
Submitted to the

International Europhysics Conference on High Energy Physics

July 17 - 23, 2003, Aachen, Germany

Abstract: 538 Session: HP

Deep inelastic diffractive scattering

measured with the ZEUS Forward Plug

Calorimeter

ZEUS Collaboration

2nd July 2003

Abstract

Inclusive diffraction in deep inelastic scattering has been studied with the ZEUS de-

tector at HERA using 1998-1999 data with an integrated luminosity of 4.2 pb−1. The

accessible range in hadronic mass, MX , produced by diffractive dissociation of the

exchanged photon, has been substantially increased by the installation of a forward

plug calorimeter in the direction of the incoming proton. Results are presented for

the kinematic range 2.2 < Q2 < 80 GeV2, 37 < W < 245 GeV and MX < 35 GeV.

The diffractive cross section, σdiff
γ∗p→XN (MX ,W,Q2)/dMX , for MX < 2 GeV shows

a weak dependence on W and a strong decrease with Q2 consistent with a higher

twist behaviour. For larger MX values, a strong rise with W and a leading twist

behaviour are found. The comparison with the total γ∗p cross section shows that at

W = 220 GeV, diffraction with MX < 35 GeV accounts for 19.8+1.5
−1.4% of σtot

γ∗p→XN at

Q2 = 2.7 GeV2, decreasing slowly to 10.1+0.6
−0.5% at Q2 = 27 GeV2. Fits of the form

dσdiff
γ∗p→XN/dMX ∝ W adiff

show adiff rising with Q2 for Q2 > 10 GeV2. The analy-

sis in terms of Pomeron exchange shows an intercept of the Regge trajectory, αIP (0),

lying halfway between αIP (0) = 1 and the αIP (0) values deduced for the total γ∗p

cross section. The diffractive structure function of the proton is presented in terms

of xIP F
D(3)
2 (xIP , β,Q2). For MX < 2 GeV, a weak dependence on xIP and a rapid

decrease with Q2 are found. At larger MX , xIPF
D(3)
2 shows a rapid rise as xIP → 0.

For MX > 8 GeV, xIPF
D(3)
2 is constant with Q2 and consistent with leading twist. The

structure function of the Pomeron, defined as F
D(2)
2 (β,Q2) = x0F

D(3)
2 (x0, β,Q2) where

x0 = 0.01, has a maximum near β = 0.5 consistent with a β(1−β) behaviour, suggest-

ing that the main contribution comes from a Pomeron in a qq state. At β < 0.1, F
D(2)
2

rises as β → 0 and as Q2 increases, showing a pQCD-like evolution of the Pomeron

structure function.





1 Introduction

Quantum Chromodynamics (QCD) in the perturbative DGLAP [1] expansion permits

a precise description of structure functions measured in inclusive deep inelastic lepton-

nucleon scattering (DIS). However, for the diffractive component of DIS, ep → e′XN ,

(N = proton or low-mass excited nucleonic system) QCD is still far from achieving such

success. The observation of events with a large rapidity gap at HERA provided the

unprecedented opportunity to study diffractive scattering in DIS over a large range in

spatial resolution and energy transfer between the lepton and the incoming proton. The

spatial resolution is determined by the square of the four-momentum transfer (−Q2 = q2)

from the electron to the hadronic system, XN . The energy dependence of the diffractive

cross section is studied with respect to the c.m. energy, W , of the hadronic system.

Contributions from specific vector mesons (ρ0, ω, φ, J/Ψ, ..) and the onset of contributions

from the excitation of the heavy quarks c, b are best studied using the mass MX of the

system X.

In a t-channel picture, diffraction is mediated by the exchange of a colourless object

carrying the quantum numbers of the vacuum (at lowest order QCD a quark-antiquark

or two-gluon system) between the virtual photon and the proton, known generically as

the Pomeron. The analogue to the proton stucture function F2(x, Q2), the diffractive

structure function F
D(3)
2 [2], is parametrized in terms of Q2, the momentum fraction x

IP

of the proton carried by the Pomeron, and the momentum fraction of the struck quark

within the Pomeron, β, where x
IP

= [(P − N) · q]/(P · q) ≈ (M 2
X + Q2)/(W 2 + Q2) and

β = Q2/[2(P − N) · q] ≈ Q2/(M2
X + Q2). The variables x

IP
and β are related to the

Bjorken scaling variable x, the fraction of the proton momentum carried by the struck

quark, by x = β · x
IP

. The data from this analysis are presented in terms of both sets of

variables, (MX , W, Q2) and (β, x
IP

, Q2).

In this analysis, inclusive diffraction in deep inelastic scattering (DIS) is studied using

the MX -method [3], [4]. High statistics measurements of DIS diffractive scattering over

a wide kinematic range became accessible by the addition of a forward plug calorimeter

(FPC) inside the ZEUS forward uranium calorimeter (FCAL). The FPC increased the

accessible MX range by a factor of about 1.7 and allowed a substantial reduction of con-

tributions from high mass nucleon dissociation. The large range in MX and Q2 allows a

detailed following of the evolution of the diffractive cross section. Results are presented

for the kinematic range 37 < W < 245 GeV, MX < 35 GeV and 2.2 < Q2 < 80 GeV2.

