Z-factory: polarization and lumi requirements

Some numbers, ideas and boundary conditions

Discussions with: D. Barber, M. Bieler, R. Brinkmann, K. Floettmann, P. Bechtle, J. List, K. Moenig, S. Riemann, G. Weiglein

- •Short summary
- Impact of polarization at the Z-pole
- •Some technical issues of Z-factory@HERA

Physics: Z-pole data

- Why do we need such data a.s.a.p.?
 - Discrepancy between A_{LR} and A_{FB}

SLD:
$$\sin^2 \theta_{\text{eff}} = 0.23098 \pm 0.00026 \quad (A_{LR}(\ell)),$$

LEP: $\sin^2 \theta_{\text{eff}} = 0.23221 \pm 0.00029 \quad (A_{FB}(had)).$

- most sensitive tests of the Standard Model via measurements of the ew observables as $\sin^2\theta_{eff}$ We do need it already now !!!

A_{LR} and $\sin^2\theta_{eff}$

Accuracy in sin²Ø_{eff}

$$A_{\rm LR} = \frac{2(1 - 4\sin^2\theta_W^{\rm eff})}{1 + (1 - 4\sin^2\theta_W^{\rm eff})^2}$$

- → precision in ALR directly transferred to sin²
 ⊕_{eff}
- GigaZ will provide $\Delta \sin^2 \Theta_{eff} \sim 1.3 \times 10^{-5}$ (if Blondel scheme)
- only electron polarization at GigaZ: ~9.5 x 10⁻⁵
- current value: 16 x 10⁻⁵
- What could we gain with a 'fraction' of GigaZ ?

Relevance for 'Higgs'

4

Relevance for 'Higgs'

Relevance for SUSY/New Physics

Relevance in worst case scenarios

Hints for new physics in worst case scenarios:

Tests of SM at quantum level

- What are the important input quantities?
 - Impact of Mass of the top:

current theoretical:		
intrinsic	$\Delta m_W^{\text{intr,today}} \approx 4 \text{ MeV}$	$\Delta \sin^2 \theta_{\mathrm{eff}}^{\mathrm{intr,today}} \approx 4.7 \times 10^{-5}$
parametric		
$\delta m_t = 1.2 \text{ GeV}$	$\Delta m_W^{\text{para},m_t} \approx 11 \text{ MeV}$	$\Delta \sin^2 \theta_{\text{eff}}^{\text{para},\text{m}_t} \approx 3.6 \times 10^{-5}$
$\delta(\Delta \alpha_{\rm had}) = 35 \times 10^{-5}$	$\Delta m_W^{\mathrm{para},\Delta \alpha_{\mathrm{had}}} \approx 6.3 \text{ MeV}$	$\Delta \sin^2 \theta_{\text{eff}}^{\text{para},\Delta \alpha_{\text{had}}} \approx 12 \times 10^{-5}$
$\delta m_Z = 2.1 \text{ MeV}$	$\Delta m_W^{\mathrm{para},\mathrm{m_Z}} \approx 2.5 \text{ MeV}$	$\Delta \sin^2 \theta_{\text{eff}}^{\text{para},m_z} \approx 1.4 \times 10^{-5}$

	future parametric		
LHC	$\delta m_t = 1 \text{ GeV}$	$\Delta m_W^{\text{para},m_t} \approx 6 \text{ MeV}$	$\Delta \sin^2 \theta_{\text{eff}}^{\text{para},m_t} \approx 3 \times 10^{-5}$
	$\delta m_t = 0.1 \text{ GeV}$	$\Delta m_W^{\mathrm{para},\mathrm{m_t}} \approx 1 \text{ MeV}$	$\Delta \sin^2 \theta_{\text{eff}}^{\text{para},\text{m}_t} \approx 0.3 \times 10^{-5}$
	$\delta(\Delta \alpha_{\rm had}) = 5 \times 10^{-5}$	$\Delta m_W^{\text{para},\Delta\alpha_{\text{had}}} \approx 1 \text{ MeV}$	$\Delta \sin^2 \theta_{\text{eff}}^{\text{para},\Delta \alpha_{\text{had}}} \approx 1.8 \times 10^{-5}$

- δsin²θ ~ 1 x 10⁻⁴ would be reasonable now!

