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1 Introduction

The heart of a linear collider is the main linear accelerator, which uses high-power radio-frequency
(RF) waves to impart energy to the beam. A quantitative understanding of how the linac works is
essential to comprehend the capabilities and limitations of a large linac, and hence a linear collider.

This Note is intended to be a reasonably comprehensive guide to the mysteries of the multi-cell
RF cavity (aka “accelerator structure”), and is intended for people who like to be able to see “all”
(or at least most) of the ugly math that is typically left as an exercise to the reader in standard
textbooks.

1.1 Maxwell’s Equations in MKSA Units

Any discussion of the applications of time-dependent electromagnetic fields must begin with Maxwell’s
equations [1]:

~∇ · ~D = ρ, (1)

~∇ · ~B = 0,

~∇× ~H = ~J +
∂ ~D

∂t
,

~∇× ~E = −∂
~B

∂t
.

In Equation 1, the four electromagnetic vectors ~E, ~D, ~B, ~H are all present, and MKSA units are
assumed. The number of vector quantities can be reduced by replacing ~B with µ ~H and replacing
~D with ε ~E.

1.2 The Wave Equation

Maxwell’s equation can be combined into a wave equation by making use of the vector identity:

~∇× (~∇× ~A) ≡ ~∇(~∇ · ~A) −∇2 ~A. (2)

Let us apply the identity above to the Maxwell’s electric field curl equation:

~∇× (~∇× ~E) = ~∇(~∇ · ~E) −∇2 ~E (3)

= −~∇× ∂ ~B

∂t
.

In a region of space free of charges, ~∇· ~E = 0. Assuming that we are only interested in well-behaved
analytic functions (ie, those for which we can reverse the order of differentiations with impunity),
we can transform the magnetic field term in Equation 3 from the curl of a time derivative to the
time derivative of a curl:

∇2 ~E =
∂

∂t
~∇× ~B. (4)
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If we replace ~B with µ ~H, then the RHS of Equation 4 can be replaced with the Maxwell’s magnetic
curl equation:

∇2 ~E = µ
∂

∂t
~∇× ~H (5)

= µ

[

∂2 ~D

∂t2
+
∂ ~J

∂t

]

.

If we assume that the region of interest is also current-free, we can replace ~D with ε ~E to obtain:

∇2 ~E − µε
∂2 ~E

∂t2
= 0. (6)

Equation 6 is a wave equation for the electric field. A similar process can be followed to obtain a
wave equation for the magnetic field:

∇2 ~H − µε
∂2 ~H

∂t2
= 0. (7)

1.3 Solution to the Wave Equation in Free Space

Equations 6 and 7 can (almost!) be solved by inspection: the solutions will be superpositions of
travelling plane waves. Let us define the z axis to be parallel to the direction of propagation. The
form of the solution will then be:

~E = ~E0 exp[i(ωt− kz)], (8)

~H = ~H0 exp[i(ωt− kz)].

If we consider solutions in free space (ie, no boundaries or boundary conditions), then since space
is isotropic and homogeneous ~E0 and ~H0 must be constant over all time and all space.

Applying Equation 6 to the suggested solution in Equation 8, we find:

∇2 ~E =

(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)

~E0 exp[i(ωt− kz)] (9)

= µε
∂2

∂t2
~E0 exp[i(ωt− kz)].

Because ~E0 is constant over all time and space, both the laplacian and the time derivative oper-
ate only upon the complex exponential. After appropriate cancellation of the constant and the
exponential itself, what remains is:

−k2 = −µεω2. (10)

Equation 10 relates the wave number, k ≡ 2π/λ, to the angular frequency, ω ≡ 2πν, for any wave
which can propagate in free space. In particular, Equation 10 shows that the phase velocity of any
such wave, ω/k, will be 1/

√
µε, and it can also be easily shown that the group velocity, ∂ω/∂k, will

also be 1/
√
µε. In vacuum, it is well known that 1/

√
µ0ε0 = c. So: the solution is a wave which

propagates in the z direction at the speed of light.
A problem appears when Equation 8 is subject to the other constraints of Maxwell’s equations.

Consider for example the electric divergence equation, which requires that in the absence of electric
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charges the divergence of the electric field must vanish. Since the solution in Equation 8 varies only
in z, the divergence equation reduces to:

~∇ · ~E =
∂Ez
∂z

= −ikE0,z exp[i(ωt− kz)] = 0. (11)

Equation 11 implies that either the longitudinal component of ~E vanishes, or else the momentum
vector k vanishes. The latter case corresponds to electrostatic acceleration, which for engineering
reasons is unacceptable for final energies of more than a few MeV. The former case corresponds to
a purely transverse electric wave, which will accelerate charged particles normal to the direction of
wave propagation. To see why this is unacceptable for accelerating anything, consider a particle
which is already ultra-relativistic and therefore moving at a speed close to c; this particle interacts
with a wave which propagates in z and has its electric field oriented along x; the interaction begins
at t = x = z = 0. At this time, the electric field is E0,x, and in a time dt the particle’s energy
gain is given by the product of the electric field and the distance over which the field is applied, or
∆U = E0,xcdt; the particle is accelerated in the +x direction. One half-period later, the sign of the
electric field is reversed and the change in kinetic energy is ∆U = −E0,xcdt. Thus, we see that the
particle is alternately accelerated and decelerated in the x direction, and no net energy increase is
possible.

If a solution of the form shown above – a travelling-wave solution – is to be used for accelerating
particles, it will be necessary to arrange for the electric field parallel to the direction of travel to
be nonzero. Equation 11 shows that the problem with the free-space solution is that the field
parallel to the direction of travel must be zero to satisfy the electric divergence equation. This
constraint can be relaxed by permitting ~E0 and ~H0 to be functions of the transverse coordinates.
By doing this, the derivatives ∂Ex/∂x and ∂Ey/∂y will be nonzero and can be used to balance a

nonzero value of ∂Ez/∂z. Arranging for transverse variation in ~E0 and ~H0, in turn, requires that
the transverse symmetry of free space be broken by some form of boundary conditions. As a trial,
let us consider a conducting circular pipe of inner radius b oriented along the z axis, such that the
center of the pipe corresponds to x = y = 0. Because the pipe exhibits cylindrical symmetry, we
will use cylindrical coordinates (r, θ, z) to explore this solution. Such a pipe is usually referred to
as a waveguide.

1.4 Solution to the Wave Equation in a Circular Waveguide

To reiterate: we seek a solution to Maxwell’s equations which is of the form:

~E = ~E0 exp[i(ωt− kz)], (12)

~H = ~H0 exp[i(ωt− kz)],

where ~E0 and ~H0 are functions of transverse coordinates r and θ, but not of z or t. By limiting
ourselves to solutions of this form, we can make a few alterations in the way that z and t partial
derivatives are presented:

∂

∂z
= −ik, ∂2

∂z2
= −k2, (13)

∂

∂t
= iω,

∂2

∂t2
= −ω2.
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1.4.1 Boundary Conditions

The solutions must also obey the boundary conditions of a conducting pipe at r = b. The boundary
conditions for electric and magnetic fields are derived in [2], and will only be qualitatively reviewed
here1: at any boundary between media, the normal component of ~B and the tangential component
of ~E are continuous across the boundary. The normal electric field across the boundary must obey
the relations:

ε1E1n − ε2E2n = Σ, (14)

σ1E1n − σ2E2n = iωΣ,

where ε1, ε2 are the permeabilities of the two regions, σ1, σ2 are the conductivities of the two
regions (with units of inverse ohms/meter in MKS units), and Σ is the surface charge density at
the boundary. If the conductivity of region 1 is zero (vacuum), and that of region 2 is infinite
(conductor), then Equation 14 shows that E2n must be zero and E1n must be Σ/ε1.

Within the conducting material, the magnetic curl equation can be written as:

~E2 =
1

σ2 + iε2ω
~∇× ~H2, (15)

where we have used Ohm’s law, ~J = σ ~E, to replace the current with the electric field. In the
limit of infinite conductivity, the electric field within the conductor must be identically zero. Since
the tangential component of ~E is continuous across the boundary, and that component is zero
within the conductor, it follows that the tangential component of ~E must vanish at the waveguide
boundary. Similarly, the electric curl equation can be used to show that ~H vanishes within the
conductor, and therefore the normal component of ~B (and hence ~H) is zero at the boundary. In
the case of a perfectly-conducting evacuated waveguide, then: the electric and magnetic field both
vanish completely within the conductor; the tangential electric field and the normal magnetic field
must go to zero at the boundary between vacuum and conductor.

A further boundary condition on the longitudinal magnetic field can also be deduced by con-
sidering the form of the curl operator in cylindrical coordinates:

~∇× ~A =

(

1

r

∂Az
∂θ

− ∂Aθ
∂z

,
∂Ar
∂z

− ∂Az
∂r

,
1

r

∂(rAθ)

∂r
− 1

r

∂Ar
∂θ

)

. (16)

Since Eθ → 0 at the boundary, and ∂ ~E/∂t = iω ~E, it follows that ∂Eθ/∂t → 0 at the boundary,
which in turn implies that (~∇× ~H)θ → 0. Equation 16 shows that (~∇× ~H)θ = ∂Hr/∂z− ∂Hz/∂r.
Since ∂Hr/∂z = −ikHr, and Hr → 0, ∂Hr/∂z → 0 on the boundary. Since ∂Hr/∂z− ∂Hz/∂r → 0
and ∂Hr/∂z → 0, it follows that ∂Hz/∂r → 0 on the boundary.

In summary, the presence of the waveguide requires that Eθ, Ez, Hr, and ∂Hz/∂r vanish at
r = b.

1.4.2 Longitudinal Components

We can now solve Equation 6 for the case of the longitudinal components of ~E and ~H. Let us begin
with the electric field, and recall that we seek a solution of the form Ez = E0,z(r, θ) exp[i(ωt−kz)].
We can rewrite the z component of the wave equation thus:

∇2
⊥Ez − k2Ez + µεω2Ez = 0, (17)

1unless I find some time do write it up here.