The proton structure function F2 as well as the total γ∗p cross section have been measured

allowing a direct comparison of the W and Q2 dependences of diffractive and inclusive

scattering.
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2 Experimental set-up

The data were taken with the ZEUS detector at HERA in 1998/9 when electrons of 27.5

GeV collided with protons of 920 GeV. The analysis is based on an integrated luminosity

of 4.2 pb−1.

The ZEUS detector is described in detail elsewhere [5]. Events produced by deep inelas-

tic scattering were identified using information from the uranium-scintillator calorimeter

(CAL) consisting of the forward (FCAL), barrel (BCAL) and rear (RCAL) sections, the

forward plug calorimeter (FPC), the central tracking detector (CTD), the small angle rear

tracking detector (SRTD) [6] and the hadron-electron separator (RHES) which consists

of a layer of 10000, 2.89 × 3.05 cm2 silicon-pad detectors inserted in RCAL at a depth of

3.3 radiation lengths. The beam hole in the RCAL had been reduced to 20 × 8 cm2 [7],

which allowed detection of electrons scattered under small angles and hence small Q2.

2.1 The Forward Plug Calorimeter

The FPC [8] was used to measure the energy of particles in the pseudorapidity range

between η = 4.0 − 5.0. The FPC is a lead-scintillator sandwich calorimeter read out

by wave length shifter (WLS) fibers and photomultipliers (PMT). It was installed in the

20 × 20 cm2 beam hole of the forward uranium-scintillator calorimeter (FCAL) of the

ZEUS detector. The FPC has outer dimensions of 192 × 192 × 1080 mm3 and a hole of

3.15 cm radius for the passage of the beams. The minimum angle for particle detection

was 12 mrad which corresponds to a pseudorapidity of 5.1. In the FPC, lead plates of

15 mm thickness alternated with scintillator layers of 2.6 mm. The WLS fibers had 1.2

mm diameter and passed through 1.4 mm holes in the lead and scintillator layers. The

holes were located on a 12 mm grid. The FPC was subdivided longitudinally into an

electromagnetic (10 layers) and a hadronic section (50 layers) giving a total of 5.4 nuclear

absorption lengths. The scintillator layers consisted of tiles forming towers which were

read out individually. The cell cross sections were 24×24 mm2 in the electromagnetic and

48×48 mm2 in the hadronic section. The FPC was tested and calibrated with electron,

muon and hadron beams. The energy resolution for electrons was σE/E = (0.41 ±
0.02)/

√
E⊕0.062±0.002, (E in GeV). When installed in the FCAL the energy resolution

for pions was σE/E = (0.65± 0.02)/
√

E ⊕ 0.06± 0.01 (E in GeV) and the e/h ratio was

unity. The relative calibration of the FPC cells was regularly adjusted using measurements

from a 60Co source, which resulted in an average scale uncertainty of 4% (3%) for the

EMC (HAC) cells [9].
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3 Data selection and reconstruction of

event kinematics

The reaction e−(k) p(P ) → e−(k′) + anything at fixed squared centre-of-mass energy,

s = (k+P )2, is described in terms of Q2 ≡ −q2 = (k−k′)2 and Bjorken x = Q2/(2(P ·q)).
At HERA s ≈ 4EeEp, where Ee = 27.5 GeV and Ep = 920 GeV denote the electron and

proton energies, leading to
√

s = 318 GeV. The fractional energy transferred to the proton

in its rest system is y = Q2/(sx).

Scattered electrons were identified with an algorithm based on a neural network [10].

The direction and energy of the scattered electron were determined from the combined

information given by CAL, SRTD, HES and CTD. The impact point of the electron on

the face of the RCAL had to lie outside an area of 26.6×17 cm2 (box cut) centered on the

beam axis. Further cuts on the impact point were imposed to ensure reliable measurement

of the electron energy. The minimum energy of the scattered electron was E ′

e > 10 GeV.

The hadronic system was reconstructed from energy-flow objects (EFO) [11] which com-

bine the information from tracks (CTD) and clusters (CAL). A minimum of 400 MeV of

hadronic energy was required.

Corrections were applied for shower energy leaking across the RCAL beam hole from the

scattered electron or the produced hadronic system.

The events studied in this analysis are of the type ep → e′X rest, where X denotes the

hadronic system observed in the detector for rapidities −3.5 < η < 5.2, and rest the

particle system escaping detection through the beam holes.

The value of Q2 is reconstructed from the measured energy E ′

e and scattering angle θe, of

the electron,

Q2 = 2EeE
′

e(1 + cos θe). (1)

The value of W is reconstructed using the weighted average of the values determined from

the electron and the hadron measurements. The mass MX was determined by summing

over all EFO’s not assigned to the scattered electron,

M2
X = (

∑
Ph)

2 (2)

where Ph is the four-momentum vector of the EFO h.

The Z-coordinate of the event vertex was required to satisfy −54 < Zvtx < 50 cm. In order

to reduce background from photoproduction, the requirement 46 <
∑

i=e,h(Ei−PZi) < 64

GeV was imposed, where the sum is performed over the scattered electron and all hadronic
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EFO’s. A “minimum energy cut” was imposed on the hadronic system, requiring at

least 0.4 GeV deposited in the RCAL outside of the first inner ring or in the BCAL; or

yFB
JB =

∑
h(Eh − PZh)/(2Ee) summing over all hadronic EFO’s in FCAL plus BCAL to

be yFB
JB > 0.004.