What's the role of polarization?

- Derive the statistical uncertainty of A_{LR}
 - If only polarized electrons:

 $\Delta \, A_{LR}$ determined by polarimeter uncertainty

 $A_{LR}=1 / P(e-) \times [\sigma_{L} - \sigma_{R}] / [\sigma_{L} + \sigma_{R}]$

– Pure error propagation:

uncertainty depends on $\Delta \sigma_L$, $\Delta \sigma_R$, $\Delta P/P$

- For large statistics, σ (ee -> Z -> had) ~ 30 nb: main uncertainty from ΔP/P~ 0.5 % maybe up to 0. 25%...

Blondel Scheme

- Two polarized beams available
 - Express A_{LR} only by cross sections

$$\sigma = \sigma_{\text{unpol}} [1 - P_{e^-} P_{e^+} + A_{\text{LR}} (P_{e^+} - P_{e^-})],$$

$$A_{\text{LR}} = \sqrt{\frac{(\sigma_{++} + \sigma_{+-} - \sigma_{-+} - \sigma_{--})(-\sigma_{++} + \sigma_{+-} - \sigma_{-+} + \sigma_{--})}{(\sigma_{++} + \sigma_{+-} + \sigma_{-+} + \sigma_{--})(-\sigma_{++} + \sigma_{+-} + \sigma_{--} - \sigma_{--})}}}.$$

- Pure error propagation:

uncertainty depends on $\Delta \sigma_{LL}$, $\Delta \sigma_{LR}$, $\Delta \sigma_{RL}$, $\Delta \sigma_{RR}$ not on $\Delta P/P$!

- Relative measurements wrt flipping polarization needed $\Delta P / P = 0.5$ % sufficient
- Some calibration time in LL and RR required about 10-20% of the time, optimum depends on polarization

- Different anal. powers:
$$\Delta A_{LR} = \Delta A_{LR}^0 \times \sqrt{(1+8/x)}$$
, x~10=Ce/Ze
G. Moortgat-Pick

10

Dependence of A_{LR} **on P(e⁺)**

No. of Z's and precision @ ILC calibration

$\int \mathcal{L}$	No. of Z's	$\int_{\text{days}} \mathcal{L}_{\text{cal}}$	$P(e^{-})$	$P(e^+)$	ΔA_{LR}^0	$\Delta A_{\rm LR}$	$\sin^2 \theta_{\text{eff}}$
6 pb ⁻¹	$1.8 imes10^5$	1	90%	0	—	2.7×10^{-3}	3.4×10^{-4}
			90%	40%	3.3×10^{-3}	4.4×10^{-3}	5.6×10^{-4}
			90%	60%	2.2×10^{-3}	3.0×10^{-3}	3.8×10^{-4}
24 pb ⁻¹	$7.3 imes 10^5$	4	90%	0	—	1.5×10^{-3}	1.9×10^{-4}
			90%	40%	1.6×10^{-3}	2.2×10^{-3}	2.8×10^{-4}
			90%	60%	1.1×10^{-3}	1.5×10^{-3}	1.9×10^{-4}
60 pb ⁻¹	1.8×10^{6}	10	90%	0	—	1.1×10^{-3}	1.4×10^{-4}
			90%	40%	1.0×10^{-3}	1.4×10^{-3}	1.8×10^{-4}
			90%	60%	7.0×10^{-4}	9.4×10^{-4}	1.2×10^{-4}
0.6 fb ⁻¹	18×10^{6}	100	90%	0		8.1×10^{-4}	1.0×10^{-4}
			90%	40%	3.3×10^{-4}	4.4×10^{-4}	5.6×10^{-5}
			90%	60%	2.2×10^{-4}	3.0×10^{-4}	3.8×10^{-5}
0.9 fb ⁻¹	27×10^{6}	150	90%	0	—	7.9×10^{-4}	1.0×10^{-4}
			90%	40%	2.7×10^{-4}	3.6×10^{-4}	4.6×10^{-5}
			90%	60%	1.8×10^{-4}	2.4×10^{-4}	3.1×10^{-5}
1.2 fb ⁻¹	36×10^{6}	200	90%	0	—	7.9×10^{-4}	1.0×10^{-4}
			90%	40%	2.3×10^{-4}	3.1×10^{-4}	4.0×10^{-5}
			90%	60%	1.6×10^{-4}	2.1×10^{-4}	2.7×10^{-5}
1.8 fb ⁻¹	54×10^{6}	300	90%	0	—	7.8×10^{-4}	1.0×10^{-4}
			90%	40%	1.9×10^{-4}	2.6×10^{-4}	3.2×10^{-5}
			90%	60%	$1.3 imes 10^{-4}$	$1.7 imes 10^{-4}$	2.2×10^{-5}