4



where we have defined the transverse component of the laplacian, ∇2
⊥ ≡ ∇2−∂2/∂z2, and replaced

the longitudinal and time derivatives as shown in Equation 13. We can further simplify Equation
17 by defining k2

c ≡ µεω2 − k2, and cancelling the common factor of exp[i(ωt− kz)] from all terms:

∇2
⊥E0,z + k2

cE0,z = 0. (18)

A solution for Equation 18 can be sought by separation of variables: define E0,z(r, θ) ≡ R(r)Θ(θ),
and expand the ∇2

⊥ operator (available in any decent textbook on PDE’s or electrodynamics):

1

r

∂

∂r

(

r
∂

∂r
RΘ

)

+
1

r2

(

∂2

∂θ2
RΘ

)

+ k2
cRΘ = 0. (19)

The function R can be pulled out of the θ-derivative, and similarly the function Θ can be pulled
out of the r-derivative:

Θ

r

∂

∂r

(

r
∂

∂r
R

)

+
R

r2

(

∂2

∂θ2
Θ

)

+ k2
cRΘ = 0. (20)

Dividing by RΘ, multiplying by r2, and rearranging terms yields:

r

R

∂

∂r

(

r
∂R

∂r

)

+ k2
cr

2 +
1

Θ

(

∂2Θ

∂θ2

)

= 0. (21)

Equation 21 shows that the terms with θ dependence and the terms with r dependence have been
completely separated. We can advance the solution of Equation 21 by requiring that the two
components be equal and opposite, defining separation constant Q:

− 1

Θ

(

∂2Θ

∂θ2

)

=
r

R

∂

∂r

(

r
∂R

∂r

)

+ k2
cr

2 = Q. (22)

The two components of Equation 22 can be solved separately. The first component, which
defines Θ(θ), can be solved almost by inspection: Θ = cos(nθ+ θn), where Q = n2 and periodicity
– the requirement that Θ(θ) = Θ(θ + 2π) – constrains n to be an integer. This constraint can be
inserted back into the other component of Equation 18:

=
r

R

∂

∂r

(

r
∂R

∂r

)

+ k2
cr

2 = n2. (23)

Multiplying through by R and expanding the derivative yields:

r2R′′ + rR′ +R(k2
cr

2 − n2) = 0. (24)

Equation 24 is Bessel’s equation of order n; the solution is a linear combination of Bessel Functions

R = anJn(kcr) + dnYn(kcr). (25)

Since Yn(0) diverges, we can limit ourselves to solutions for which dn ≡ 0, and write down a solution
for E0,z in terms of a series in n:

E0,z =
∞
∑

n=0

anJn(kcr) cos(nθ + θn). (26)

A similar solution can be derived for H0,z.
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1.4.3 Applying Boundary Conditions

With a general solution for E0,z and H0,z in hand, we can now apply the necessary boundary
conditions. The electric field boundary condition requires that E0,z vanish at r = b. This in turn
implies that kcb = znp, where znp is the pth zero of Jn. The solution for E0,z is therefore more
readily expressed as a double sum:

E0,z =
∞
∑

p=1

∞
∑

n=0

anpJn(kc,npr) cos(nθ + θnp). (27)

The constraint on kc values has an interesting implication on the waves which flow in the
waveguide. We can use this constraint in an expansion of kc:

kc,np =
znp
b

=
√

µεω2 − k2. (28)

Now consider the case in which k2 = 0, corresponding to infinite wavelength. Equation 28 implies
that the wave with infinite wavelength must have a nonzero frequency. We define this frequency to
be the cutoff frequency of the waveguide:

ωc =
1√
µε

znp
b
. (29)

This allows us to solve Equation 28 for k in terms of ω and ωc:

k2 = µε
(

ω2 − ω2
c

)

. (30)

If a wave with a frequency greater than ωc is introduced into our waveguide, Equation 30 tells
us that k will be real-valued, as we require. If, on the other hand, ω < ωc, then k will be imaginary.
Substituting an imaginary value of k into Equation 12, we find that the solution no longer has the
form of an oscillation in z, but rather an exponential decay or growth in z. If we sensibly reject
the exponential-growth solution, the implication is that a wave with a frequency below the cutoff
frequency decays exponentially in a waveguide. Such a wave is called an evanescent wave.

In summary, breaking the transverse symmetry of an electromagnetic plane wave via a waveguide
permits a solution in which the longitudinal electric and magnetic fields do not vanish, but at the
expense of forbidding waves with excessively low frequencies from propagating in the guide.

Additional complications can be observed if Equation 30 is used to compute the phase and
group velocity of a wave in a waveguide. The group velocity, dω/dk, is given by:

vgr =
dω

dk
=

1√
µε

√

ω2 − ω2
c

ω
. (31)

Since
√

ω2 − ω2
c < ω for frequencies above cutoff, the group velocity is less than the speed of light,

and is a function of frequency; asymptotically, as ω → ∞, the group velocity approaches the speed
of light. The phase velocity, ω/k, is given by:

vph =
ω

k
=

√

1

µε
+
ω2
c

k2
. (32)

The phase velocity, like the group velocity, is a function of frequency. Unlike the group velocity, the
phase velocity is greater than the speed of light; indeed, it can be shown that the product of the
phase velocity and the group velocity for any such wave is c2. This means that the electromagnetic
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wave in a regular waveguide is unacceptable for use in accelerating particles despite its longitudinal
electric field. This is because the particles in question will have velocities below that of light. As the
wave and the particle travel down the waveguide, the accelerating phase of the wave will overtake
the particle and the decelerating phase will catch up with the particle; as with the transverse wave
described previously, over one oscillation this wave will provide equal acceleration and deceleration,
for a net acceleration of zero.

1.4.4 TE and TM Modes

Although electromagnetic waves in a regular waveguide are not suitable for acceleration, they have
many other useful characteristics (for example, waveguides can be used to transport waves from a
source to a more suitable accelerating structure). Furthermore, we will find that the waves which
are ultimately suitable for acceleration share many characteristics with those described above. For
this reason, we will complete our study of electromagnetic waves in regular circular waveguide.

By analogy with the longitudinal electric field solution, we can derive a solution to the longitu-
dinal magnetic field, H0,z:

H0,z =
∞
∑

v=1

∞
∑

u=0

fuvJu(kc,uvr) cos(uθ + θuv). (33)

Because its boundary conditions are different, the cutoff wave number kc,uv is different from the
electric field cutoff. In particular, since it is the radial derivative of the field which vanishes at
the boundary, we find for the magnetic field that kuvb = yuv, where yuv is the vth zero of J ′

u, and
J ′
u(R) ≡ dJu(R)/dR.

In general, the zeros of Jn are different from the zeros of J ′
u. This means that the longitudinal

electric and magnetic fields have different cutoff wave numbers, and for a given frequency they will
have different phase and group velocities. This leads to the general statement that for a given
frequency ω and wave cutoff number kc, a single wave cannot have both a longitudinal electric field

and a longitudinal magnetic field. A field with no longitudinal magnetic field is called a “transverse
magnetic,” or TM mode; usually the modes are referred to as TMnp, where n and p are defined
as above. Physically, n can be interpreted to tell the number of nulls in the field pattern as one
goes around the azimuth (actually, the number of nulls is 2n), while p tells the number of nulls
encountered radially between r = 0 and r = b. Similarly, a field with no longitudinal electric field
is called a “transverse electric,” or TEuv mode.

1.4.5 Solving for the Fields of the TMnp Mode

For a TMnp mode, the longitudinal electric field is given by:

E0,z = Jn(kc,npr) cos(nθ), (34)

where we have selected our coordinate system such that θnp ≡ 0. The longitudinal magnetic field,
H0,z, is known to be zero. It is now possible to solve for the remaining field components of the
TMnp mode (specifically: H0,r, H0,θ, E0,r, E0,θ). Four equations are required to solve for these four
unknowns.

The θ component of the magnetic curl equation Tells us that ∂H0,r/∂z − ∂H0,z/∂r =
ε∂E0,θ/∂t. Since H0,z ≡ 0 and we can replace time and longitudinal derivatives via Equation 13,
we can write:

kH0,r = −εωE0,θ. (35)
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The r component of the magnetic curl equation tells us that 1/r∂H0,z/∂θ− ∂H0,θ/∂z =
ε∂E0,r/∂t. By similar operations to those in the previous paragraph, we find:

kH0,θ = εωE0,r. (36)

The θ component of the electric curl equation tells us that ∂E0,r/∂z − ∂E0,z/∂r =
−µ∂H0,θ/∂t. We can replace the time and longitudinal derivatives, and can also replace E0,r with
H0,θ via Equation 36 to find:

∂E0,z

∂r
=
ik2
c

ωε
H0,θ. (37)

The magnetic divergence equation tells us that ~∇ · ~H0 = 0. Since H0,z is identically zero,
we can write:

∂H0,θ

∂θ
= − ∂

∂r
(rH0,r) . (38)

Equation 37 can be used immediately to obtain H0,θ, which in turn allows H0,r to be determined
from Equation 38 and E0,r from Equation 36. Finally, Equation 35 relates E0,θ toH0,r. The solution
for the fields in a TMnp mode are:

E0,z = Jn(kc,npr) cos(nθ), (39)

H0,z = 0,

E0,r =
−ik
kc,np

J ′
n(kc,npr) cos(nθ),

E0,θ =
ikn

k2
c,npr

Jn(kc,npr) sin(nθ),

H0,r =
−iωεn
k2
c,npr

Jn(kc,npr) sin(nθ),

H0,θ =
−iωε
kc,np

J ′
n(kc,npr) cos(nθ).

A similar painful procedure can be used to derive the fields of a TE mode. We point out that for
n 6= 0 there are two polarizations possible for each TE or TM mode; the second polarization can
be obtained from Equation 39 by replacing sine with cosine and cosine with -sine.

Figure 1 shows the field patterns associated with several of the lower TE and TM modes. Figure
2 shows the relationship between cutoff frequencies for various modes in a circular waveguide. Note
that the TE11 mode has the lowest cutoff; frequencies which are so low that they can only propagate
in the TE11 mode are called single-moded for this reason.

2 Single-Celled Accelerating Cavities

In 1.3, we saw that in free space waves of any frequency can propagate; that both the phase velocity
and the group velocity of such waves are the speed of light; and that such waves have a purely
transverse polarization, so that they are not usable for acceleration of charged particles. In 1.4 we
saw that in a regular cylindrical waveguide only waves above the cutoff frequency can propagate;
that such waves can have a longitudinal electric field component; that the group velocity of such
waves are below the speed of light, but that the phase velocity is above the speed of light. Thus, a
regular waveguide is also an unacceptable device for acceleration of beams.

The problem with the regular waveguide is that, with a phase velocity exceeding c, the acceler-
ating phase of the wave will overtake the particles which are to be accelerated, and ultimately the
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TM01Wave Type

Table 3  Mode Patterns in Circular Waveguide.

TE01 TE11

Distributions
below along
this plane

Distributions
below along
this plane

Field distributions
in cross-sectional
plane, at plane of
maximum trans-

verse fields

Field distributions
along guide

TM11TM02

Field components
present Ez, Er, HφEz, Er, Hφ Hz, Hr, EφEz, Er, Eφ, Hr, Hφ Hz, Hr, Hφ, Er, Eφ

7–98
8355A213

Figure 1: Field patterns for several TE and TM modes in circular waveguide.
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Figure 2: Cutoff frequencies ωc normalized to c/b for the lowest 10 modes in circular waveguide.
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decelerating phase will overlap those particles. One solution, then is to consider using the acceler-
ating phase to accelerate the particles, and then to separate the wave from the particles before the
decelerating phase can interact with them. This, in turn means applying a boundary condition to
the only “free” axis present in the problem – the z axis.

L

b

3-2003
8666A03

Figure 3: Perfectly-conducting right-circular cylinder with radius b and length L.

Consider a perfectly conducting right-circular cylinder of radius b and length L. It is imme-
diately clear that any solution to Maxwell’s equations must satisfy the boundary conditions for a
regular circular waveguide of radius b. In addition, the conducting ends (“endcaps”) of the cylinder
imply additional boundary conditions:

• At z = 0 and z = L, the transverse electric field components, Er and Eθ, must go to zero,
since the electric field must be normal to any conducting boundary.

• At z = 0 and z = L, the longitudinal magnetic field component must go to zero, since the
magnetic field must be tangential to any conducting boundary.

• Since the transverse components of ~E are identically zero on the endcaps, the transverse
components of ~∇× ~H must also be zero there. We also know that Hz is identically zero at all
of these locations. From Equation 16, therefore, we deduce that ∂Hθ/∂z and ∂Hr/∂z must
be zero at the endcaps.

What sort of solution will satisfy all of these requirements? Let us consider first a solution
which is based on the TM01 mode: from inspection of Equation 39, we see that Hz, Eθ, and Hr are
identically zero for this mode, so already we have satisfied the Eθ, Hz, and ∂Hr/∂z requirements
on the endcaps, and of course the TM01 mode automatically satisfies the boundary conditions on
the barrel.