Candidates for QED-Compton scattering consisting of a scattered electron and a photon

with momentum balance in the plane transverse to the beams were removed.

The contamination from electron (proton) beam-gas scattering was negligible as measured

using unpaired electron (proton) bunches.

A total of about 800,000 events passed the selection cuts. For the analysis, about 612,000

events with 2.2 < Q2 < 80 GeV2, 37 < W < 245 GeV and MX < 35 GeV were used.

4 Data corrections

The data were corrected for detector acceptance and resolution by a suitable combina-

tion of several Monte Carlo (MC) models. Events from standard non-diffractive processes

(nondif) were produced within the framework provided by DJANGOH 1.1 [12]. DJAN-

GOH is interfaced to the MC programs HERACLES [13], LEPTO [14], ARIADNE [15]

and JETSET [16] and includes QED and QCD radiative effects. The events have been gen-

erated using the CTEQ4D next-to-leading order parton density parametrizations [17] and

setting the longitudinal structure function FL of the proton to zero. Since the CTEQ4D

parametrization does not reproduce the measured values for the proton structure function

F2(x, Q2) at Q2 < 2 GeV2 a parametrization of the measured F2 data from Haidt [18] has

been used to reweight the generated non-diffractive events.

Hadronic final states from diffractive DIS interactions, where the proton does not dis-

sociate, ep → eXp (but excluding ρ0 production via ep → eρ0p), were simulated with

SATRAP which is based on the saturation model of Ref. [19] and interfaced to the RAP-

GAP framework [20]. The production of ρ0 mesons, ep → eρ0p, was simulated with

JETSET by adding the special module RHOP which uses the measured cross sections

and production and decay angular distributions [21], [22].

The diffractive process in which the proton dissociates, ep → eXN , was simulated with

SATRAP by adding a special module called SANG [23]. The mass spectrum of the system

N was generated according to dσ/dMX ∝ (1/M2
X)α with α ≈ 1. The fragmentation of

the system N was simulated using JETSET. The reweighting procedure to match the MC

predicted MN spectrum for MN > 2.3 GeV with that of the data is described below.

The non-diffractive and diffractive DIS processes were generated starting at Q2 = 0.5

GeV2.
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To estimate the background from photoproduction, events were generated with PYTHIA [16]

for Q2 < 0.1 GeV2 and y > 0.6. Events with lower values of y do not enter the data sam-

ple since the scattered electron, which escapes undetected through the rear beam hole,

carries enough energy such that the hadronic system observed in the detector fails the

cut on
∑

i(Ei − PZi).

First-order electroweak corrections for the non-diffractive and diffractive processes were

generated with HERACLES.

The comparison of the number of events in the region 30 <
∑

i(Ei − PZi) < 46 GeV

observed in the data and predicted by MC for every (W, Q2) bin provided an important

check of the accuracy of the MC models, in particular at the lower values of Q2.

The measurement of the total hadronic energy was validated by requiring a balance of

the transverse momenta of the scattered electron and the observed total hadronic system.

Transverse momentum balance, on average, was achieved by increasing the hadronic en-

ergies by a factor of 1.065, in agreement with the findings from MC simulation. The mass

Mmeas
X , reconstructed from the energy-corrected EFO’s, required an additional correction

factor of 1.10 which was determined with MC simulated events.

The resolutions expected for the kinematical variables were estimated by MC simulation

for diffractive events of the type ep → e′Xp. For the Q2, W and MX bins considered in

this analysis the r.m.s. resolutions are approximately given by σ(Q2)
Q2 = 0.25

(Q2)1/3
, Q2 in units

of GeV2 and σ(W )
W

= 1.1
W 1/2 GeV, σ(MX) = 0.38

M
1/3

X

GeV, with W, MX in units of GeV.

The cross sections and structure functions are quoted at the following reference values:

• Q2
ref : 2.7, 4.0, 6.0, 8.0, 14.0, 27.0, 55.0 GeV2;

• Wref : 45, 65, 85, 115, 150, 180, 220 GeV;

• MXref : 1.2, 3.0, 6.0, 11.0, 20.0, 30 GeV.

4.1 Limiting the contribution from diffractive proton dissocia-

tion

In addition to single dissociation, γ∗p → Xp, processes where the proton also dissociates,

γ∗p → XNdissoc, can contribute to the diffractive event sample. Events from double

dissociation can be grouped into those where Ndissoc has a low mass, disappearing in the

beam hole of the FPC without energy deposition in FPC or CAL, and those with a large

mass where decay particles from Ndissoc deposit energy in the calorimeters. In the latter

case, the reconstructed mass of the total hadronic system is larger than the mass of X.

Such events lead to a distortion of the ln M 2
X distribution at high MX values. In order to

study this effect, double dissociative events were generated using SANG.
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The parameters of SANG, in particular the shape of the MN spectrum and the overall

normalization were checked with a subset of the data that dominated the contribution

from double dissociation. The study showed that, on average, events generated with a

mass of the dissociated system MN < 2.3 GeV deposit less than 1 GeV of energy in the

FPC (EFPC), while events with MN > 2.3 GeV deposit more than 1 GeV. Therefore, the

contribution from double dissociation predicted by the reweighted SANG for EFPC > 1

GeV was subtracted from the data as a function of MX , W and Q2. It was less than 5%

for MX/W < 0.05, 15% at MX/W = 0.1 and 31% at MX/W = 0.14. The diffractive

cross section presented below is therefore the sum of the contributions from the Xp and

XN, MN < 2.3 GeV contributions.

