

Laser linear component

- We can not measure S₁,S₂ separately and only S₁ includes the Compton cross section.
 → S_{lin} is upper limit of S₁.
- Compared these two values and checked the fitting was reasonable or not.

Cont'd

 Fixed S₁ to the S_{lin} and checked how impact on the fitting. If no critical influence to the results, this discrepancy should not be considered.
 23/02/05 TPOL Analysis Meeting

• With being fixed S1, the LPOL/TPOL was off the nominal by 1%.

 \rightarrow The fitting method can not reproduce the laser linear component, but we do not care the effects.

Systematic check

- The η y curve
 Normal
 - →Table scan
- Fitting range in η - 0.5 \rightarrow +/- 0.05
- Distance
 - 65m

→+/-1m

- CAL miscalibration
 (Fe, Feta) free
 →(1.0, 0.0) fixed
- CAL energy resolution
 23.8%
 - →Compton edge (19.7%)
- Beam offset
 - free
 - $\rightarrow 0.0$

Cont'd

- The η y curve
- Fitting range
- Calibration of CAL
- Beam offset
- Distance IP to CAL
- Energy resolution

0.87% 1.99% 1.97% 0.02% 0.78% 1.16%

Total

3.25%

Error from the calibration seems to be overestimation, cause assumed the calibration was perfect.

Summary 1

- The stability check indicates some parameters have to fix for the fitting, i.e. distance, resolution and the η - y curve.
- Analyzed all data (October.2003~August.2004),
 - The TPOL and the LPOL agree within 0.5%.
 - The focus / beam offset dependence is hardly seen in the fitting results.
 - The fitting method can reproduce the focus correction function which is estimated by MC.
 - → These results indicate the beam condition does not influence on the fitting method.

Summary 2

- The polarization from the laser left tends to be larger than that of the laser right.
- Looking at the pull, there are asymmetric structures in $\eta \rightarrow$ considered the skew-factor.
- With the factor, the pull was improved, but strange dips were included in the LPOL/TPOL ratio → Modeling with the factor was wrong, the factor was unnecessary parameter.
- Other parameters, b, Fe and Feta, have no critical dependence to the polarization.

Summary 3

- The fitting method can not reproduce the laser linear component.
- In fixing the linear component with optical measurement, the LPOL/TPOL changed only 1%.
- Total systematic error is 3.25% ©
 - The error from the miscalibration effects seems to be overestimation.
 - →Will check online data to find out the value which should be fixed in the error estimating.
- All results of the fitting will include in the pol note.

23/02/05