Table 4: Lumi at Z-pole $\mathcal{L}_{cal} = 7 \times 10^{31} \text{ cm}^{-2} \text{s}^{-1}, \ \sigma(e^+e^- \to Z \to had) \sim 30 \text{ nb}, A_{LR} = 0.154, \ \Delta P/P = 0.5\%, \ \mathcal{L}_{++,--}/\mathcal{L} = 0.1$

'HERA' estimates

- Assuming only moderate lumi, see later: L~ 2 x 10³¹cm⁻²s⁻¹
- With 500 days: ~26 x10⁶ Z's expected

P(e⁻)	P(e+)	δsin²θ
30%	30%	5.6 x 10 ⁻⁵
40%	40%	3.8 x 10 ⁻⁵
80%	30%	4.9 x 10 ⁻⁵

Further needs....

• Details still under work, just brain storming

– Stable energy: since $\Delta A_{LR} / \Delta \sqrt{s} \sim 0.2\%$ / GeV

- Low/well understood energy spread
- Helicity flipping, well understood polarization
- Maybe also scan and σ to get partial widths?
- What else?

A few technical remarks

• Option 1:

HERA storage ring with one ring

- No new magnets needed for Z-pole energy !
- Loss: About 660 MeV per turn ...
- Lumi: L~2 x 10³¹ cm⁻²s⁻¹ (about LEP)
- Polarization....? Maybe resonance effects at the sides -> simulation required, but not excluded !
 about 30%-40% (for both beams!) should be fine; spin rotators via dipoles
- Energy width about 100 MeV (at LEP ~70 Mev)

More technical remarks....

• Option 2?

- Maybe linac technology in straight sections?
 - About 5 kmshould be enough for 45 km...
- Critical issue: luminosity?
- Nice features: probably high e⁻ polarization should be available!
- e⁺ polarization: more difficultbut not excluded.

And even more technical ideas

- Option 3: 'Straight' Z-factory?
 - High e⁻ polarization ~90% : should be possible
 - e+ polarization: not with undulator technology
 - Maybe via Laser-Compton backscattering?
 - Maybe via bremsstrahlung of polarized e-?
 - Maybe XFEL line exploitable?
 - Probably lumi critical ?

Conclusions

- Several technical options available
- Polarization, lumi, energy stab. is an issue !
- Physics case extremely good:
 - Sensitive to Higgs prediction
 - Sensitive zu SUSY effects, even if nothing@LHC
 - Sensitive to tests of SM at quantum level
- Very powerful option to test, treat and 'determine' new physics options!

Dependence of A_{LR} on L₊₊ and L₋₋

- What is the optimum time running in (++) and (--) mode?
- Assume P(e⁺)=40%
- Best value at about
- $(L_{++} L_{--})/L_{int} = 25\%$
- But does not significantly reduce the uncertainty!