5 Extraction of the diffractive contribution

The diffractive contribution was extracted from the data using the MX method [3], [4],

which is based on the fact that the diffractive and non-diffractive contributions have

very different lnM 2
X distributions as shown in Fig. 1. The diffractive contribution is

the plateau-like structure at low ln M 2
X while the non-diffractive contribution peaks at

high ln M2
X and has an exponential fall-off towards the lower MX values, dN/d lnM 2

X ∝
exp(b ln M2

X). The peak position scales in ln(M 2
X/W 2) and the slope b is approximately

independent of W and Q2. These characteristics are properties of events with uniform,

random and uncorrelated particle production along the rapidity axis. The exponential in

ln M2
X and the scaling in ln(M 2

X/W 2) are directly connected to the exponential suppression

of large rapidity gaps by QCD radiation.

The diffractive contribution was defined to be the excess of events at lower MX above

the exponential fall-off of the non-diffractive contribution in lnM 2
X . The exponential fall

permits the subtraction of the non-diffractive contribution and, therefore, the extraction

of the diffractive contribution without assuming the precise MX dependence of the latter.

The distribution is of the form:

dN

d lnM2
X

= D + c · exp(b ln M 2
X), ln M2

X < ln W 2 − η0, (3)

where D is the diffractive contribution and the second term the non-diffractive con-

tribution. The quantity (ln W 2 − η0) specifies the maximum value of ln M 2
X up to

which the exponential behaviour of the non-diffractive contribution holds. A value of

η0 = 1.8 was found from the data. Equation 3 is applied to the data in the limited range

ln W 2 − 5.5 < ln M2
X < lnW 2 − η0 to determine the parameters b and c. The diffractive

contribution was not taken from the fit but was obtaineded by subtracting from the ob-
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served number of events the non-diffractive contribution determined from the fitted values

of b and c.

The diffractive contribution is expected to be a slowly varying function of ln M 2
X when

M2
X > Q2 and to approach, in the asymptotic limit, a constant lnM 2

X distribution at

large MX . Therefore, D was assumed to be constant over the limited MX range ln W 2 −
5.5 < lnM2

X < ln W 2 − η0. The non-diffractive contribution in the (MX , W, Q2) bins was

measured in two steps. In the first step, the slope b was determined as an average over

the fits to the data for the intervals with W between 134 and 245 GeV and Q2 between

2.2 and 10 GeV2. The fits yielded bnom = 1.67 ± 0.07. In the second step, the fits were

repeated for all (W, Q2) intervals, using b = bnom as fixed parameter and assuming D to

be constant.

6 Evaluation of the cross sections

For the final analysis, only bins where the fraction of non-diffractive background was

less than 50% were kept. The average differential cross section for ep scattering in a

given (MX , W, Q2) bin was obtained by correcting the number of diffractive events for

acceptance and smearing.

The systematic uncertainties of the cross sections were estimated by varying the cuts

and the algorithms used to select the events - at the levels of data and MC simulation -

and repeating the full analysis for 16 systematic variants. The total systematic error for

each bin was determined by adding quadratically the individual systematic uncertainties,

separately for the positive and negative contributions. The total errors were then given

by adding the statistical and systematic errors in quadrature.

7 The proton structure function F2 and the total γ∗p

cross section

The differential cross section for inclusive ep scattering mediated by virtual photon ex-

change is given in terms of the structure functions Fi of the proton:

d2σe−p

dxdQ2
=

2πα2

xQ4
[Y+F2(x, Q2) + Y−xF3(x, Q2) − y2FL(x, Q2)](1 + δr(x, Q2)) (4)

where Y± = 1± (1−y)2 and x and Q2 are defined at the hadronic vertex. In the Q2 range

considered in this analysis, Q2 < 80 GeV2, the contributions from Z0 exchange and Z0 -
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γ interference are well below 1%. In the above equation, FL is the longitudinal structure

function. The contribution of FL to the cross section relative to that from F2 is given by
y2

1+(1−y)2
FL

F2
. The FL measurements and the results on FL from a QCD fit to the structure

function data by H1 [24], together with similar results from a QCD fit by ZEUS [25],

have been approximated by FL = 0.2F2. The longitudinal contribution in the highest y

(= lowest x) bin of this analysis is found to be 3.8%, decreasing to 1.5% for the next to

highest y-bin. For the other bins, the FL contribution is below 1%.

The F2 values measured in this analysis are shown in Fig. 2 together with those from

previous measurements. Good agreement is observed over the full x range at all Q2-

values. The proton structure function F2 rises rapidly as x → 0 for all values of Q2.

For comparison with the diffractive cross section, the total cross section for virtual photon

proton scattering,

σtot
γ∗p ≡ σT (x, Q2) + σL(x, Q2) (5)

has been extracted from the F2 measurements using

σtot
γ∗p =

4π2α

Q2(1 − x)
F2(x, Q2) (6)

which is valid for 4m2
px

2 � Q2 [26].

