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1 Introduction 
The length of a bunch extracted from a damping ring is generally a few millimeters, 
while the main linacs and final focus systems require bunches in the range approximately 
100 µm (NLC/JLC) to 300 µm (TESLA).  Collective effects in storage rings prevent the 
damping rings operating in a regime where the required bunch lengths could be achieved 
directly, so an additional system – a bunch compressor – is required between the damping 
ring and the main linac. 
 
The damping rings are expected to provide highly stable output, in terms of transverse 
bunch dimensions, bunch length, energy spread etc.  However, there are effects that lead 
to undesirable features in the extracted beam.  For example, beam loading in the RF 
cavities will result in phase variation along the bunch train (this is inherent in the NLC 
design – whether this is an issue for TESLA depends on whether or not they implement 
ion clearing gaps, and how these gaps are structured).  The bunch compressors should be 
able to compensate for such effects, and not introduce any additional instability, thus 
producing a properly matched, highly stable beam with the desired parameters for the 
main linacs. 
 
The absolute energy spread of a bunch is preserved as a bunch is accelerated in a linac.  
Thus, as the energy increases, the fractional energy spread decreases in proportion; this is 
just the adiabatic damping of the energy spread.  However, the bunch length is preserved 
during acceleration.  Furthermore, Liouville’s theorem forbids any change in the 
longitudinal emittance in the absence of any non-conservative processes.  In other words, 
damping of longitudinal phase space requires either a damping ring (which we have 
already used) or a linac (which has no effect on the bunch length).  How then do we 
achieve a compression of the bunch length?  The answer is that we rotate the longitudinal 
phase space, preserving the longitudinal emittance, but reducing the bunch length at the 
expense of the energy spread.  We show how this is achieved and consider some of the 
technical details in the following sections. 
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2 Linear Theory 

2.1 Phase Space Rotation Through �� 
For the moment, we consider only the longitudinal phase space.  Let us consider the 
effect of passing a bunch through an RF cavity on the zero crossing of the voltage (i.e. 
without acceleration), followed by transporting the bunch around an arc.  The RF cavity 
has no effect on the longitudinal position of a particle with respect to the bunch center, 
but changes the energy deviation by an amount depending on its position: 
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where cfk RFRF π2= .  Note that a positive z  means that the particle is ahead of the 
reference particle that has 0=z , and that the RF voltage is cosine-like.  More generally, 
we can adjust the RF phase so that the reference particle crosses at some phase RFφ  that 
may or may not be the zero crossing.  In this case, we need to account for the change in 
reference energy of the beam (from E0 to E1).  We can write for the initial and final 
energies of a given particle: 
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After a little algebra, we find: 
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To first order in 10 <<EeVRF , the full map may be written: 
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Taking a linear approximation for the RF, we can write the map in matrix form: 
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The arc has the opposite effect to the RF: it leaves the energy deviation of each particle 
unchanged (to the extent we can ignore synchrotron radiation), but the path length 
depends on the energy: 
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Again making a linear approximation ( 561566 RT <<δ ), we can write: 
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The total transformation is given by: 
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Note that for 2
πφ ±=RF  (i.e. no acceleration), R66 = 1, and the transformation matrix is 

symplectic, which means we can introduce the longitudinal emittance as a conserved 
quantity: 
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and longitudinal Twiss parameters: 

αεδσ

γεδσ

βεσ

δ

δ

==

==

==

z

z

z

z

22

22

  

where 12 =−αβγ , and we expect 00 =α  for the beam from the damping ring (we use 

the subscript zero to denote the initial value). 
 
In the more general case where we run the beam through the RF away from the zero-
crossing, 166 ≠R , and there is some damping (or antidamping) of the longitudinal phase 

space, associated with the acceleration (or deceleration).  The RF phase may be chosen to 
be other than the zero crossing to compensate the effect of the nonlinear phase slip – this 
is discussed in more detail below.  For the present, we consider only the symplectic case, 
with R66 = 1, and no acceleration. 
 