Suppose that we now superimpose two TM01 modes within our cavity: one which is rightward-
propagating, with k ≥ 0, and another which is leftward-propagating, with a k value equal and
opposite to the first. The resulting values of Ez, Er, and Hθ become:

Ez = J0(kc,01r) cos(kz) exp(iωt), (40)
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Er =
−k
kc,01

J ′
0(kc,01r) sin(kz) exp(iωt),

Hθ =
−iωε
kc,01

J ′
0(kc,01r) cos(kz) exp(iωt).

There are a few things worth noting about our solution, Equation 40. The first is that Equations
35 through 38 no longer apply – those relations were valid only in the case of a single mode, and
in this case we have superimposed two modes. The second point is that at z = 0, the fields in
Equation 40 automatically satisfy the conducting boundary requirements: Er = ∂Hθ/∂z = 0. The
only remaining conditions are the conducting boundary conditions at z = L. These in turn can be
satisfied if kL = jπ, where j is an integer. The solution in Equation 40 becomes a standing wave,
and in this case is known as a TMnpj mode: the first index, n, gives the azimuthal periodicity (full
symmetry, in n = 0, or one oscillation in n = 1 case, etc.); the second index, p, gives the number
of field nulls in the radial dimension between r = 0 and r = b; the third index, j, tells the number
of field nulls in the longitudinal dimension between z = 0 and z = L.

Another feature of the TMnpj mode is that, unlike the TMnp mode, only certain discrete fre-
quencies can be sustained in the cavity. While the TMnp mode will support any frequency above
ωc ≡ znp/b

√
µε, the TMnpj mode will only support TMnp modes for which kL = jπ. We can make

use of Equations 28 through 30 to find an expression for the allowed frequency of the TMnpj mode
in a cavity of radius b and length L:

ωnpj =
1√
µε

√

(

znp
b

)2

+

(

jπ

L

)2

. (41)

It would appear that, by applying conducting boundary conditions in the longitudinal degree
of freedom, we at last have created a time-dependent electric field which is useful for acceleration
of particles. By inspection if Equation 39, we can write a general solution to the time-dependent
fields in a TMnpj mode:

Ez = Jn(kc,npr) cos(nθ) cos(kjz) exp(iωt), (42)

Hz = 0,

Er =
−kj
kc,np

J ′
n(kc,npr) cos(nθ) sin(kjz) exp(iωt),

Eθ =
−kjn
k2
c,npr

Jn(kc,npr) sin(nθ) sin(kjz) exp(iωt),

Hr =
−iωεn
k2
c,npr

Jn(kc,npr) sin(nθ) cos(kjz) exp(iωt),

Hθ =
−iωε
kc,np

J ′
n(kc,npr) cos(nθ) cos(kjz) exp(iωt),

where kj ≡ jπ/L. As advertised, the Er and Eθ components are zero at the endcaps; Hz is zero
everywhere, including at the endcaps; and the partial derivatives of Hr and Hθ in the z direction
are also zero.

Note that the series expansion of Jn(R):

Jn(R) =
∞
∑

m=0

(−1)m(R/2)2m+n

m!(m+ n)!
(43)

indicates that only the n = 0 modes will permit a longitudinal electric field on the axis of the cavity.
This makes the n = 0 modes the preferred ones for actual acceleration.
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2.1 Transit Time Effect

Let us consider once again the (unacceptable) TM0p mode. We can express the electric field on
axis as simply:

Ez,0p = E0 exp[i(ωt− kz)], (44)

where ω and k are understood to be non-negative. What is the energy gain received by the beam
when it interacts with this wave over a distance L? If the beam is moving at the speed of light,
then we can write t = t0 + z/c, and express the energy gain edV in a distance dz,

edV = eEz,0pdz = eE0 exp[iωt0 + iωz/c− ikz]dz, (45)

and integrate from z = 0 to z = L:

eV = eE0<
{

exp(iωt0)

∫ L

0
dz exp[i(ω/c− k)z]

}

, (46)

where we have explicitly required that only the real portion of our heretofore complex quantities
can effect any meaningful changes on particles in the real world. Equation 46 can be evaluated:

eV = eE0<
{

exp(iωt0)
exp[iL(ω/c− k)] − 1

i(ω/c− k)

}

. (47)

The quantity ψ ≡ L(ω/c − k) is known as the transit angle, and represents the amount the RF
phase varies during the passage of the particles through it. We can rewrite Equation 47:

eV = eE0<
{

exp(iωt0)
exp(iψ) − 1

iψ/L

}

. (48)

Equation 48 can be written in an even-more useful form by: first, converting the 1/L in the
denominator to a factor of L outside the brackets; second, factoring exp iψ/2 out of the numerator;
and third, recognizing that the resulting expression has a startling resemblance to the expression
for sinψ/2:

eV = eE0LT<{exp[i(ωt0 + ψ/2)]} , where (49)

T ≡ sin(ψ/2)

ψ/2
.

Equation 49 has a number of fascinating properties. First, it shows that the energy gain of
passing particles is maximized when t0 is selected such that ωt0 + ψ/2 is zero – in other words,
the time-varying component of the electric field should achieve a maximum when the particle has
travelled a distance L/2 from its starting point. Second, even if this optimum value is chosen, the
energy gain of the particle will be reduced by a factor of T from what would be achieved if a DC
field of E0 was used for acceleration. Thus, the “efficiency” of acceleration (relative to a DC field)
is maximized by minimizing the transit angle.

We can use Equation 49 to calculate the energy gain from a TM0pj mode in a cylindrical
cavity. Recall that such a mode is composed of a left-travelling wave and a right-travelling wave
superimposed within the cavity. Thus,

eV = e
E0L

2
{TL cos(ωt0 + ψL/2) + TR cos(ωt0 + ψR/2)} , (50)

where ψL and ψR represent the transit angle for leftward- and rightward-travelling waves, TL and
TR their respective transit angle factors, and we have replaced the real portion of the complex
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exponential with a cosine function. We can express the transit angles ψL, ψR as functions of the
wave number kj :

ψL,R = L

(

ω

c
± kj

)

, (51)

where the + sign corresponds to leftward-travelling and the − sign to rightward travelling. We can
combine our expression for kj = jπ/L with the expression for ωnpj in Equation 41 to expand the
transit angles:

ψL,R =
1

c
√
µε

√

(

z0pL

b

)2

+ (jπ)2 ± jπ. (52)

From Equation 52, we can see that, for leftward-travelling waves, the transit angle will be 2jπ
plus z0pL/b added in quadrature. For most combinations of parameters, this will give a negative
value for sin(ψL/2) – that is to say, a decelerating wave. Apparently, if we want both the leftward-
and rightward-travelling waves to contribute to the acceleration, the best mode choice is j = 0,
corresponding to a standing wave with no longitudinal dependence (since the latter goes as cos(kjz),
and kj=0 = 0). Note that, for this solution, ψL = ψR, and the two cosine terms in Equation 50 can
be maximized simultaneously by an appropriate choice of t0.

2.2 R/Q

In the preceding sections, we established that a TMnpj mode is acceptable for acceleration of
particles; that our requirement of a nonzero accelerating field on the axis of the cavity corresponds
to a requirement that n = 0; that in order to maximize the effective accelerating gradient for a
given electric field applied we require j = 0 – thus, we seek to use a TM0p0 mode for acceleration.

In order to maintain an accelerating field in the cavity, it will be necessary to store electromag-
netic energy in the cavity. Since that energy ultimately comes from the electrical grid and has to
be paid for, a useful quantity to calculate is the net acceleration achieved for a given quantity of
stored energy. The energy density U is given by [3, 4]:

U =
1

2

(

~E · ~D∗ + ~B · ~H∗
)

. (53)

For a TM0p0 mode, only Ez and Hθ exist, and we can write:

~E · ~D∗ = ε [E0J0(kc,0pr)]
2 cos2 ωt, (54)

~B · ~H∗ = µ

[

ωεE0

kc,0p
J ′

0(kc,0pr)

]2

sin2 ωt.

If we select t = 0, Equation 54 requires that the magnetic energy density be zero throughout
the cavity and we can compute the total stored energy using only the electric field components.
Since total energy is conserved, and the E and H components in Equation 54 are out of phase
with one another, one might suspect that the stored energy is oscillating back and forth between
the electric and the magnetic components, and that therefore one could find the stored energy by
selecting either the electric or magnetic component at an appropriate time. This suspicion is in fact
accurate, and often textbooks will note that the time-averaged magnetic energy equals the time-
averaged electric energy, and that the time-averaged electric energy is half the peak electric energy;
they therefore continue to state that therefore the total stored energy is half of twice the peak
stored electric energy, which is a somewhat convoluted means of arriving at the same conclusion.
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In any event: we now wish to evaluate the total stored energy:

U =
ε

2
E2

0

∫ b

0
dr

∫ L

0
dz

∫ 2π

0
rdθJ2

0 (kc,0pr). (55)

The longitudinal and angular components can be evaluated by inspection, and one is left with a
radial integration:

U = πεE2
0L

∫ b

0
rdrJ2

0 (kc,0pr). (56)

We can simplify Equation 56 by introducing dimensionless variable R ≡ r/b:

U = πεE2
0b

2L

∫ 1

0
RdRJ2

0 (z0pv). (57)

Finally, we can use the fact that
∫ 1
0 RdRJ2

0 (z0pR) = J2
1 (z0p)/2 [5]:

U =
π

2
εE2

0b
2LJ2

1 (z0p). (58)

Since U ∝ E2
0 , we can sensibly form the ratio of the square of the effective accelerating voltage,

V 2 = (E0LT )2, to the stored energy required to achieve that acceleration:

V 2

U
=

2E2
0L

2T 2

πεE2
0b

2LJ2
1 (z0p)

(59)

=
2T 2

πεJ2
1 (z0p)

L

b2
.

Equation 59 can be usefully transformed by replacing one of the factors of b with z0p/(ω0p0
√
µε,

and moving the resulting factor of ω0p0 to the LHS:

V 2

ω0p0U
=

2T 2

πz0pJ2
1 (z0p)

L

b

√

µ

ε
. (60)

The quantity
√

µ/ε is the impedance of the medium, with units of ohms in MKSA, and is usually
abbreviated Z, thus:

V 2

ω0p0U
=

2

πz0pJ2
1 (z0p)

T 2L

b
Z. (61)

We can make one additional simplification by noting that the term 2/[πz0pJ
2
1 (z0p)] is equal to 0.982

for p = 1 and asymptotically approaches 1 for larger p values [6]. Thus, to excellent approximation,
we can state that:

V 2

ω0p0U
=
T 2L

b
Z. (62)

The quantity V 2/(ω0p0U) is generally known as R/Q (read “R over Q” or “R upon Q”), for reasons
which will be discussed below. Although it is referred to as the ratio of two quantities, R/Q is
actually a purely geometric quantity of a given accelerating cavity, and it relates the resonant
frequency, the achievable acceleration, and the stored energy which is required for operation. As
we can see from Equation 62, energy-efficient acceleration is achieved by maximizing the cavity
length, transit-time factor, and frequency, while minimizing the cavity radius.
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Unfortunately, these requirements are somewhat in conflict, since maximizing L will also in-
crease the transit angle, thus reducing T . We can optimize Equation 62 by noting that T 2 =
sin2(ψ/2)/(ψ2/4) contains 2 factors of 1/L2 (in the 1/(ψ2/4) component), thus:

R

Q
= Z

L

b

sin2(ψ/2)

ψ/2

2c

Lω0p0
. (63)

Recalling that b = z0p/ω0p0
√
µε, we find:

R

Q
= Z

2

z0p

sin2(ψ/2)

ψ/2
c
√
µε. (64)

Equation 64 shows that the accelerating efficiency of a cavity is maximized when the p = 1 mode is
used, since z0p monotonically increases with p. It also shows that there is an optimum transit angle,
since ψ = 0 results in a zero R/Q, and ψ = 2π also yields zero R/Q. The value of sin2(ψ/2)/ψ/2
is plotted in figure 4. It shows that R/Q is maximized at a transit angle of roughly 3π/4 (actually,
133.56◦); at this angle, sin2(ψ/2)/ψ/2 = 0.725. One can also see from Figure 4 that R/Q is a
relatively weak function of the transit angle: angles from 90◦ to 180◦ will yield values that are
within 12% of the maximum value. Finally, we note that for a right circular cylindrical cavity,
R/Q can be expressed as a function of transit angle alone, without any other dimensions or free
parameters entering. Considering the definition of R/Q, one therefore surmises that accelerating
voltage per unit of energy is optimized by maximizing the accelerating frequency and optimizing
the transit angle.
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Figure 4: Value of the transit angle factor in R/Q as a function of the transit angle.