8 Differential cross section for γ∗p → XN

The cross section for the process ep → eXN can be expressed in terms of the transverse

(T) and longitudinal (L) cross sections, σdiff
T and σdiff

L , for γ∗p → XN as

dσdiff
γ∗p→XN(MX , W, Q2)

dMX
≡

d(σdiff
T + σdiff

L )

dMX
≈

2π

α

Q2

(1 − y)2 + 1

dσdiff
ep→eXN(MX , W, Q2)

dMXd lnW 2dQ2
. (7)

Here, a term [1 − y2

(1−y)2+1

σdiff

L

σdiff

T +σdiff

L
] multiplying [σdiff

T + σdiff
L ] has been neglected. Since

y ≈ W 2/s, the effect is less than 4% for W < 200 GeV, and 7% in the highest W bin,

200 - 245 GeV, if σdiff
L < 0.5 σdiff

T .1

The diffractive cross section for γ∗p → XN , where MN < 2.3 GeV, is presented in Fig. 3.

Compared to the previous ZEUS analysis of this type [4], a factor of four more data points

and a large increase in the kinematic range is achieved.

1 The processes γ∗p → V p, V = ρ0, φ contribute about one third of the diffractive cross section measured

in the lowest MX bin (MX < 2 GeV) and are dominated by longitudinal photon production. Under

the assumption that these are the only contributions from longitudinal photons σdiff

L
< 0.5 σdiff

T
at

MX < 2 GeV. The measured data on J/Ψ-production indicate that this process contributes less than

10% of the diffractive cross section in the bin MX = 2 − 4 GeV.
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8.1 W dependence of the diffractive cross section

For MX < 2 GeV, the diffractive cross section dσdiff/dMX is rather constant with W . By

contrast, at higher MX , up to 8 < MX < 15 GeV, a strong rise with W is observed for all

values of Q2. This was quantified by fitting the data for each Q2, MX bin with MX < 15

GeV to the form

dσdiff
γ∗p→XN

dMX
= h · W adiff

(8)

with h and adiff treated as free parameters. The resulting adiff values are shown in Fig. 4

for the different MX intervals as a function of Q2. For MX > 4 GeV there is a clear

tendency for adiff to rise with Q2.

In Regge models, soft diffraction is described by the exchange of the Pomeron trajectory,

αIP (t): dσ/dt ∝ e(2αIP (t)−2)·ln(s/s0)+f(t) where t is the four-momentum transfer squared from

γ∗ to X, t = (γ∗−X)2, f(t) characterizes the t-dependencies of the pN and γ∗X vertices,

and s0 = 1 GeV2. The t - averaged αIP (t) is related to adiff via αIP = 1 + adiff/4, Hadron-

hadron scattering leads to αsoft
IP (0) = 1.096+0.012

−0.009 [27]. Averaging over t reduces this value

by about 0.02 leading to αsoft
IP = 1.076+0.012

−0.009 and to asoft = 0.302+0.048
−0.036. This is shown in

Fig. 4 by the shaded band marked ’soft Pomeron’. For 0 < MX < 2 GeV, the data are

in good agreement with this expectation. For Q2 > 10 GeV2 and MX > 2 GeV, however,

adiff lies above asoft, the probability for adiff ≤ asoft being less than 0.1 %. The data give

clear evidence for adiff rising with Q2.

In Figure 5 the Q2-dependence of αtot
IP (0) obtained in this analysis from the W -dependence

of the total γ∗p-cross section, αtot
IP (0) = 1 + λ, is compared with αdiff

IP (0) = αIP + 0.02

obtained from the diffractive cross section for 4 < MX < 8 GeV. Both measurements

are above the soft Pomeron band. The diffractive result lies approximately half-way in

between the soft Pomeron and the result obtained from σtot
γ∗p which is in contradistinction

to the naive expectation of equal αIP (0) values for the two processes. In other words, the

Pomeron trajectory extracted for diffraction is half as steep as that obtained from σtot
γ∗p.

The diffractive data are well described by the shaded band which represents ‘half’ of the

W rise of the total cross section: αIP (0) = 1 + λ/2. In other words, for MX > 2 GeV,

the diffractive cross section has approximately the same W dependence as the total cross

section.

8.2 MX dependence of the diffractive cross section

The MX dependence of the diffractive cross section for W = 220 GeV is shown in Fig. 6

for different values of Q2. The highest W region is used since it provides the largest range
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in MX . The cross section has been multiplied by a factor of Q2 since a leading twist

behaviour would give an approximate constancy as a function of Q2. The region of MX

below about 6 GeV shows a rapid decrease with Q2 which is evidence for a predominantly

higher twist behaviour. Above MX = 11 GeV, little dependence on Q2 is observed. In

this region diffraction is of leading twist.

8.3 Diffractive contribution to the total cross section

The ratio of the diffractive cross section to γ∗p cross section,

rdiff
tot ≡

σdiff

σtot
=

∫ Mb

Ma
dMXdσdiff

γ∗p→XN,MN<2.3GeV/dMX

σtot
γ∗p

(9)

was derived for all MX bins, with σtot
γ∗p taken from this analysis. The ratio rdiff

tot is shown in

Fig. 7. Different W and Q2 behaviour is observed for different MX regions. For MX < 2

GeV, rdiff
tot is falling or constant with W , while for the higher MX bins, it is constant

or even slightly increasing with W . The low MX bins exhibit a strong decrease of rdiff
tot

with increasing Q2, while, for MX > 4 GeV, this decrease becomes less dramatic and for

MX > 8 GeV almost no Q2 dependence is observed. Here, the diffractive cross section has

approximately the same W and Q2-dependence as the total cross section, in agreement

with the conclusion drawn from Fig. 5.