The effect of the symplectic transformation on the longitudinal Twiss parameters may be 
written: 

T
01 MAMA ⋅⋅=  (2) 
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where 
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We find that the final value of β  is given by: 
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Note that if we take 056 →R  while at the same time 16556 −→RR , then 01 →β .  In other 

words, if we are willing to provide an infinite RF voltage and tolerate an infinite 
incoherent energy spread, there is no limit to how short we can make the bunch.  In 
practice, the RF voltage is limited and there is also some limit to the incoherent energy 
spread that can be allowed, so we have some given value for 65R .  In this case, the 

minimum value for 1β  is given by: 
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which is achieved with 

( )0650156 βαβ RR −=
(

 (4) 

 
Note that the phase of the RF is determined by the method of generating the 56R .  Using 

the convention that particles at the head of the bunch have 0>z  (as in the codes MAD 
and Merlin), an arc has 056 <R , in which case we need 065 >R , and thus 2πφ =RF .  On 

the other hand, a chicane has 056 >R , thus 065 <R  and 2πφ −=RF .  If the bunch 

compressor uses an arc to generate the 56R , particles at the head of the bunch are 

increased in energy, so in the arc they take a longer path (the bending radius is larger), 
and thus move towards the back of the bunch.  Conversely, particles at the back of the 
bunch are reduced in energy, take a shorter path through the arc, and move towards the 
head of the bunch.  The opposite arguments apply if a chicane is used instead of an arc.  
It is also worth remembering that some codes (Elegant, Parmela) use the convention that 

0<z  for particles at the head of the bunch, so arcs have 056 >R  and chicanes have 

056 <R .  Confused?  The rule is: before doing a calculation, declare up front what 

convention you are using, and stick to it for that calculation.  This might not solve your 
confusion, but it gives other people a fighting chance of understanding your work. 
 
In the special case 00 =α , the minimum compression ratio, defined as the ratio of the 

bunch length after compression to the bunch length before compression, is given by: 
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and this is achieved with a phase slip given by: 
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Note that this expression for the required phase slip is modified if the RF accelerates or 
decelerates the beam (i.e. if R66 ≠ 1). 
 
Examples of the transformation of longitudinal phase space in a bunch compressor are 
shown in Figure 1 and Figure 2.  We have set up a bunch of particles appearing as a 
“window frame” in longitudinal phase space to illustrate more clearly the effect of the RF 
and the arc.  In reality, a gaussian bunch distribution is expected.  The parameters for the 
beam extracted from the damping ring are appropriate for the NLC.  The specification for 
the beam injected into the NLC main linac is a bunch length of 110 µm.  In each 
example, the value of 56R  is chosen so as to optimize the bunch compression, and 566T  is 

assumed to be zero.  In the example shown in Figure 2, this leads to a phase space 
rotation of close to 2π , but note the distortion of the phase space that comes from the 
RF curvature (we have used the nonlinear RF map rather than the linear approximation).  
Note also that in this case (no initial or final z−δ  correlation or acceleration) the 
product of the bunch length and energy spread is conserved.  More generally (including 

z−δ  correlation but no acceleration), the longitudinal emittance defined by (1) is 
conserved.  More generally still (including z−δ  correlation and acceleration), the 
normalized longitudinal emittance obtained by multiplying the longitudinal emittance (1) 
by the energy, is conserved. 
 

 
(a) Phase space at entrance 

 
(b) After 60 MV RF 

 
(c) After RF and arc, =56R -1.05 m 

Figure 1 

Transformation of longitudinal phase space at different stages in a bunch compressor.  Note the different 
scales for each plot.  The RF voltage is 60 MV, the frequency is 1.428 GHz, and the phase is /2.  The 
beam energy is 1.98 GeV, and =56R -1.05 m.  The bunch length is reduced from 5 mm to 1.1 mm. 
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(a) Phase space at entrance 

 
(b) After 600 MV RF 

 
(c) After RF and arc, =56R -0.110 m 

Figure 2 

Transformation of longitudinal phase space as shown in Figure 1, but with different parameters for the 
compressor.  The RF voltage is 600 MV, the frequency is 1.428 GHz, and the phase is /2.  The beam 
energy is 1.98 GeV, and =56R -0.110 m.  The bunch length is reduced from 5 mm to 0.11 mm. 

 
To achieve the specified compression in a single stage bunch compressor for the NLC, 
we have needed an RF voltage of 600 MV, and the energy spread increases to about 
4.5%.  This is a large energy spread to consider transporting efficiently through any beam 
line (i.e. without significant particle loss or degradation of beam quality).  In particular, 
the larger the energy spread, then the greater the sensitivity to the nonlinear phase slip 
terms 566T , 5666U  etc.  