2.3 Q of a Cavity and Shunt Impedance

In the previous section we discussed the optimization of a cavity in terms of maximizing the
accelerating voltage per unit energy stored in the cavity. The stored energy can indeed be the
parameter that limits performance, but more commonly the limitation is input power – the power
source for the cavity can supply only so many megawatts, and when the number of megawatts going
from the power source into the cavity equals the number of megawatts lost in the cavity, that sets
the limit of accelerating field.

We can understand the point at which this occurs by estimating the amount of power dissipated
by a cavity. Thus far we have assumed that the walls of the cavity have zero resistance (or infinite
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conductivity), which required the electric and magnetic fields to vanish within the conductor. In the
case of finite conductivity, it can be shown [2] that the tangential magnetic field must be continuous
at the boundary between the vacuum and the conductor. This implies that the magnetic field within
the conductor is nonzero, and by the curl equations, the electric field must also be nonzero. The
electric field in the conductor can be shown to be [8]

~Ec ≈
√

µcω

2σ
(−1 − i)(n̂× ~Hs) exp(−ξ/δ) exp(−iξ/δ), (65)

where the subscript “c” refers to fields or permeability of the conductor, the subscript “s” refers to
the field at the surface of the conductor, n̂ is the normal vector pointing from the surface into the
vacuum, ξ is a coordinate that points into the surface, and δ is the skin depth of the material at
frequency ω:

δ ≡
√

2

µcωσ
. (66)

The total power dissipated per unit area of the cavity can be computed by computing the ohmic
loss per unit volume and integrating from the surface to infinite depth. The electric field is given
in Equation 65, and the current is the product of the electric field and the conductivity σ. When
the integration is completed, a rather convenient result appears:

dP

dA
=
µcωδ

2
| ~Hs|2 (67)

We can eliminate the skin depth in Equation 67:

dP

dA
=

√

µcω

2σ
| ~Hs|2. (68)

Thus, the total power dissipated in ohmic losses per unit area of a conducting RF cavity can be
estimated by integrating the magnetic field over all of the surfaces and applying Equation 68.

2.3.1 Superconducting Cavity Losses

A useful transformation to Equation 68 is:

dP

dA
= Rs| ~Hs|2, where (69)

Rs ≡
√

µω

2σ
=

1

σδ
.

The quantity Rs is the “surface resistance” of the material, which increases as the square root of
frequency for a conventional conductor.

It is often fashionable these days to design and construct accelerators in which the cavities are
made of a superconducting material, usually elemental niobium. For such cavities, we can use
Equation 69, but with a different expression for the surface resistance [39]:

Rs[Ω] ≈ 9 × 10−5 ν
2[GHz]

T [K]
exp

(

−αsc
Tc
T

)

+Rres, (70)

where T is the operating temperature, Tc is the critical temperature of 9.2 kelvin, αsc = 1.92, and
Rres is the residual resistance from impurities, which is typically at the level of 10−8Ω. Figure
5 shows the surface resistance as a function of frequency for copper (σ = 5.98 × 107mho/m),
as compared to niobium at 2 kelvin and 4.5 kelvin. Superconductivity is vastly superior in any
application where wall losses are the sole limitation.
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Figure 5: Surface resistance Rs as a function of frequency for copper and for niobium at two
different temperatures.
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2.3.2 Q of a Cavity

We can now compute the power dissipation in a cavity operating in the TM010 mode, with length
L and radius b. All that needs to be done is the integration of H2

θ over all of the surface. If we
choose a time such that Hθ is maximized, then Equation 42 shows

|Hθ| = E0
εω010

kc,01
J ′

0(kc,01r). (71)

In the TM010 mode, ω010 = kc,01/
√
µε. Thus, we can eliminate the factor of εω/k in Equation 71,

and replace them with a factor of 1/Z. We can calculate the total power loss in two integrals, one
for the endcap and one for the barrel. The barrel integral can be performed by inspection:

Pbarrel = Rs
E2

0

Z2

∫ L

0
dz

∫ 2π

0
bdθ[J ′

0(kc,01b)]
2 (72)

=
2πE2

0RsLb

Z2
[J ′

0(z01)]
2

=
2πE2

0RsLb

Z2
J2

1 (z01),

where we have made use of the fact that J ′
0(R) = −J1(R) [5]. The endcap integral,

Pendcap = Rs
E2

0

Z2

∫ b

0
rdr

∫ 2π

0
dθ[J ′

0(kc,01r)]
2, (73)

requires a bit more. We can make use of three Bessel function identities [9]

∫ 1

0
RdR[Jn(QR)]2 =

1

2

{

[J ′
n(Q)]2 +

(

1 − n2

Q2

)

[Jn(Q)]2
}

(74)

J ′
n(Q) =

1

2
[Jn−1(Q) − Jn+1(Q)],

Jn+1(Q) + Jn−1(Q) =
2n

Q Jn(Q),

and the fact that J ′
0 = −J1 to find the surprising result:

∫ b

0
rdr[J ′

0(z01r/b)]
2 =

b2

2
J2

1 (z01). (75)

Thus we can solve the endcap integral,

Pendcap =
πE2

0Rsb
2

Z2
J2

1 (z01). (76)

We can put this all together, remembering that there are two endcaps and that the time-averaged
power loss is 1/2 of the losses calculated at the peak of the H-field, to find:

Pcav =
πE2

0Rs
Z2

J2
1 (z01)b(L+ b). (77)

Comparison of Equation 77 to Equation 58 shows that both the stored energy in the cavity and
the loss per unit of time are proportional to E2

0 , the peak on-axis electric field. Thus, we can
now predict the destiny of any such cavity hooked up to a power-limited energy source: the stored
energy in the cavity will rise as the cavity is filled by the source, and the power lost in the walls
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will also increase (since it is simply proportional to the stored energy). At some point, the stored
energy will be so large that the power lost in the walls will equal the power entering the cavity
from the source, and that will determine the maximum accelerating voltage available to the cavity.

A neatly-dimensionless quantity is the ratio of the stored energy to the power dissipated in 1
RF cycle (actually, 2π RF cycles), which is a quantity known as the “wall Q”:

ωU

P
=

z01ZL

2Rs(L+ b)
≡ Qw. (78)

Since P ≡ dU/dt, we can use Equation 78 to determine the time-evolution of the stored energy in
the absence of an external power source:

U = Ut=0 exp(−ωt/Qw). (79)

2.3.3 Shunt Impedance

In Equation 64, we saw that R/Q, the ratio of accelerating voltage to stored energy in a cavity,
was a function of the cavity length through the dependence on transit angle ψ. Equation 78 shows
that the wall Q, the ratio of stored energy to power loss, is a function of both the cavity length
L and its radius b. We can combine these “figures of merit” to find the more useful ratio of the
accelerating voltage to the power loss:

Rcav = Qw
R

Q
(80)

=
V 2

P

=
Z2

Rs

2c2µε

z01

sin2 ψ/2

1 + c
√
µε 2

z01
ψ
2

.

The quantity Rcav is called the “shunt impedance,” and knowledge of the shunt impedance allows
the acceleration properties of a cavity to be treated, mathematically, like a resistor: given an input
power P and a shunt impedance Rcav, the accelerating voltage will satisfy P = V 2/Rcav.

Figure 6 shows the shunt impedance form factor (the term in Equation 80 with the ψ’s in it) as
a function of ψ. The shunt impedance is optimized for a transit angle which is slightly larger than
the one which optimizes R/Q – Rcav is maximized for a transit angle of 158◦, compared to 133◦

for the R/Q. For a transit angle of 90◦, the shunt impedance is reduced by about one-third from
its value at 158◦, while a transit angle of 120◦ represents only an 11% loss in shunt impedance.

3 Multi-Celled Accelerating Structures

in 2.3.3, we saw that the power required to achieve a certain accelerating voltage varies as the
square of that voltage, and inversely with the shunt impedance of the cavity which delivers that
voltage. Relatively little insight is required to see that, given a cavity with a shunt impedance
Rcav, one can achieve a voltage of 2V with one cavity and a power source of 4V 2/Rcav, or else with
two cavities that each have a power source of V 2/Rcav. The latter choice requires twice as many
cavities and power sources, but only half as much power, as the former case.

Just to get a feeling for the numbers, consider a cavity operating at the optimal transit angle
and a frequency of 1 GHz, and a desired acceleration of 100 GeV. At this frequency, the surface
resistance of copper is about 8 mΩ, yielding a shunt impedance of about 6.6 MΩ. The power
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Figure 6: Shunt impedance form factor as a function of transit angle.

required in such a cavity to yield an accelerating voltage of 100 GeV is around 1.5 × 1015 watts.
By comparison, the typical power generation capacity available to the state of California is about
4 × 1010 watts. Even if the required power capacity was available, and a solution for cooling the
cavity (removing the energy lost in the walls) could be found, the stored energy in such a cavity
would be roughly 7 gigajoules, yielding a stored energy density of 1.3 terajoules per cubic meter.
Such an energy density is certainly not acceptable to modern ES & H practices!

One option for achieving large accelerations in a multi-cavity system is to have a large number
of cavities which are each independently powered. This would require a large number of power
sources (one per cavity), and a large number of waveguides which would transport power from the
power sources to the cavities. Fortunately, this proves to be unnecessary. The necessary act of
cutting a hole in each endcap of the cavity to allow the beam to pass through (!) will also allow us
to solve the problem of providing power to each cavity.

3.1 Longitudinal Periodicity in Accelerating Structures

Consider a system shown in Figure 7: a cylindrical waveguide with inner radius b contains a series
of cylindrical plates which are evenly spaced a distance d apart in the guide; each plate has a
thickness h, and each plate has a hole of radius a in the center. We assume that a� b, that h� d,
and that the wall conductivity is infinite.

In the limit of a → 0, we expect the solution for the field in between each pair of plates to
reduce to the single-cavity form which was determined in Section 2. We also know from Floquet’s
theorem that the system with holes will take a solution which satisfies [10]:

~E(r, θ, z + d, t) = ~E(r, θ, z, t) exp[d(−α+ ikz)], (81)

where α and kz are real numbers and α is non-negative. A similar relation holds for ~H.
Let us call the solution for the fields in the cavity in the absence of holes ~E1, ~H1, and the fields

in the presence of the holes ~E2, ~H2, and consider the surface integral over the cavity’s inner surface
∮

d ~A( ~E1 × ~H∗
2 − ~E2 × ~H∗

1 )[11], where ~A points out of the cavity. We can apply the divergence
theorem to find:

∮

d ~A · ( ~E1 × ~H∗
2 − ~E2 × ~H∗

1 ) =

∫

dVol~∇ · ( ~E1 × ~H∗
2 − ~E2 × ~H∗

1 ). (82)
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Figure 7: Longitudinal section of a cylindrical waveguide “loaded” with periodically-spaced discs.