The ratio of the total observed diffractive cross section to the total cross section, σdiff
obs (MX <

35 GeV, MN < 2.3 GeV)/σtot, has been evaluated as a function of Q2 for the highest W

bin, W = 200 − 245 GeV, which provides the highest reach in the diffractive mass MX :

0 < MX < 35 GeV. The diffractive contribution is a substantial fraction of the total cross

section as can be seen from σdiff
obs (MX < 35 GeV, MN < 2.3 GeV)/σtot, which reaches

• 19.8+1.5
−1.4% at Q2 = 2.7 GeV2,

• 16.5+1.0
−0.9% at Q2 = 4 GeV2,

• 14.0+0.8
−0.8% at Q2 = 8 GeV2,

• 12.3+0.8
−0.8% at Q2 = 14 GeV2,

• 10.1+0.6
−0.7% at Q2 = 27 GeV2.
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9 Diffractive structure function of the proton

The diffractive structure function of the proton can be related to the diffractive cross

section for W 2 � Q2 as follows:

1

2MX

dσdiff
γ∗p→XN(MX , W, Q2)

dMX

=
4π2α

Q2(Q2 + M2
X)

x
IP

F
D(3)
2 (β, x

IP
, Q2) (10)

If F
D(3)
2 is interpreted in terms of quark densities, it specifies the probability to find, in

a diffractive process, a quark carrying a momentum fraction x = βx
IP

of the proton mo-

mentum.

Figure 8 shows x
IP

F
D(3)
2 as a function of x

IP
for different selections of β and Q2. For the

lowest MX region which corresponds to high β, little dependence on x
IP

is observed, in

contrast to lower β selections where x
IP

F
D(3)
2 rises strongly as x

IP
→ 0 reflecting the rapid

increase of the diffractive cross section with rising W . The strong increase of x
IP

F
D(3)
2 as

x
IP

→ 0 is reminiscent of the rise of the proton structure function F2(x, Q2) as x → 0

which in pQCD is attributed to the rapid increase of the gluon density in the proton as

x → 0.

9.1 The structure function of the Pomeron F
D(2)
2 (β, Q2)

It has been suggested [2] that F
D(3)
2 (xIP , β, Q2) should factorize into a term which depends

on the probability of finding a Pomeron carrying a fraction x
IP

of the proton momentum,

and the structure function of the Pomeron, F
D(2)
2 , given in terms of the quark densities

of the Pomeron which depend on β and Q2:

F
D(3)
2 (x

IP
, β, Q2) = fIP (x

IP
, Q2) · F (D(2)

2 (β, Q2) (11)

where fIP (x
IP

, Q2) is generically called the Pomeron flux factor. In this model, the flux

factor is assumed to be of the form

fIP (x
IP

, Q2) = (C/x
IP

) · (x0/xIP
)n(Q2), (12)

and taking for the arbitrary normalization constant C = 1 leads to

F
D(2)
2 (β, Q2) = x0 · F D(3)

2 (x0, β, Q2). (13)

We note that this form gives a good description of the data, see below.

The values of F
D(2)
2 (β, Q2) were extracted from the data as follows. For a given (Q2, β)

combination, those x
IP

F
D(3)
2 measurements with 0.5 ·x0 < x

IP
< 1.5 ·x0 were selected. For
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each measurement selected, the x
IP

F
D(3)
2 value measured at x

IP meas was transported to

x
IP

= x0 using the BEKW(mod) fit (see Eq. 19 below). On average, the difference between

measured and transported value was of the order of 5%. Finally, for every (Q2, β) point

the weighted average of the selected measurements was determined.

The resulting measurements of F
D(2)
2 (β, Q2) are presented in Fig. 9. Several aspects are

noteworthy. Firstly, there is a large contribution from the valence region, β > 0.2. In

fact, F
D(2)
2 (β, Q2) has a maximum near β = 0.5 consistent with a β(1−β) variation. This

suggests strongly that the lowest state of the Pomeron in this process is qq. The data

indicate also that the region of high β decreases as Q2 increases from 14 - 27 GeV2. For

β < 0.1, F
D(2)
2 is seen to rise as β → 0, and to rise with increasing Q2. This behaviour is

very similar to that of the proton structure function F2.

9.2 Comparison with the BEKW model

The BEKW model [28] parametrises the diffractive cross section in terms of qq and qqg)

dipoles produced by transverse and longitudinal photons, interacting with the proton.

