Lecture 1: Problems

Q1: The earth’sradius is approximately 6400 km. Pretend we can build a storage
ring collider around the planet which sits in geostationary orbit. Assuming that the
earth’s magnetic field has a constant value of 0.5 Gauss (= 5 mT’) around our
machine, and that it is perfectly perpendicular to the equatorial plane, calculate (a)
the centre of mass energy of the machine, and (b) the average power radiated per
electron.

Answer:

We can immediately calculate the beam energy from Br = P/c » 3.34P[GeV/c] :

B[Tesla]r [m]
3.34
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» 9.6 GeV/c

P[GeV/c] »

So the centre of mass energy is ~20 GeV. The power radiated per €lectron due to
synchrotron radiation is given by

cC, E*
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Q2: For a fixed beam power and centre of mass energy, show that the luminosity
scaling for around beam (s, =s , =s ) at the IP can be expressed as
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Comment on this result.

We begin with the relationship
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The energy loss due to beamstrahlung scales as
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Combining the two gives
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which is independent of the beam size. This would seem to suggest that lowering
bunch current will increase the luminosity, but we should remember that we are
holding the power constant, and so we would need to also increase either the number
of bunchesin the train or the repetition rate. Reducing the bunch charge allows you to
decrease the beam size for afixed beamstrahlung.

Q4: Keeping all other parametersin our final luminosity scaling law constant, how
does the beamstrahlung scale with centre of mass energy?

For aflat beam, we have;
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Remembering that
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we immediately see that d, 1 EZ, .

Q6: The shunt impedance per unit length of an NLC structure (f = 11 GHz) is~80
MWm. The attenuation factor is ~0.5 and the structure length is 0.9 m. Calculate the
peak RF power required to produce a gradient of 65 MV/m. Assume that the gradient
is constant along the length of the structure. Assuming Q ~ 8300, estimate the filling
time of the structure. What can you infer about the average group velocity of the
structure?

We start from

In addition we know that



Assuming E, and therefore dP/dz to be constant along the structure (constant gradient
structure), we can write

& _R-R
dz L

Combining and rearranging, we arrive at an expression for the required input power:
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Putting in the above approximate numbers for NLC, we arrive at
P, » 7SMW

Thefill timeis given by

t, =t0§»120ns
W

The average group velocity is v, » L/t » 0.025c.
The actually group velocity changes linearly along the structure:

wlL-(@1-e?)z
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The figure below shows the group velocity along the structure. The average is 2.7% of
¢, which is dightly higher than our previous estimate of 2.5%.
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Q7: LEP asa damping ring.
Calculate the damping time for LEP with a beam energy of 90 GeV, and a radius of
4.3 km.

The average power radiated per electron isgiven by P, =—2—

s 1MBY” s a5 4
p 3 10) (885 107). 9802 » 15000 GeV/s
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Hence the damping time is given by

2 90 »12ms

Q8: The TESLA damping ring is extremely unconventional due to the very long bunch
train (285 km), which is ‘compressed’ by a factor ~17 by injecting and gjecting
individual bunches using fast kickers. The ‘ring’ circumference is approximately

17 km, made up of two arc sections, each of radius 160 m, connected to each other by
two long straight sections. The ring energy is 5 GeV.

a) Estimate the damping time of the bare ring (i.e. with no wigglers).
b) A damping time of ~30 msis required. Assuming wigglers with an RMSfield
of 2 Teda, estimate the total length of wiggler needed.

For the purposes of this example, you can assume that the two ‘arcs’ form almost
complete rings.

For a 30 ms damping time, we require an average power radiated of
P =2E/t =333.3 GeV/s. The energy lost per turn is therefore

17 km~ 333.3 GeV/s/c » 18.9 MeV.

The energy lost per turnin asingle arc
4

DE,,, »C, ET =(8.85" 10°) * 5%160 » 345.7 kV.

The total energy lost per turnin the wigglersis 18.9 - 2" 0.346 » 18.2 MeV. The
energy lost in awiggler is

DE, (GeV) =1.27" 10 °B*(T)E*(GeV)L(m)

Hence the total length of wiggler is 0.0182/(1.27° 10°°” 2°” 5%) » 143m.

Q10: A damping ring at 2 GeV produces a bunch that is 5 mmlong and has an
relative energy spread of 0.1%. Assuming an L band compressor at 1.3 GHz, estimate
the RF voltage required to compress the bunch to 0.1 mm. What is the required Rss?



E & O
VRF »— s irc
kRF S 2,0 ﬂ
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» 0.1m.

Q11: Thefinal energy spread from the compressor in Q9 is 5% which isvery large
and will cause problems for chromatic emittance growth. One way around thisisto
use a two stage compressor, with some acceleration between the two to adiabatically
damp the energy spread from the first compression before performing the second.
Perform the following steps:

a) Repeat Q9 for a compression ration of 10.

b) assuming the beamis then accelerated to 8 GeV, calculate the bunch
compressor parameters for the final compression to 0.1 mm. What is the final
energy spread? (For this example, you may assume the 6 GeV acceleration is
on crest and is uniformly applied to the entire bunch).