 
As an alternative to the single stage compression used above, a two-stage compressor can 
be used.  The compressors are separated by a linac that accelerates the beam, thus 
reducing the energy spread at an intermediate stage through adiabatic damping.  This has 
the advantage that the energy spread never gets beyond an acceptable level, and is the 
option that has currently been adopted by the NLC.  The second compressor is actually a 
telescope in longitudinal phase space, using the principles that we now describe. 

2.2 3KDVH�6SDFH�5RWDWLRQ�7KURXJK�Q  
Let us consider a beamline comprising an RF section followed by some bending, then a 
second RF section followed by more bending.  In each case, the bending can be provided 
either by an arc or a chicane.  It is straightforward to show that the total transfer matrix 
for such a system is given by: 
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M22 is readily found by the matrix multiplication or the symplectic condition; we shall not 
need an explicit expression for our purposes.  We like to have the final phase independent 
of the initial energy so that an initial energy error does not convert to a phase error on 
entry to the main linac.  To achieve this we set M12 to zero.  It would also be nice for the 
final energy to be independent of the initial phase, which would require M21 also to be 
zero (but since the initial phase errors are expected to be small, and energy errors are 
adiabatically damped in the main linac, this is not essential).  Finally, for bunch 
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compression by a factor m, M11 must be equal to m1± .  Putting the requirements 
together, we have: 
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and the transfer matrix becomes: 
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This gives a rotation in phase space of either  (lower signs) or 2  (upper signs).  If this is 
not immediately obvious, it is only necessary to decompose M using the normalizing 
transformation in terms of the longitudinal Twiss parameters: 
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If we assume that there is no initial correlation between phase and energy, then 0=iα , 

πϕ =  or πϕ 2= , and mif 1=ββ .  In general, the beam at the end of the compressor 

has some correlation between phase and energy, which can be found from the value of 

fα , but it is easy to choose an appropriate value for )1(
65R  to eliminate this correlation. 

 
By analogy with light optics, a system performing a phase space rotation through Q  
(with n an integer) is referred to as a telescope.  The advantage of this system compared 
with the /2 rotation is that initial energy errors become final energy errors, as opposed to 
final phase errors.  As we mentioned above, the NLC uses a telescope in longitudinal 
phase space as the second (high energy) bunch compressor.  A schematic is shown in 
Figure 3.  The )1(

65R  is provided by accelerating the beam off-crest in the pre-linac, and the 
)1(

56R  by the 180Û�DUF�WKDW�LV�VXJJHVWHG�E\�WKH�RYHUDOO�OD\RXW�RI�WKH�PDFKLQH���$�IXUWKHU�5)�

section (200 m S-band) and a chicane provide the remaining transformations.  Since )1(
56R  

is provided by and arc and )2(
56R  by a chicane, these quantities have opposite signs, and 

the overall transformation is a rotation through 2  rather than . 
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Figure 3 

Schematic of the NLC bunch compressor system (from the NLC 2001 Report, SLAC-R-571) 
 

 
(a) 

 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 4 

Transformations of longitudinal phase space in the NLC high-energy bunch compressor.  (a) Initial phase 
space, bunch length 500 µm and energy spread 0.25%.  (b) After initial RF, ≈)1(

65R 3.9 m-1.  (c) After 180º 

arc, ≈)1(
56R -0.21 m.  (d) After second RF section, ≈)2(

65R -22.6 m-1.  (e) After final chicane, ≈)1(
56R -0.037 m.  

We include the effects of RF curvature and second order phase slip, but no compensation for the nonlinear 
phase slip has been applied. 
 
Transformations of the longitudinal phase space through the NLC high-energy bunch 
compressor are shown in Figure 4.  Further details of the NLC bunch compressors are 
provided in the NLC ZDR. 
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3 Compensation of Nonlinear Phase Slip 
Although we included the effects of the RF curvature in the previous section, we assumed 
that the phase slip was linear, i.e. we set 0566 =T .  In reality, higher order phase slip 

terms are intrinsic to dipoles, and can be estimated using some simple approximations.  
For an arc, we find: 

56566 9.1 RT ≈   

and for a chicane (see Problem 2): 

56566 2

3
RT −≈   

Let us consider the case of the TESLA bunch compressor, which uses a chicane to 
generate the 56R .  Including the nonlinear phase slip, we observe the transformations of 

the longitudinal phase space shown in Figure 5. 
 