Specifically,

x
IP

F
D(3)
2 (β, x

IP
, Q2) = cT · F T

qq + cL · F L
qq + cg · F T

qqg (14)

where

F T
qq = (

x0

x
IP

)nT (Q2) · β(1 − β) (15)

F L
qq = (

x0

x
IP

)nL(Q2) ·
Q2

0

Q2 + Q2
0

· [ln(
7

4
+

Q2

4βQ2
0

)]2 · β3(1 − 2β)2 (16)

F T
qqg = (

x0

x
IP

)ng(Q2) · ln(1 +
Q2

Q2
0

) · (1 − β)γ. (17)

The original BEKW model includes also a higher twist term for (qq) produced by trans-

verse photons. Since we found that our data are insensitive to this term, it has been

neglected. The coefficients cT , cL, cg are to be determined from experiment. For F L
qq we

have replaced the term
Q2

0

Q2 provided by BEKW by the factor
Q2

0

Q2+Q2
0

to avoid problems as

Q2 → 0. The strong rise of αIP (0) with ln Q2 observed in the present data suggested to

use for n(Q2) the form :

n(Q2) = n0 + n1 ln(1 +
Q2

Q2
0

). (18)

This modified BEKW form will be refered to as BEKW(mod). Fits were performed by

adding the statistical and systematic errors in quadrature. Taking x0 = 0.01 and Q2
0 = 0.4
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GeV2, the BEKW form gives an excellent description of the data, viz. χ2 = 127 for 193

d.o.f . The fit showed n0 and n1 for the longitudinal component to be zero, within errors.

The fit showed also that, within errors, n(Q2) is the same for the T and g contributions,

viz. nT
1 = 0.0659± 0.0037 and ng

1 = 0.0686± 0.0125, which implies that the Pomeron flux

is the same for the (qq) and (qqg) components produced by transverse photons. This led

finally to the following results:

cT = 0.117 ± 0.003

cL = 0.171 ± 0.012

cg = 0.00926 ± 0.00033

nT,g
1 = 0.0662 ± 0.0032

γ = 8.32 ± 0.51 (19)

with χ2 = 132 for 198 d.o.f. The value of the power γ = 8.32± 0.51 is considerably larger

than the value of about three expected by BEKW.

Figure 10 compares the measurements of x
IP

F
D(3)
2 (β, x

IP
, Q2) with the BEKW(mod) fit.

The large and medium β regions are dominated by the (qq) contribution produced by

transverse photons. For β < 0.1, the dominant contribution is due to (qqg) production

by transverse photons.

Figure 11 compares the BEKW(mod) fit with the measurements of F
D(2)
2 . In general, the

BEKW(mod) curves describe the data well. However, as β → 0 the data tend to rise more

rapidly with rising Q2 than predicted by the BEKW(mod) fit. The dominating term at

small values of β is F T
qqg.

A better description of the low β region can be obtained by replacing the qqg-term of the

BEKW model, F T
qqg, by the following radiation term:

Frad = (
x0

x
IP

)nxrad(Q2)[(
1

β
)nβrad(Q2) − 1](1 − β)γ (20)

The constant β0 was taken to be 0.1. The xIP dependence for Frad was assumed to be the

same as for Fqq, nxrad(Q2) = nT
1 · ln(1 + Q2

Q2
0

). The power nβrad was assumed to be of the

form nβrad(Q2) = nR
1 · ln(1 + Q2

Q2
0

). Treating cT , cL, crad, n
T
1 , nR

1 and γ as free parameters -

where crad is the factor multiplying Frad - the fit yielded:
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cT = 0.1128 ± 0.0012

cL = 0.178 ± 0.011

crad = 0.116 ± 0.024

nT
1 = 0.0682 ± 0.0016

nR
1 = 0.0175 ± 0.0034

γ = 2.90 ± 0.22 (21)

with χ2 = 144 for 196 d.o.f. It is noteworthy that the replacement of the qqg term by

the radiation term gives a good description of the data. Furthermore, γ, the power of

the (1 − β) factor agrees with the value of three expected by BEKW. The fit results are

compared in Fig. 12 with the F
D(2)
2 measurements. Good overall agreement with the data

as well as agreement with the trend of the data as β → 0 and/or as Q2 increases is now

obtained.

10 Summary

Results have been presented on the proton structure function and on diffraction in deep

inelastic scattering. Diffraction has been measured over a substantially larger kinematic

region compared to our previous MX - analysis, namely 2.2 < Q2 < 80 GeV2, 37 < W <

245 GeV and MX < 35 GeV, as a result of the addition of a forward plug calorimeter

(FPC). The FPC has also allowed tighter control over diffractive double dissociation,

limiting its contribution to MN < 2.3 GeV.

From proton structure function F2(x, Q2) the total cross section σtot
γ∗p has been deduced as

a function of Q2 and W , and has been analyzed in terms of the intercept of the Pomeron

trajectory, αIP (0). A strong rise of αIP (0) with Q2 is observed.

The diffractive cross section is presented in terms of Q2, W and MX . For MX < 2 GeV,
dσdiff

γ∗p→XN
(MX ,W,Q2)

dMX
shows only a weak dependence on W but a strong decrease with Q2.

For MX > 2 GeV, a strong rise with W is observed while the dependence on Q2 becomes

weak as MX increases. The analysis in terms of Q2 dσdiff

γ∗p→XN

dMX
as a function of MX shows for

MX < 2 GeV a rapid decrease with Q2, characteristic for a higher twist behaviour. For

MX > 8 GeV, almost no dependence on Q2 is observed which shows that in this region

diffraction scattering is of leading twist.