What is the total longitudinal phase space rotation of the compl ete system. What
implications does this have for damping ring € ection phase errors?

For acompression ratio of 10, we can simply scale the previous results. The required
voltage V. =734/5» 147 MV . From Ry, »

it immediately follows that the

RF V' RF
R,, must increase by afactor 5: hence R, » 0.5m.

The final energy spread from this first stage compressionis 10” 0.1=1%, and the
final bunch length is 0.5 mm. We now accelerate the bunch from 2 GeV to 8 GeV.
The energy spread then dampsto 2/8 1% = 0.25%. We use this as input to the next
stage compressor.

Our input parameters are now:

E=8GeV

S ,o=0.5mm

d, =0.25%

r. =5 (to achieve 0.1 mm)

Following the same procedure as before, we get V. » 7.3GeV , and R » 0.04m.

Thefinal energy spread is 1.25% which is afactor of 4 reduce from our single stage
solution. Unfortunately, this reduction comes at the expense of considerable more
(total) RF voltage.



This two stage system represents atotal of 180° rotation of longitudinal phase space.
As a consequence, any phase error at the entrance transforms into a phase error at the
exit (linac entrance). Phase errors at the entrance of the linac correspond to an energy
error, since this error (Df ) does not change along the entire linac. For this reason, the
NLC actually uses a phase telescope system as the second stage, which has a net
rotation of zero (actualy it is +90° followed by -90°). The total rotation is therefore
90°. Hence phase errors from the damping ring become energy errors at the linac
entrance, but there is no phase error. Thisinitial energy error adiabatically damps
away aong the linac and is not such a problem as the phase error.

Q12: Afinal focus systemhasan L™ = 3 m, and a b*yy = 15, 0.3 mm. The (geometric)
emittancesare 2° 10" mand 6" 10 min the horizontal and vertical planes.
Assuming a simple thin-lens model, where a thin lens quadrupole and a thin lens
sextupole are placed exactly at L*, calculate the sextupole strength needed to cancel
the chromaticity (assume the horizontal dispersion has an angle of 30 mrad at the IP).
Taking the remaining geometric (d independent) vertical kick from the sextupole,
estimate the relative increase in vertical I1P beam size from this aberration. For an
RMS energy spread of 0.3%, estimate relative horizontal beam size increase from the
second-order dispersion term.
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The sextupole strength is given by kg =k, /h . We know that K, =1/ f =1/L", and
1 1

- » »3.7m?2,
Lh¢ 3?7 0.03

thath = L'h¢: hence K, =

The geometric vertical kick from the sextupoleis
Dy¢=ksxy

where x, y are the particle coordinates at the sextupole. This kick generates a small
additional offset (aberration) at the IP of Dy” = L' Dy¢= L'k xy . We need to calculate

the RMS of this aberration. Assuming the particle coordinates at the sextupole are
uncorrelated (i.e. no coupling)

(07%) =K )= U () )



Remembering we effectively focus the beam to a point, we can write (x*) =q;L™
and (y*) =q,’L”*, where g, are the betatron beam divergences at the |P given by
Uy, =+/€, /by, - Putting this all together and dividing the left and right hand side by

*2 — * -
S, —eyby we arrive at

Dy O _ LKe,
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Putting in the numbers we find that

DY_R*MS »12
s
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Thus, if left uncorrected, the geometric sextupole term would increase the vertical
beam size by afactor of 12.

The second-order dispersive kick in the horizontal plane generated by the
guad/sextupole combination is

Dxt=- Lkchd? =- Zhed?
2 2
Following the same procedure as before, we write the aberration generated at the I P
DX =- l Lhéd?
2
Taking the moments we have
(DX?) == LUn e (g*)
4

Assuming that the energy of the particles has a Gaussian distribution, we can write the
fourth-order moment as (d*) = 3y

(D7) =3 Ul

What we are really interested in is the variance about the mean. Because of the d? in
the original kick expression, there is a mean value which we must subtract off:
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The variance of the aberration about the mean is given by
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Finaly we estimate the relative size of the RM S aberration as before:

DX;MS » L*h ¢dF\2’MS

Sy 2/eb;

For the values quoted, this gives us

DXR;*MS »1
S X

So the size of the aberration is roughly equal to the nominal beam size. Since the

aberration adds in quadrature to the nominal beam size, this corresponds to a ~40%

increase.

Q13: For a normalised emittance of 30 nm, calculate the Oide limit.

s’ »183(r i F) el
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*
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»2.39(rk F) " el g
Taking the following numbers:

F =7 (typical number)
X=3.86"10%"m

r,=2.82"10"m

g =5"10° (~ 250 GeV beam energy)

we arrive at

»1.4nm
» 0.024 mm
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