
Q1 
Assuming a simple isomagnetic ring with a circumference of C0 = 300 ( 47.7ρ ≈ m) 
and an energy of 2 GeV, estimate the damping time. 
 

Calculate power/electron: 
4

22

cC E
P γ

γ π ρ
= = 29.7 GeV/s. The damping time is then given 

by 2 /E Pγτ = = 134.8 ms.  
 
If we now split this ring into two halves, and insert a total of 50 m of wiggler 
(2×25 m), what is the peek magnetic field required to achieve a damping time of 5 ms 
(you may assume the wiggler field has a perfect sinusoidal variation long its length). 
 
For τ = 5 ms, we require a radiated power of 2 /E τ = 800 GeV/s. The total 
‘circumference’ of the ring is now 300+50=350 m. Thus we require an energy loss per 
turn of 800 350 / c× = 933.3 kV. The energy loss in the arcs per turn is 
29.7 300 / c× = 29.7 kV: hence we require 933.3-29.7=903.6 kV from the wigglers. 
Energy loss from a length of wiggler is  
 

6 2 2(GeV) 1.27 10 (T) (GeV) (m)wE B E L−∆ = × . 
 
Putting in the numbers, we arrive at B2 = 3.56 T. Remembering that this is the average 

value of B2 over the wiggler, the peak field is 2ˆ 2 2.7 TB B= ≈  
 
For the original ring, let is define the fill factor f as the fraction of the circumference 
that is actually dipole magnet ( 0/ /d df l Cρ ρ= = , where dρ  and dl are the dipole 
bending radius and the total dipole length respectively). Show that the damping time 
scales as fτ ∝ . 
 
The radiated power can be written as 0/turnP c E Cγ = ∆ . Now 2/turn d dE L ρ∆ ∝  where Ld 

is the total length of dipole in the ring ( 0dL C f= ). Since both Ld and dρ scale as f, 

then 1/turnE f Pγ∆ ∝ ∝ : hence 1
D P fγτ −∝ ∝  

 
For an arc fill factor of 0.1, re-calculate the peak wiggler field. What is the field for 
the arc dipole magnets. 
 
In our original calculation, we must increase the energy lost in the arcs by a factor of 
10 due to the fill factor. Hence the total energy lost per turn in the wigglers is now  
933.3-10×29.7=636.3 kV. It follows that the peek wiggler field is 2.26 T. The arc 
dipole bending radius is 0.1×47.7 = 4.77 m. Using 3.34 (GeV)B Eρ ≈ , we arrive at 
B ≈1.4 T. 
 



Q2 
The NLC main linac parameters are: 

 
 RF frequency  11.4 GHz 

structure length 0.9 m 
 fill time  120 ns 
 Q   9000 
 r/Q   9 kΩ/m 
 unloaded gradient 65 MV/m 
 particles per bunch 0.75×1010 
 bunches per pulse 192 
 bunch spacing  1.4 ns 
 
Assuming constant gradient structures, calculate 
 

(a) The attenuation constant τ  
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(b) The RF peak power required to maintain the unloaded gradient 
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(c) The loaded gradient (assuming a steady state beam current) 
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(d) The optimal current (100% beam loading) 
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(e) The effective RF-to-beam power transfer efficiency, including the fill time. 
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Why do we run the linac at a smaller current than the optimal? 
 
At the optimum current (100% beam loading) there is a one-to-one correspondence 
between current fluctuation and voltage (1% in current = 1% in voltage). This makes 
the linacs sensitive to charge fluctuations. Typical loading values of <50% make the 
voltage less sensitive to current variations. 
 
Q4 
Consider the following simple final focus (final doublet) system: 
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where FD and SX are a thin-lens quadrupole and sextupole respectively. If the 
angular dispersion at the IP is *η′ , show that the system is chromatically corrected 
when the sextupole strength is 
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We want to cancel the y δ′  term. Hence 
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Assuming that SX is now adjusted to compensate the second-order dispersion ( 2δ ) 
term in the horizontal plane, show that relative chromatic aberration in the vertical 
plane is 
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In the horizontal plane: 
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To cancel the 2δ  we need 
 

 

2

*

*

0
2

2

S
L

S
L

η η

η

+ − =

=
 

 
which is twice the value needed to compensate the chromaticity. Hence we will have 
the same magnitude chromaticity. Thus we have the same uncorrected FD 
chromaticity but with the opposite sign: 
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How are the pure geometric terms generated by SX compensated? 
 
By placing a second sextupole upstream of the first at a location where the transport 
matrix between the two is 
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A damping ring with an energy of 3 GeV produces a longitudinal emittance of 
6mm × 0.1%. Calculate the required RF voltages and R56 values for a two stage 
compressor system (two 90° phase space rotations using wigglers) to compress the 
bunch to 100 µm with an energy spread of 2%. Take 1 GHz and 8 GHz RF for the 
first and second stage respectively. Assume that the beam is ideally accelerated 
between the stages. Assume compression ratios of 10 and 6 for the two stages 
respectively. 
 
First stage: 
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Second stage: 
 
Energy of the second stage is obtained from  
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Thus the energy of the second compressor is 9 GeV. Our initial values for the second 
compressor stage are therefore: 
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Q6 
As a tolerance, we normally take an allowed beam offset at the IP of * / 3yσ  (this 
corresponds to a 2% loss of geometric luminosity). Show that the vibration tolerance 
on a single quadrupole is given by 
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where yγε  is the normalised vertical emittance,  βQ is the beta function at the 

quadrupole, K the strength of the quadrupole ( 1f −= ), φQ is the quadrupole phase 
relative to the IP, and 2

0/Q QE m cγ =  is the relativistic factor at the quad. 
 
The kick from the quadrupole is quady K y′∆ = ∆ . From basic optics we know that  
 

* *
34 sin( )Q

quad Q y Q
IP

y R y K y
γ

β β φ
γ

′∆ = ∆ = ∆  

 

Diving both sides by the nominal IP beam size * *( ) /y y y IPσ β γε γ= , we obtain 
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Rearranging yields the required inequality. 
 
 
For the special case of the thin-lens FD of question 4, show that the tolerances 
reduces to 
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The beta function at the FD is approximately given  by  
 

* *2 * *2 *
, / /y FD y y yL Lβ β β β= + ≈  

 
Setting / 2FDφ π=  and remembering that *1/FDK L= , we arrive at 
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