 
(a) Phase space at entrance 

 
(b) After RF 

 
(c) After RF and chicane 

Figure 5 

Transformation of longitudinal phase space in the TESLA bunch compressor, without compensation of the 
nonlinear phase slip.  The beam energy is 5.0 GeV.  The RF frequency is 1.3 GHz, and the phase is - /2. 
 

Clearly, the nonlinear phase slip introduces a strong correlation between z  and 2δ .  This 
spoils the phase space distribution of the beam, and is an undesirable effect that we wish 
to eliminate somehow.  Since the phase space is rotated by nearly /2, we can consider 
compensating the distortion by introducing a canceling correlation between δ  and 2z  at 
the start of the compression.  In fact, we can do this in the RF section by adjusting the 
phase of the RF seen by the bunch.  In effect, we use a nonlinear term in the RF map to 
cancel a nonlinear term in the chicane map.  The appropriate phase angle is given by: 
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and the final approximation in (7) is valid for ( ) 1218 2 <<+ θrr .  Note that r is fixed by 
the system used to provide the phase slip, and has the approximate value 1.9 for an arc, or 
–1.5 for a wiggler or chicane. 
 
Since the RF phase is now moved off the zero crossing, the RF now accelerates (or 
decelerates) the beam.  The value of R65 is fixed by the required compression ratio (5) (in 
the symplectic approximation), and one first calculates the required RF voltage with the 
assumption that the phase is set to the zero crossing.  The phase adjustment is then 
calculated from (7).  Depending on the accuracy required (and the size of the phase 
adjustment) it may be necessary to iterate the calculation, since the change of phase 
changes the compression ratio. 
 
Note that the value of R56 required for optimum compression is now given by: 
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For the TESLA bunch compressor with optimum values for the RF phase and voltage, we 
see the transformations of phase space shown in Figure 6.  The effect of the curvature 
introduced by the RF to compensate the nonlinear phase slip is not obvious until after the 
bunch has passed through the chicane. 
 

 
(a) Phase space at entrance 

 
(b) After RF with phase adjustment 

 
(c) After RF and chicane 

Figure 6 

Transformation of longitudinal phase space in the TESLA bunch compressor, including compensation of 
the nonlinear phase slip by adjustment of the RF phase. 
 
Some basic parameters for the TESLA and NLC Low Energy bunch compressors are 
given in Table 1. 
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Table 1 

Some basic parameters for the TESLA and NLC Low Energy bunch compressors. 
 TESLA NLC Low Energy 
Beam Energy /GeV 5.0 1.98 
Injected δσ  1.3×10-3 1.0×10-3 

Injected zσ  /mm 6.0 5.0 

Extracted zσ  /mm 0.3 0.5 
RF frequency /GHz 1.3 1.428 
 

4 Effects of Synchrotron Radiation 
Generating the phase slip for bunch compression requires bending the beam in an arc, a 
chicane, or a wiggler.  Whenever relativistic charged particles pass through a magnetic 
field, synchrotron radiation is produced.  In a storage ring, the combined effect of the 
synchrotron radiation with the energy restoration by the RF cavities leads to radiation 
damping, with the equilibrium emittances determined by the damping rate and the 
quantum excitation.  Although we do not have the same damping mechanism, the 
synchrotron radiation in the dipoles or wiggler of a bunch compressor does lead to 
quantum excitation, and a poorly designed bunch compressor risks growth of the 
transverse and longitudinal emittances that will significantly degrade the luminosity of 
the collider. 
 
Synchrotron radiation can be incoherent or coherent.  Incoherent synchrotron radiation, 
like that produced by third generation light sources, is the result of individual electrons 
randomly emitting photons.  The power of the radiation is proportional to the square of 
the charge of an individual electron, and rises linearly with the number of electrons in the 
bunch.  Coherent synchrotron radiation (CSR) is produced when a group of electrons 
collectively emit photons in phase.  This can occur when the bunch length is shorter than 
the radiation wavelength, and the bunch effectively behaves as a single charged particle 
emitting photons.  The radiation power rises as the square of the charge of the particle; in 
other words, the power rises as the square of the number of particles.  Since there are 
typically of the order 1010 particles per bunch in a linear collider, CSR can potentially 
lead to very large amounts of radiated energy, with consequently significant increases in 
the transverse and longitudinal emittances.  Since the bunch length is an important 
parameter, CSR is more likely to be a problem in the bunch compressors than the 
damping rings (but should not be forgotten about entirely in the damping rings). 