We can then apply a vector calculus identity to find:

∮

d ~A·( ~E1× ~H∗
2− ~E2× ~H∗

1 ) =

∫

dVol[ ~H∗
2 ·(~∇× ~E1)− ~E1·(~∇× ~H∗

2 )+ ~E2·(~∇× ~H∗
1 )− ~H∗

1 ·(~∇× ~E1)]. (83)

The curl operators in the above equation will precipitate the usual combination of i, ω, µ, and ε
but will convert the vector operations to dot products of ~H∗

1 · ~H2, and related permutations. If we
require that the perturbation be small, then we can say that ~H1 ≈ ~H2 and ~E1 ≈ ~E2. We can thus
write:

∮

d ~A · ( ~E1 × ~H∗
2 − ~E2 × ~H∗

1 ) = i(ω2 − ω1)

∫

dVol(µ ~H∗
1 · ~H1 + ε ~E∗

1 · ~E1). (84)

The quantity on the RHS is simply twice the stored energy in the unperturbed cavity. Thus we
can derive the change in resonant frequency of the cavities with the holes:

ω2 − ω1 =
−i
∮

d ~A · ( ~E1 × ~H∗
2 − ~E2 × ~H∗

1 )

2U1
. (85)

By inspection, we can eliminate the first term on the RHS of equation 85. This is because the
integral is over the surface of the unperturbed cavity, and on that surface ~E1 is normal to the surface
at all points; therefore, d ~A · ( ~E1 × ~H∗

2 ) must vanish for all points on the surface. The quantity ~H∗
1

is already known from Equation 42, and ~E2 ≈ ~E1 outside the region of the hole between cavities.
Thus, we can estimate the change in the cavity frequency by estimating the radial electric field
component in the vicinity of the hole.

3.1.1 Radial Electric Field at the Cavity Hole

The present problem is to determine the electric field in the hole between two resonant accelerating
cavities. In the absence of the hole, the field would of course be zero within the conducting material
between cavities, and the electric field in the left and right cavities would be related by Floquet’s
theorem: ER = EL exp[d(−α + ikz)]; in both cavities, the field would be purely longitudinal
(assuming that a TM010 mode was selected). In the presence of the hole, we can require that the
total solution be a superposition of the hole-free system and a system containing only a conducting
sheet with a hole. In the latter system we specify that the longitudinal electric field should go to
EL at z = −∞ and to ER at z = +∞.
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This problem has been solved in excruciating detail by Jackson [12], and here we quote only
the result

Er =
EL − ER

π

r√
a2 − r2

. (86)

3.1.2 Computing the Frequency Shift

We can now solve for the frequency shift in Equation 85. For E2,r we can write E0(1− exp[d(−α+
ikz)])J0(kcr)r/

√
a2 − r2; for H∗

1,θ we can write iω1ε/kcE
∗
0J

′
0(kcr); put it all together, and we find:

2U1(ω2 − ω1) = i

∮

d ~A · ~E2 × ~H∗
1 (87)

= − εω1

2πkc
E0E

∗
0 {1 − exp[d(−α+ ikz)]}

∫ a

0
r2dr

∫ 2π

0
dθ
J0(kcr)J

′
0(kcr)√

a2 − r2
,

where we have included the fact that, due to sinusoidal oscillations, ~E2 × ~H∗
1 = (E2H

∗
1 )/2 if we

define ~E2 ≡ Ê2E2 exp(iωt), etc. Without too much controversy we can require that E0 be real,
that only the real component of the RHS of Equation 87 be used, and we can at the same time
perform the angular integral:

2U1(ω2 − ω1) = −εω1

kc
E2

0 [1 − exp(−αd) cos(kzd)]

∫ a

0
dr
r2J0(kcr)J

′
0(kcr)√

a2 − r2
. (88)

Performing the Horrendous Integral: Equation 88 contains an integral,

I =

∫ a

0
dr
r2J0(kcr)J

′
0(kcr)√

a2 − r2
, (89)

which looks pretty difficult. It can be completed by switching to a normalized variable, R ≡ r/a,
which recasts I as follows:

I = −a2

∫ 1

0
dRR2J0(kcaR)J1(kcaR)√

1 −R2
, (90)

where we have also replaced J ′
0 with −J1. The new form does not appear to be much of an im-

provement, until one realizes that this permits a trigonometric substitution:
∫

dRf(R)/
√

1 −R2 ≡
∫

dXf(sinX ), where sinX = R. Replacing a bunch of Bessel functions with Bessel functions of
trigonometric functions seems like a losing proposition, but one can then use the series expansion
of the Bessel functions [13] to find:

I = −a2

∫ π/2

0
dX sin2 X

[

1 − 1

4
k2
ca

2 sin2 X +
1

64
k4
ca

4 sin4 X − ...

] [

1

2
kca sinX − 1

16
k3
ca

3 sin3 X + ...

]

.

(91)
Since kca is proportional to a/b, we can neglect any term with a power of kca above that of the
lowest order present. Neglecting all but the lowest order in kca transforms our integral to:

I ≈ −a2

∫ π/2

0
dX 1

2
kca sin3 X , (92)

and this form is convenient for “integration by table,” yielding [14]:

I ≈ −1

3
kca

3. (93)
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Putting it All Together: We can now return to Equation 88:

U1(ω2 − ω1) = −εω1

kc
E2

0 [1 − exp(−αd) cos(kzd)]

(

−1

3
kca

3

)

. (94)

Our expression for U1, Equation 58, can be used to find:

ω2 − ω1 =
2

3π

z01
J2

1 (z01)

a3

b3d

1√
µε

[1 − exp(−αd) cos kzd] , (95)

where we have included the fact that there are two holes in each cavity, and therefore the frequency
shift is twice what was originally calculated for one hole.

We can make a more useful expression by replacing the exponential decay, exp(−αδ), with the
amount of attenuation expected at frequency ω1 when passing through a hole of radius a and length
h. Assuming that the hole is small (so that ω1 is well below cutoff), the exponential term becomes
exp(−z01h/a). Finally, since ω1 = z01/(b

√
µε), we can write:

ω =
z01
b
√
µε

(

1 +
2

3πJ2
1 (z01)

a3

b2d
[1 − exp(−z01h/a) cos kzd]

)

. (96)

3.2 Properties of the Multi-Celled Structure

We have previously examined the wave propagation properties of: free space (which will propagate
any frequency but only if the electric, magnetic, and momentum vectors are all mutually perpen-
dicular); a simple waveguide (which will propagate any frequency above its cutoff, and supports a
longitudinal electric field, but which has a phase velocity greater than light speed); and a cylindrical
cavity (which will permit only discrete frequencies above its cutoff but which allows a longitudinal
electric field which can be used to accelerate a particle).

The multi-celled cavity described by Equation 96 will propagate frequencies above the cutoff of
the outer waveguide, but will not propagate frequencies above an upper limit, given when cos kzd =
−1. Like the simple waveguide, the permitted frequencies form a continuous spectrum, rather than
the discrete spectrum of the single cylindrical cavity with solid endcaps. Since the mode of each
cell in the multi-cell structure is a perturbation of the TM010 mode of the cylindrical cavity, we
expect that the structure will support longitudinal electric fields.

Will the fields be suitable for acceleration of particles? We can use Equation 96 to find the
phase and group velocities of the resulting waveform:

vph =
ω

kz
=

z01
kzb

√
µε

(

1 +
2

3πJ2
1 (z01)

a3

b2d
[1 − exp(−z01h/a) cos kzd]

)

(97)

vgr =
dω

dkz
=

z01
b
√
µε

2

3πJ2
1 (z01)

a3

b2
exp(−z01h/a) sin kzd.

With four free parameters – a, b, d, and h – it appears that we can pick a frequency, a group
velocity, and a phase velocity, and still have one degree of freedom left for designing our structure.
To make this more concrete, let us consider a waveguide with an inner radius b of 10 cm, a spacing
between discs d of 10 cm, and a hole radius a of 5 cm; assume that h is approximately zero. Figure
8 shows ω as a function of k for (a) a circular waveguide with no discs (b) a single cavity with
endcaps but not holes (c) an infinitely long multi-cell structure with discs and holes. Also shown
is the speed of light line. (Note: the present parameters do not satisfy the requirement that a be
small compared to b and d and thus a perturbation; the larger value is more illustrative because
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the small-a behavior is preserved but in a way that plots better.) As Figure 8 shows, the line
representing the speed of light crosses the ω− kz curve of the multi-celled structure, implying that
there exists a frequency for which the phase velocity in the structure is c, which is essential for
particle acceleration. The intersection occurs at kz ≈ 27.6 m−1, indicating a wavelength of 22.7 cm
and a frequency of 1.33 GHz. The factor kzd is 0.88π, or 158◦; Equation 97 tells us that the group
velocity is 6.3% of the speed of light.

3.2.1 Finite-Length versus Infinite-Length Structures
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Figure 8: Diagram of ω vs kz (“dispersion diagram”) for regular waveguide, a single cavity with
solid endcaps, and a disc-loaded waveguide. The line representing the speed of light is also shown.

Figure 8 implies that an accelerating structure will propagate TM010-like waves of any frequency
between the lower and upper cutoff frequencies. This is true in the limit of an infinitely-long
accelerating structure, but not in the case of a structure with a finite number of cells.

For a finite number of cells Ncell, the structure acts like a set of Ncell coupled oscillators, each
of which has a resonant frequency equal to the lower cutoff frequency. Such a system has a total
of Ncell normal modes of oscillation; these modes are uniformly distributed in kzd, from kzd = 0 to
kzd = π, as shown in Figure 9. Because of the sinusoidal structure of the ω−kz curve, the resonant
frequencies are closely-spaced at the 0-mode and π-mode ends of the curve and more widely spaced

24



0 0.5 1 1.5 2 2.5 3 3.5
7

7.5

8

8.5
x 10

9

k
z
d

ω
, s

ec
−

1

Figure 9: Normal modes of a disc-loaded waveguide with parameters identical to those used in
Figure 8, but only 10 cells (rather than an infinite number of cells).

in the center. Each mode has a width equal to the Q value for the structure; thus, the structure
will only do a reasonable job of propagating a wave if its frequency is within 1/Q of one of the
structure’s normal modes. Since Q is typically in the thousands or tens of thousands for a copper
structure (and can be in the billions for a superconducting structure), and very few structures
have significantly more than 100 cells, in a practical system it is not accurate to treat the ω − kz
curve as truly continuous. This will prove to be important for standing-wave structures (especially
superconducting ones), as we will see later.

3.2.2 The Meaning of kzd

What do we really mean when we say that the “phase velocity” of the structure is set by Equation
97? Consider a cavity with some set of parameters a, b, d, and h, which is excited by a power
source with frequency ω. Equation 96 allows us to compute the kz value which corresponds to
the driving frequency and the cavity dimensions, and Equation 97 allows us to compute the phase
velocity, ω/kz.

Now consider a particle which passes through the cavity with velocity ve = ω/kz (for now,
disregard the possibility that the required velocity might exceed c). If the phase of the electric
field in the cavity is zero when the particle enters, then the phase will be ωt = ωd/ve = kzd when
the particle exits. The quantity kzd, then, is apparently equivalent to the transit angle of the
particle passing through a single cavity (although in a multi-cell accelerating structure the usual
nomenclature is “phase advance per cell”).