The Q2 and W behaviour of the diffractive and total cross sections has also been studied

in terms of the ratio rdiff
tot ≡ σdiff

σtot . For MX < 2 GeV, rdiff
tot is falling with W while for
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MX > 2 GeV it is independent of W . In terms of Q2, rdiff
tot is falling rapidly with Q2

for MX < 2 GeV, while for MX > 8 GeV rdiff
tot is approximately constant with Q2. The

comparison of the diffractive contribution observed for MX < 35 GeV with the total cross

section shows that for W = 220 GeV diffraction contributes at least 19.8+1.5
−1.4% to γ∗p

scattering at Q2 = 2.7 GeV2. With increasing Q2 the diffractive contribution decreases

slowly reaching 10.1+0.6
−0.7% at Q2 = 27 GeV2.

Fits of the diffractive cross section to the form
dσdiff

γ∗p→XN

dMX
= h ·W adiff

show strong evidence

for adiff rising with Q2, once Q2 is above 10 GeV2. The analysis in terms of Pomeron ex-

change shows the resulting intercept of the Regge trajectory, αIP (0), lies halfway between

αIP (0) = 1 and the αIP (0) values deduced for the total γ∗p cross section.

The diffractive structure function of the proton, multiplied by x
IP

, x
IP

F
D(3)
2 (x

IP
, β, Q2),

has been measured as a function of x
IP

and Q2 for different values of MX . For MX < 2

GeV, the diffractive structure function is approximately constant as a function of x
IP

and

rapidly decreasing with Q2. For MX > 2 GeV, x
IP

F
D(3)
2 increases rapidly as x

IP
→ 0 but

is rather constant as a function of Q2 which indicates higher twist behaviour for MX < 2

GeV, leading twist behaviour for MX > 8 GeV and a transition region in between.

A good description of the data is obtained by a fit with a modified version of the BEKW

model. It is remarkable that, within errors, the fit yields the same Pomeron flux for the

(qq) and (qqg) contributions produced by transverse photons where the Pomeron flux

is assumed to be of the form 1/x
IP
· (x

IP
/x0)

1+lnQ2/Q2
0 . Within the model, the diffractive

structure function at low and medium values of β is dominated by diffractive contributions

from transverse photons. At low β < 0.1, the largest contribution to x
IP

F
D(3)
2 results from

(qqg) production. As β increases, the (qq) - contribution becomes more important. The

contribution from production by longitudinal photons is only substantial at β > 0.9.

The structure function of the Pomeron, defined as F
D(2)
2 (β, Q2) = x0F

D(3)
2 (x0, β, Q2), with

x0 = 0.01, shows several remarkable properties. In the valence region, β > 0.1, it exhibits

a maximum near β = 0.5 consistent with a β(1 − β) variation, suggesting that the main

contribution comes from a Pomeron in a qq state. There is also an indication that F
D(2)
2

decreases at high β as Q2 increases. In the sea region, β < 0.1, F
D(2)
2 is rising as β → 0,

and is rising as Q2 increases. These features observed at high and low β strongly suggest

a pQCD-like evolution of the Pomeron structure function F
D(2)
2 (β, Q2) with β and Q2. A

QCD-inspired radiation term gives a good decription of xIPF
D(3)
2 and F

D(2)
2 .
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Figure 1: Reaction γ∗p → X + anything, where X is the system observed in the
detector. Shown are distributions of ln M 2

X , MX in units of GeV, at the detector
level for different Q2, W bins. The full points with error bars show the data. The
shaded areas show the non-diffractive contributions as predicted by DJANGOH. The
diffractive contributions from γ∗p → X + p (γ∗p → X + Ndissoc, MN < 2.3 GeV)
as predicted by SATRAP+RHOP (SANG) are shown as dashed (cross-hatched)
areas. The straight lines show the results for the non-diffractive contribution from
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Figure 8: The diffractive structure function of the proton multiplied by x
IP
,

x
IP

F
D(3)
2 , as a function of x

IP
for different regions of Q2 and β. Also shown is the

value of β for each bin. The inner error bars show the statistical uncertainties and
the full bars the statistical and systematic uncertainties added in quadrature.
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Figure 9: The structure function F
D(2)
2 (β, Q2) for γ∗p → XN, MN < 2.3 GeV, as

a function of β, for the Q2 values indicated, as extracted from the x
IP

F
D(3)
2 values

measured near x
IP

= 0.01. The inner error bars show the statistical uncertainties
and the full bars the statistical and systematic uncertainties added in quadrature.
The straight lines connect measurements at the same value of Q2.
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Figure 10: The diffractive structure function of the proton multiplied by x
IP
,

x
IP

F
D(3)
2 , as a function of x

IP
for different regions of Q2 and β. The curves show the

result of the BEKW fit for the contributions from (qq) for transverse (dashed) and
longitudinal photons (dotted)and for the(qqg) contribution for transverse photons
(dashed-dotted) together with the sum of all contributions (solid).
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Figure 11: The structure function F
D(2)
2 (β, Q2) for γ∗p → XN, MN < 2.3 GeV,

as a function of β for the Q2 values indicated, as extracted from the x
IP

F
D(3)
2 values

measured near x
IP

= 0.01. The inner error bars show the statistical uncertainties
and the full bars the statistical and systematic uncertainties added in quadrature.
The smooth curves show the results of the BEKW(mod) fit.
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Figure 12: The structure function F
D(2)
2 (β, Q2) for γ∗p → XN, MN < 2.3 GeV,

as a function of β for the Q2 values indicated, as extracted from the x
IP
F

D(3)
2 values

measured near x
IP

= 0.01. The smooth curves show the results of the radiation fit.
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