4.1 Incoherent Synchrotron Radiation 

4.1.1 Transverse Emittance Growth 
Recall that when a particle emits a photon of energy u, the change in the betatron action 
is given by: 
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where the H -function is defined as usual in terms of the dispersion and transverse Twiss 
parameters: 

22 2 ηβηαηγη ′+′+=H   

Using expressions for the second moment of the emitted photon energy, it can then be 
shown that the emittance growth from (incoherent) synchrotron radiation in any beamline 
is given by: 

( ) 5
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3
2 IrC eq γγε =∆  (8) 

where 1510818.2 −×≈er m is the classical electron radius, and 5I  is the fifth synchrotron 

radiation integral.  Note that for the normalized emittance, this goes as the sixth power of 
the energy, and is proportional to the fifth synchrotron radiation integral. 

4.1.2 Longitudinal Effects 
Assuming that the energy loss is small compared to the particle energy, the energy lost 
through synchrotron radiation by a particle in a beamline is given by: 
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where 2I  is the second synchrotron radiation integral.  It is straightforward to show 
(using a procedure analogous to the calculation of the transverse emittance growth) that 
the increase in energy spread is given by: 

3
5

3
42 IrC eq γσ δ =∆  (9) 

where 3I  is the third synchrotron radiation integral.  We have again assumed that the 

energy loss is small compared to the energy of the beam. 

4.2 Coherent Synchrotron Radiation 
Coherent synchrotron radiation can affect the beam in two ways.  First, there is the 
energy loss itself, which can have a similar impact to the incoherent synchrotron 
radiation.  Second, the radiation emitted by a group of particles at the tail of the bunch 
can follow a straight path between two points on the curved particle trajectory, and affect 
particles nearer the head of the bunch.  A wake field, similar to the standard description 
of impedance effects, may be used to describe this effect with the difference that the tail 
affects the head of the bunch rather than the other way around.  CSR effects may be 
minimized by ensuring a sufficiently large bending radius in the dipoles, and if necessary, 
by shielding the long wavelength radiation using a narrow vacuum chamber aperture. 
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Some observations of CSR in a bunch compressor at the CLIC Test Facility (CTF II) are 
described in: 

• “Emittance Growth and Energy Loss due to Coherent Synchrotron Radiation in a 
Bunch Compressor”, PhysRevSTAB Volume 3, 124402 (2000). 

5 Problems for the Student 
 
1. Starting from equation (2), derive equations (3) through (6). 
 
2. Consider a chicane constructed from four symmetrically placed short dipoles.  Show 

that the change in path length for a particle with normalized energy deviation  with 
respect to the nominal energy is given approximately by: 

( ) 
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 Hence derive a general expression for the higher order phase slip coefficients, in 
terms of the linear phase slip R56.  Explain why your expressions are not valid if there 
are quadrupoles between the dipoles. 

 
3. Using the linear model, calculate from the TESLA, NLC Stage I and NLC Stage II 

bunch compressors: 
a) the required RF voltage; 
b) the required phase slip R56. 
 

4. Calculate the nonlinear phase slip compensation for the TESLA, NLC Stage I and 
NLC Stage II bunch compressors. 

 
5. Derive equations (8) and (9). 
 
6. A magnetic chicane by a bunch compressor may be constructed from achromat cells 

bending the beam alternately left and right.  Show that, for such a chicane constructed 
from short dipoles of bending angle θ , and consisting of N  periods (2N cells) of 
length λ : 

2
4
1

56 λθNR ≈   

  
7. Suggest a parameter set for the magnetic chicane for the TESLA bunch compressor.  

You should specify the dipole field and bending angle, and the dipole spacing.  
Considerations should include the maximum values for the lattice functions, and the 
growth in emittance and energy spread from (incoherent) synchrotron radiation. 

 