Now consider the relation between the field in two adjacent cells, given by Floquet’s theorem
in Equation 81. If we assume a simple sinusoidal variation of E as a function of time, we find:

E(r, θ z + d, t) = E(r, θ, z + d) exp(iωt) = E(r, θ, z) exp(iωt) exp[d(−α+ ikz)]. (98)

If we neglect the attenuation represented by α, we can rewrite the preceding relation as follows:

E(r, θ, z + d) exp[i(ωt− kzd)] = E(r, θ, z) exp(iωt), (99)

which means that the field at z + d at a time t+ kzd/ω will be the same as the field at z and time
t. The phase velocity of the structure, then, is the velocity a particle needs if it is to encounter the
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same RF phase in each cavity of the structure (such a particle is typically called a “synchronous
particle,” or alternately the field with a phase velocity matched to the particle’s velocity is called
the “synchronous mode”).

We can now intuit that, if the phase velocity refers to the apparent cell-to-cell propagation of
waves in the structure, the group velocity must be the actual speed of energy flow through the
structure. Furthermore, we see that the coefficient kzd is equivalent to the transit angle of a single-
cell cavity, and one begins to suspect that we can apply all of the single-cell concepts (R/Q, shunt
impedance, etc.) to a multi-cell structure with relatively little effort.

3.2.3 kzd Values Over π

So far, nothing in the formalism of multi-cell structures prohibits the value of kzd from exceeding π,
corresponding to a phase advance greater than 180◦ per cell. We can certainly imagine extending
the dispersion diagram, Figure 8, to such large values, as in Figure 10, in which the ω versus kz
curve is extended to kzd = 3π. As required, the dispersion diagram is sinusoidal. As a consequence,
the accelerating structure actually contains an infinite number of so-called “space harmonics” at
any given frequency; half of these space harmonics are so-called “forward-wave” modes, where a
positive slope of the ω − kz curve requires that the phase velocity and the group velocity of the
mode have the same sign, while the other half are “backward-wave” modes. Furthermore, although
all the modes at a given frequency have the same group velocity, only one forward-wave and one
backward-wave can have a given phase velocity (typically c in electron applications).

The electric field in the accelerating structure is usually represented as a summation over space
harmonics:

Ez(z) =
∞
∑

n=0

En exp[i(kznz − ωt)], (100)

(apologies are offered for re-using n as an index variable here, but we won’t be dealing with it
for long). The wave number is defined as kzn = kz0 + 2πn/d, where kz0 is the lowest harmonic
in the series (and is usually the one of interest). When RF energy at a given frequency ω is
stored in the accelerating structure, it populates all of the space harmonics to varying degrees
(since they all oscillate at the same frequency); only the excitation which is synchronous with the
beam will provide acceleration. Since the energy stored in other space harmonics does not provide
acceleration, the shunt impedance which is relevant to the beam is reduced by a factor of (stored
energy in synchronous mode)/(total stored energy).

What does all this mean? What are these “other space harmonics,” and what determines the
relative excitation of the various space harmonics? To answer this, let us consider two cells of an
accelerating structure which operates in the π mode with a phase velocity vph = c for the n = 0
space harmonic. This means that kz0 = π/d and that ω/kz0 = ωd/π = c. Since the structure
operates in π mode, the electric field in consecutive cells will be equal and opposite at a given time
t: E1 = E sinωt, E2 = −E sinωt. Let us consider a particle which enters cell 1 at time t = 0
and has velocity ve ≤ c. The energy gain in the two cells can be computed by integrating the
time-varying electric field experienced by the moving particle (and assuming that the velocity is a
constant during this process):

∆U1 = eE
ve
ω

[

1 − cos

(

dω

ve

)]

, (101)

∆U2 = eE
ve
ω

[

cos

(

2dω

ve

)

− cos

(

dω

ve

)]

.
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Figure 10: Dispersion diagram for a disc-loaded waveguide, extended out to kzd = 3π. The red
line indicates that there are 3 space harmonics in this region which will propagate in the structure,
but only one has a phase velocity equal to the speed of light.
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For a particle with ve = c, we can replace ω/ve with π/d, and we find that ∆U1 = ∆U2 = eEd2/π,
which we recognize as the expected energy gain for the particle when the transit time factor of 2/π
is included. For a particle with ve = c/2, we find that ∆U1 = ∆U2 = 0, and the particle gains no
energy in either cell of the structure. This is expected when we realize that a phase velocity of c
and a particle velocity of c/2 means that the particle is in each cell for 1 full oscillation of the RF,
and it therefore gains energy in the first half of the cell and loses energy in the second half of the
cell.

What happens if the particle has a velocity of c/3? In this case, the particle experiences an
energy gain of 2eEd/3π in each cell. So a particle which is not synchronous with the cell phase
velocity can gain some energy in each cell. Qualitatively, this result means that for the first 2/3 of
each cell the energy gain of the particle cancels out (since it takes 1 full oscillation to travel through
the first 2/3 of the cell), while for the last 1/3 of the cell the particle gains energy (since this is
only half a full oscillation). Similarly, particle velocities of c/5, c/7, ...c/(2m+ 1) will lead to a net
energy gain in every cell.

Now consider a particle with a velocity of ve = 2c/5. This particle will have an energy gain of
2eEd/5π in the first cell and −2eEd/5π in the second. This particle will accelerate in cell 1 and
decelerate in cell 2, to achieve no net energy gain over the length of the structure. By extending the
logic of this calculation, one finds that if there are an infinite number of cells in the structure, the
energy gain and loss in the various cells will cancel out unless the particle velocity is ve = c/(2m+1),
in which case the energy gain per cell will be eEd/(2m+ 1) 2/π.

Since only discrete particle velocities result in net acceleration, we can re-conceptualize the
problem by stating that the electric field pattern in the structure contains components which are
synchronous with particles at ve = c/(2m + 1) and oscillate at frequency ω. This implies that
vph = ω/k = ve = c/(2m+1), or that k = kz0(2m+1), where m ≥ 0. For the structure in question,
then, the k values deduced above correspond to the kzn values for the various space harmonics.

We can make the situation even more explicit by considering that the electric field is an infinite
series of unit-steps with period 2d. The Fourier expansion of such a series is [36]:

E(z, t) = sinωt
4E

π

∞
∑

n=0

1

2n+ 1
sin

[

(2n+ 1)πz

d

]

. (102)

If we take the n = 0 term and compute the energy gain from this term on a synchronous (ve = c)
particle, we find that it is eEd · 2/π per cell, which is exactly what was computed using the square-
wave representation of the field. Similarly, if we consider the n = 1 component, the amplitude of
this component is 1/3 as large as the n = 0 component and the velocity required to be synchronous
with the n = 1 component is ve = c/3. Thus, our previous calculation – that a particle with
ve = c/3 will achieve an energy gain 1/3 as large as that of a ve = c particle in this system – can be
performed by inspection of the Fourier expansion of the accelerating field. From this we can make
the following conclusions:

• The “space harmonics” of an accelerator structure correspond to the Fourier series represen-
tation of the field (ie, the decomposition of the repetitive square-wave of the electric field into
sinusoidal components with the correct periodicity)

• This decomposition implicitly includes the transit angle factor and the fact that the structure
can accelerate particles which are not synchronous with the phase velocity of the square wave
(which always matches the phase velocity of the lowest space harmonic)

• The energy which is used to maintain the n > 0 space harmonics is useless for accelerating
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beams which are synchronous with the n = 0 space harmonic; the shunt impedance and R/Q
are reduced by the presence of the higher harmonics

• the presence of higher harmonics is inevitable, since no single harmonic satisfies the boundary
conditions but the summation of the space harmonics does.

In our example above, the ratio of the energy in the n = 0 space harmonic to the total energy is
1/
∑

[1/(2n+ 1)2], or approximately 81%. This means that the effective shunt impedance per unit
length of this structure will be about 81% of what is calculated using the formalism described in
2.3.3.

3.2.4 Modes Other than TM01

The analysis applied to the TM01 mode, as extended to the multi-cell accelerating structure, can
also be applied to the other modes that a single-cell cavity can support. Like the TM01 mode, each
cavity mode can be extended to a continuous spectrum of structure modes within a “pass band” of
allowed frequencies; at each frequency there are an infinite number of modes with identical group
velocities but varying phase velocities.

This has some rather interesting implications. Imagine that a structure which was built for
linear acceleration is powered from a source which is at a frequency far above the TM01 pass
band. If the source frequency falls into the pass band of one of the other modes (TM11 or TE01,
for example), then it will excite those modes. This allows accelerating structures to be used for
purposes other than simple linear acceleration. Some examples include RF deflectors, which are
accelerating structures operated at a frequency corresponding to a mode which includes a deflecting
field at r = 0 – essentially, the device can be used as a steering element with a high-frequency,
periodic deflecting field. A related implication is that these other modes can be excited by the
beam, since a short beam contains Fourier components up to extremely high frequencies. We shall
examine this possibility later.

3.2.5 Calculation of Shunt Impedance and Q For One Cell

We have previously encountered Equations 78 and 80, which permit the calculation of the shunt
impedance and quality factor of an accelerating cavity. In the context of a real accelerating struc-
ture, it is necessary to include a few caveats to achieve an accurate estimate of these quantities.
Disc Thickness Correction: In computing the Q for a cell, the correct cell length to use in
Equation 78 is the disc-face to disc-face distance, not the center-to-center distance. Similarly, the
transit angle used in Equation 80 should be the disc-face to disc-face transit angle, not the transit
angle per cell. These corrections will reduce both the shunt impedance per cell and the Q for
structures with relatively thick discs. This factor is in addition to the correction for the n > 0
space harmonics discussed earlier.
Iris Aperture Correction: the presence of a hole in the center of the disc between cells reduces the
shunt impedance per cell even further. This factor is not straightforward to compute analytically,
but can be estimated from a fit to simulations [37]:

Rcell ≈
Rcav

1 + 30.5(a/λ)2
, (103)

where Rcav is the single-cavity shunt impedance calculated without the correction for the hole, a
is the radius of the hole, and λ is the RF wavelength.
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4 Travelling-Wave Accelerator Structures

In the previous Section, we determined that a cylindrical waveguide which is “loaded” with con-
ducting discs set periodically along its length is suitable for accelerating particles, in that it is
possible to design such a structure with a phase velocity of the longitudinal electric field which is
equal to the velocity of the particles to be accelerated. So far so good – but we still do not have
much insight into what constitutes a “good” accelerator structure (or even an acceptable one).

Such structures – usually known as disc-loaded waveguides, or “DLWG’s” – can be designed
in two fundamental flavors – travelling-wave type or standing-wave type. In this section we will
explore the parameters of the more common travelling-wave structure type, seeking insight into
what constitutes a “good” DLWG.

Figure 11 shows a schematic of a travelling-wave DLWG: RF power at frequency ω is introduced
at an input coupler at the upstream end, propagates through the structure in the form of acceler-
ating fields to the downstream end, and exits through an output coupler. Immediately upstream
of the input coupler and downstream of the output coupler are cutoff irises; these are thick discs
with very long holes which prevent (via evanescence) any significant RF power from escaping from
the structure.

Figure 11: Schematic of a travelling-wave disc-loaded waveguide, in which RF power propagates
from the input coupler to the output coupler through a series of accelerating cavities.

Let us imagine that in the steady-state the structure’s stored energy per unit length is U ′(z) ≡
dU/dz, the power lost into the walls per unit length is given by pw(z) ≡ dPw/dz, that the power
from the source is given by P0, and that the power flow at a point along the structure is given
by P (z). By conservation of energy, we can require that at every point z along the structure, the
time rate of change of stored energy per unit length must be equal to the power dissipated into
the walls per unit length, plus the power flow from upstream to z, minus the power flow from z to
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downstream:
dU ′(z)

dt
+ pw(z) +

dP (z)

dz
= 0. (104)

From Equation 78 we know that we can relate the wall losses Pw to the stored energy through the
wall Q and the frequency. Similarly, the power flow P (z) must be simply equal to the energy per
unit length multiplied by the group velocity. Finally, in steady state the stored energy per unit
length U ′ is constant in time. Thus, Equation 104 reduces to:

dP (z)

dz
= −pw(z) = −ωU

′(z)

Qw
= −ωP (z)

vgrQw
. (105)

Equation 105 has the advantage of being easy to solve for P (z), since it can easily be rearranged
into the form dP/P = −Kds, yielding

P (z) = P0 exp

(

− ωz

vgrQw

)

. (106)

Equation 106 is usually simplified by introducing an attenuation coefficient, α0 (not related to
the α in Equation 96). By definition, α0 ≡ ω/(2Qwvgr) (with units of “nepers per meter,”), thus
P (z) = P0 exp(−2α0z).

As shown in Equation 80 relates the shunt impedance of a cavity to its wall losses. Here we
can define a shunt impedance per unit length (sometimes called “normalized shunt impedance”),
rl(z) ≡ dRstruc/dz, and an accelerating gradient G0 ≡ dV/dz (where it is implicit that we have
selected the relative phase between the beam and the RF to maximize V and thus G0). If we
require that at each point along the structure the relationship between accelerating voltage, shunt
impedance, and wall losses should hold, then:

rl(z)dz =
(G0(z)dz)

2

pw(z)dz
, or (107)

pw(z) =
G2

0(z)

rl(z)
.

We can replace pw(z) with the relationship between P (z) and pw(z), and include the relationship
between P0 and P (z), to find:

G2
0(z) = 2α0rl(z)P0 exp(−2α0z) =

ω

vgr

rl
Qw

P0 exp(−2α0z). (108)

4.1 Constant Impedance Structure

At this point, let us assume that the accelerating structure is made of a set of cells that are identical
to one another. In this case, the group velocity, attenuation factor, wall Q, and normalized shunt
impedance are all constant throughout the structure. Such a structure is called a constant impedance

structure. Equation 108 shows that in such a structure, the electric field is higher at the input end
than at the output.

We can calculate the total voltage in a constant-gradient structure by integrating the square
root of Equation 108 over the length of the structure:

V =

√

2

α0
rlP0[1 − exp(−α0L)]. (109)
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A commonly used accelerator parameter is the attenuation factor, τ ≡ α0L. We can use this to
eliminate α0:

V =
√

rlLP0

√
2τ

1 − exp(−τ)
τ

. (110)

Finally, we define the filling time, which is the time required for RF power to travel from the input
coupler to the output coupler:

tf =
L

vgr
=

2Q

ω
τ. (111)

It is interesting to note that, for a structure with a fixed length L, the maximum accelerating
voltage is attained for τ = 1.26 [15]. The reason for this is that, for a fixed structure length, cell
configuration, and frequency, the value of τ is inversely proportional to the group velocity. For
a very low τ , the group velocity is too high; this translates to too little stored energy, since the
stored energy per meter in the absence of losses is P/vgr. As the group velocity is increased the
stored energy and the wall losses both increase (the latter being proportional to the former, as we
have seen), until at some point the wall losses become so large that they limit the maximum stored
energy density and hence the accelerating voltage.

4.2 Constant Gradient Structure

The accelerating structure described above has the benefit of simplicity: once a single cell of the
structure has been designed to satisfaction, one simply makes a whole lot of them and brazes them
together, add input and output coupler, add pumping and cooling, and a completed accelerator
structure is available for use. Unfortunately, there are several drawbacks to the constant impedance
structure, most notably that the accelerating gradient in the upstream end of the structure is larger
than the gradient in the downstream end of the structure; this can be seen clearly in Equation 108.
This means that if a structure’s performance is limited by its accelerating gradient, it is the front of
the structure that will be limiting performance – the body of the structure will be forced to operate
at a gradient far lower than the limiting gradient. The ratio of the peak accelerating gradient,
G0(z = 0), to the average gradient, V/L, is τ/(1 − e−τ ) [16]. For a structure with the optimal
τ = 1.26, the peak gradient is 1.7 times the average; this is clearly a serious issue.

A more suitable approach to linear acceleration would force the accelerating gradient to be
roughly constant along the length of the structure. To see how this can be accomplished, recall
that G2

0(z)/rl(z) = pw(z). If G0(z) is constant with z, then rl(z)pw(z) must also be constant with
z. Equation 80 shows that, for an ideal cavity, the shunt impedance is a function of the frequency
(through Rs) and the phase advance per cell (through the transit angle ψ). To good approximation,
this fact remains true for a cell of an accelerating structure; since all the cells must have the same
frequency, and phase advance per cell is not an attractive parameter to play with, the value of rl is
to good approximation a constant along the structure. We are thus left to require that the power
lost into the walls pw(z) also be a constant along the structure. Equation 105 thus shows that
dP (z)/dz must be a constant to ensure that pw(z) is constant. Since

dP (z)

dz
= −ωP (z)

vgrQw
, (112)

and Qw, like rl, is very close to a constant for cells with equal frequency and phase advance, we
conclude that a constant gradient structure requires a gradual tapering of vgr from front to back.
Qualitatively, we can see that the constant-gradient structure requires a stored energy density which
is constant along the structure. Since the power flow is being attenuated by wall losses, this can
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only be achieved by slowing down the power flow at the back of the structure relative to the flow
in the front of the structure.

Since vgr is now a function of z along the structure, so must the attenuation factor α0 be.
Nonetheless, we can without controversy define an attenuation factor τ which is analogous to the
parameter for constant-impedance structures: P (L) = P0e

−2τ . Since dP/dz is constant, it must be
equal to the output power minus the input power divided by the structure length, or

dP

dz
=
P (L) − P0

L
= −P0

L
(1 − e−2τ ). (113)

We can also use Equation 105 to relate dP/dz to the frequency, group velocity and wall Q of the
structure:

dP

dz
= −P0

L
(1 − e−2τ ) = − ωP (z)

vgr(z)Qw
. (114)

Since dP/dz is constant, P (z) must decrease linearly with z, and thus vgr must also decrease linearly
with z. On the other hand, the phase velocity must remain constant. From Equation 97, we see
that the group velocity depends upon a3/b3; a term with the same dependence appears in the phase
velocity term, but is added to a term which is proportional to 1/b. Thus, to accomplish both goals
we must reduce both b and a3/b3 along the length of the structure.

The expressions above can be combined to yield the required group velocity profile along a
constant gradient structure [17]:

vgr(z) =
ω

Qw

L− (1 − e−2τ )z

(1 − e−2τ )
. (115)

The filling time can be computed by integrating dz/vg(z) over the structure length, which miracu-
lously reproduces the filling time relationship for constant-impedance structures. Finally, Equations
107 and 114 can be combined to yield the accelerating gradient and the total accelerating voltage:

G0 =
√

pw(z)rl =
√

−rldP/dz =
√

rlP0(1 − e−2τ )/L, (116)

V =
√

rlP0L(1 − e−2τ ).

Unlike a constant-impedance structure, the constant-gradient structure has no optimal τ value.

5 Standing-Wave Accelerator Structures

In the case of a travelling-wave accelerator, RF power is injected into the structure at an upstream
input coupler, propagates down the length of the structure, and exits via an output coupler that
is remarkably similar to the input coupler. Alternatively, one could inject RF power into both
upstream and downstream couplers, or one could replace the downstream coupler with a short
that would reflect the RF power back towards the upstream. In either of these cases, the resulting
accelerator – with power propagating in both upstream and downstream directions – develops some
standing-wave properties which alter the structure’s accelerating behaviors.

5.1 A Simple Example

Let us begin by considering a travelling-wave accelerating structure, in this case one designed to
operate in the π/2 mode, which is supplied with equal amounts of RF power at both the input and
the output coupler. Let the structure be perversely defined to have Ncell +1 cells, with a cell index

33



j running from 0 to Ncell. The accelerating field due to the power from the input coupler, which we
define to be propagating in the forward direction (i.e., in the same direction as the beam) is given
by:

E+
j = E sin

(

ωt− π

2
j

)

. (117)

We can see by inspection that at time t = 0 the field in cell 0 is zero and the field in cell 1 is −E,
and both are rising as time advances such that when the field in cell 0 reaches E the field in cell
1 reaches zero; thus a π/2 travelling-wave which propagates from cell 0 to cell Ncell. Similarly, the
accelerating field due to the power from the output coupler is given by:

E−
j = E sin

[

ωt− π

2
(Ncell − j)

]

. (118)

We can see that, as advertised, this field has a π/2 character and propagates from cell Ncell to cell
0.

Let us assume that the particle is moving in the nominal forward direction (ie, in the direction
of the E+ wave), and that it arrives at the center of cell j at a time defined as tj . Let us further
assume that the arrival time is set so that the forward-propagating field is maximized at that time,
ie, ωtj = π(j + 1)/2. The net accelerating field is thus:

E = E

[

sin

(

π

2

)

+ sin

(

π

2
(2j + 1) − π

2
Ncell

)]

. (119)

From Equation 119, we can see that the forward-going wave always accelerates the beam, while
the backward-going wave will accelerate in some cells, decelerate in others, and provide no net
acceleration in yet others. The net result of the backward wave when all cells are considered is zero
acceleration. Thus, the shunt impedance per cell of the structure, when supplied with RF power
in this manner, is half as much as an equivalent travelling-wave structure, since the power which
maintains the backward-travelling wave does not contribute to acceleration.

So why would anyone ever use a standing-wave structure? Let us now replace the structure
above with one that operates in the π mode. Now the total accelerating field is given by:

E = E

[

sin

(

π

2

)

+ sin

(

π

2
+ 2πj − πNcell

)]

. (120)

From Equation 120, we see that the backwards wave can accelerate a forward-travelling particle,
provided that the number of cells is odd (recall that the cells are numbered from 0 to Ncell). If the
number of cells is even, the forward- and backward-travelling waves both still provide acceleration,
but in this case the phase of the input power of one of the feeds must be flipped by 180◦ relative
to the other. As a consequence, the shunt impedance of a π-mode standing wave structure is equal
to what would be expected in a travelling-wave structure.

What are the properties of a standing-wave structure that would make it attractive in some
cases? For one thing, the standing-wave structure is bi-directional: it can accelerate particles which
are velocity-matched to it in either direction, while a travelling-wave structure can only accelerate
particles in one direction. In addition, we shall see that a standing-wave structure can be slowly
“charged up” with RF energy from a long, low-power pulse. This can pose a distinct advantage,
especially when superconducting structures are contemplated.

5.1.1 Use of π Mode

Equation 97 shows that, in a long multi-celled accelerator structure, the group velocity of the π-
mode is zero. How can a multi-celled structure operating in the π-mode be filled with energy from
a single input coupler?
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Let us recall the coupled-oscillator approach to the multi-celled accelerating structure: for N+1
cells numbered 0 to N , there are Ncell+1 normal modes, and their frequencies are given by Equation
96 if kzd is replaced by πj/Ncell (where j also runs from 0 to Ncell) [42]. Each mode has a distinct
wave function (pattern of excitation amplitude and phase versus cell number) in addition to its
distinct frequency. When a near-monochromatic source of RF excitation is tuned to the frequency
of the π-mode, it excites the entire mode. Thus, the energy which enters the structure at the input
coupler and excites the π-mode will “instantaneously” be supplied to all of the cells, and thus the
entire structure is filled despite the zero group velocity of the π-mode.

The explanation above is lacking a little something, and that something is called, “causality”
– the idea that the incoming RF energy is transmitted with infinite velocity to all the cells of a
standing-wave structure is a rather severe violation of Special Relativity. In fact, the explanation
above is actually accurate as far as it goes: by definition, the excitation amplitude of the π-mode
is equal in all of the cells, because in a low-loss structure the wavefunction of the π-mode calls for
equal excitations in all cells and alternating phases. What is missing from the explanation above
is that the structure with N + 1 cells contains N modes other than the π-mode. These modes are
excited by the incoming RF power as well, but since their frequencies are different they behave like
resonators which are driven far off-resonance (which indeed they are). When the wavefunctions for
these other modes, their oscillation when driven off-resonance by the incoming RF power, and their
decay rates are considered, one finds that the superposition of all the mode oscillations results in
an effective group velocity which is lower than the speed of light.

Nonetheless, when the acceleration of particles is concerned, it can be shown that the net
acceleration of a particle can be estimated fairly accurately by computing the excitation of the π-
mode alone and neglecting the remaining modes. This can be explained in either the time domain
or the frequency domain. In the frequency domain, only the π-mode is synchronous with the beam,
and we have already seen that non-synchronous modes will tend to cancel out over the length of
a multi-celled accelerator structure. In the time domain, it is true that the superposition of all
the modes may result in zero actual voltage in the downstream cells of the structure (especially
if the beam is injected very soon after the RF power arrives at the input coupler); however, in
this case the acceleration provided by the other, non-synchronous modes, is such that the total
acceleration achieved in the energized cells is nearly equal to what would be obtained from a pure
π-mode excitation which fills all of the cells. In other words, for all practical purposes we can ignore
causality and solve our problems as if the entire length of the structure is uniformly excited by the
π-mode instantaneously, and that is what we will do for (almost) the rest of this discussion.

Actually, there is one additional potential source of trouble in standing-wave structures which
contributes to their design properties. As mentioned, the modes are uniformly distributed in kz,
which means that the frequencies of the structure modes near the π-mode are very closely spaced.
For very long standing-wave structures, this can result in the π-mode and nearby travelling-wave
modes overlapping one another. If this happens, energy will be transferred from the standing-wave
to the travelling-wave modes. Since this is an undesirable state of affairs, standing-wave structures
are typically constructed with a relatively small number of cells (to maximize the frequency spacing
at the π-mode) and a high Q (low-frequency and/or superconducting structures).

5.1.2 Input Coupler, Loaded Q, and Filling Time

Another major difference between a standing-wave structure and a similar travelling-wave structure
is in the design of the input coupler. A travelling-wave structure has an input coupler at its upstream
end and an output coupler at its downstream end; both couplers are designed to be “well-matched,”
which in this case means that RF power can flow into and out of the structure with almost zero
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reflection. For a standing-wave structure, this would be counterproductive, since it would allow
the stored energy to flow back out of the structure efficiently; what we want in a standing-wave
structure, however, is to efficiently trap the energy in the structure. This implies that the input
coupler must have a strong tendency to reflect incident RF power.

To understand more fully the implications of this, we follow the approach of Nantista [38]:
a monochromatic power source supplies a wave with amplitude Ein, which is incident upon a
resonant cavity of some kind; the boundary between the cavity and the input waveguide is an
iris with reflection coefficient Γ. In general Γ is real and negative, which causes a reflected wave
which is out of phase with the incident wave, Eref = ΓEin = −|Γ|Ein. Meanwhile, there is also an
electromagnetic wave, Ee, which is the wave emitted from the stored energy in the cavity (ie, the
stored energy is “leaking out” through the iris). The net amplitude flowing backwards, from the
iris towards the power source, is Eout = Ee + ΓEin.

Now let us require that energy be conserved, which on an instantaneous basis means that RF
power must also be conserved. The amount of power incident on the iris from the power source
must be equal to the sum of the power in the reverse wave, the power lost in the walls of the
resonant cavity, and the instantaneous increase in the stored energy in the cavity:

Pin = Pout + Pc +
dUc

dt
. (121)

Let us define the proportionality between the power in the waveguide and the resulting square of
the field amplitude as Kwg, such that Pin = KwgE

2
in, and similarly Pout = Kwg(Ee + ΓEin)

2. In the
absence of incoming power, obviously Pout = KwgE

2
e . From the definition of wall Q, Equation 78,

we know that Pc = ωUc/Qw. It can be shown that, in the absence of incoming power, the outgoing
power is also proportional to the stored energy and thus to the power lost into the cavity walls.
We can define the ratio of power emitted from the cavity to power lost in the walls as the cavity
coupling coefficient, βc:

βc ≡
Pout

Pc
, Pin = 0. (122)

Putting all this together allows us to write:

Uc =
Qw
ω
Pc =

Qw
ω

KwgE
2
e

βc
. (123)

Let us now recast Equation 121, with some substitutions:

KwgE
2
in = Kwg(Ee + ΓEin)

2 +
Kwg

βc
E2

e +
2KwgQw
ωβc

Ee
dEe

dt
, or (124)

E2
in = (Ee + ΓEin)

2 +
1

βc
E2

e +
2Qw
ωβc

Ee
dEe

dt
,

where we have taken the time derivative of Equation 123. If we assume, as discussed above,
that Γ ≈ −1, then we can write a simple differential equation which describes the emitted wave
amplitude:

2Ein = Ee

(

1 +
1

βc

)

+
2Qw
ωβc

dEe

dt
, or (125)

ωβc

Qw
Ein =

dEe

dt
+ Ee

ω

2QL
,

where QL ≡ Qw/(1 + βc) is called the loaded Q (ie, the Q – the proportionality between the RF
period and the e-folding time – when the cavity is “loaded” by the coupler as well as the wall losses).
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If we define the characteristic time of the system, tc ≡ 2QL/ω, then we can rewrite Equation 125
in an even-more compact and useful form:

tc
dEe

dt
+ Ee =

2βc

1 + βc
Ein. (126)

If we assume that Ein = 0 for t < 0 and is a constant for t > 0, we can solve Equation 126:

Ee =
2βc

1 + βc
Ein

(

1 − e−t/tc
)

. (127)

Similarly, we can now solve for Eout = Ee − Ein:

Eout =
2βc

1 + βc
Ein

(

1 − e−t/tc
)

− Ein. (128)

Note that, for βc = 1, the backwards-wave amplitude Eout goes asmptotically to zero, as the
reflected and emitted waves become equal and opposite. The characteristic “e-folding” time for the
cavity with input coupler is tc, which is the filling time of a standing-wave cavity.

How do the stored energy and the accelerating voltage of a standing-wave structure vary with
time? Equation 123 defines the stored energy as a function of the emitted wave amplitude, which
we solved for in Equation 126. With appropriate simplifications,

Uc(t) = tcPin
2βc

1 + βc

(

1 − e−t/tc
)2
. (129)

Similarly, by the definition of R/Q, we find:

V (t) =
(

1 − e−t/tc
)

√

R

Q
ωtcPin

2βc

1 + βc
. (130)

Note that a large value of βc will result in a small value of QL and a correspondingly short fill-time,
but also will result in a low equilibrium voltage in the structure.

6 Superconducting Accelerator Structures

With the formalism of various kinds of structures available to us, it is worthwhile to consider
the circumstances under which superconductivity can be used to improve the performance of an
accelerating structure.

Let us first consider a constant-impedance travelling-wave RF structure, with a length of 1
meter and a frequency of 1 GHz (nice round numbers). As mentioned previously, the optimal τ
value for such a structure is 1.26, yielding a voltage of 0.90

√
rlLP0. From Equation 80, we see that

the shunt impedance per cell is inversely proportional to the surface resistance of the structure.
For copper this resistance is 8.1 mΩ, while for niobium at 4 degrees Kelvin it is 271 nΩ, a factor of
30,000 smaller. This implies that, for a given voltage, the RF power required for a superconducting
travelling-wave structure is smaller by a factor of 170 compared to a copper structure. Since the
copper surface resistance varies as the square root of frequency, while the niobium value varies as
the square of frequency, this scale factor goes as the −3/2 power of frequency; for frequencies above
roughly 30 GHz, therefore, copper requires less RF power than 4 K niobium, while for frequencies
below 30 GHz niobium wins out.

Unfortunately, the design of the structure becomes somewhat complicated due to the very low
group velocity and very large filling time which is required. A factor of 30,000 improvement in
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shunt impedance, for a given geometry, implies a factor of 30,000 increase in Q as well. Since the
attenuation constant τ is fixed at its optimum value, and τ = ωL/(2Qwvgr), the group velocity
must be reduced by a factor of 30,000 compared to the copper structure. This implies a very small
hole radius a, which poses a variety of problems. In addition, the structure fill time tf = 2τQw/ω,
also increases by a factor of 30,000. This poses an interesting dilemma – it takes less RF power to
maintain the accelerating voltage, but more wall-plug energy (due to the long filling time) to attain
that voltage in the first place.

An alternate approach to the superconducting constant-gradient structure is to use a very long
structure, but again the factor of 30,000 which must be made up is formidable.

What about a copper structure and a superconducting structure which have the same length
and the same group velocity? Let us once again assume that the copper structure has an optimal τ
value of 1.26. The definition of τ indicates that the superconducting structure has a τ value which
is 30,000 times smaller than the copper structure, very close to zero, and Equation 110 implies
that:

V =
√

2rlLP0τ . (131)

Since τ ∝ 1/Qw, the expression above contains a factor of R/Q, and other factors which are
geometrical only and hence the same for copper and for niobium. This implies that, for the same
RF power and cell construction, the niobium structure achieves a higher voltage by a factor of
1.26/[1 − exp(−1.26)], which is a factor of 1.76. While a 76% improvement is not to be ignored, it
hardly justifies the use of niobium at liquid helium temperatures.

The operating mode in which superconductivity really comes into play is standing-wave accel-
erating structures. The standing-wave structure has similar properties to the constant-impedance,
in that the power required to maintain a given accelerating voltage is low but the total energy
required to attain that voltage is large due to the long structure filling time. This disadvantage can
be overcome by filling the structure relatively less often and keeping the structure filled for longer
periods (i.e., pulsing the linac at a lower repetition rate and having a longer RF pulse). In addition,
since the π mode group velocity is not a function of the cavity aperture, the small a dimension
required for an efficient travelling-wave superconducting structure is not needed for standing-wave.

7 Frequency Scaling of Cavity Parameters

This summary of the scaling of single-cavity parameters follows Wangler’s approach [20].

Parameter Normal Conducting Superconducting

Rs ω1/2 ω2

R/Q ω0 ω0

Qw ω−1/2 ω−2

Rcav ω−1/2 ω−2

rl ω1/2 ω−1

8 Limitations of Accelerator Structures

Given our present knowledge, the recipe for an accelerator which maximizes accelerating voltage for
a certain input power is to maximize rl and, in the case of travelling-wave accelerators, minimize
vgr. The former is accomplished by increasing the frequency for normal-conducting designs and
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decreasing the frequency for superconducting designs; the latter is accomplished by minimizing the
size of the hole between cells in the travelling-wave case. All of these optimizations increase the
filling time required to achieve the desired voltage; as discussed above, this can be countered by
reducing the number of fills per second and increasing the length of each fill.

In the real world, there are other limitations that prevent us from arbitrarily increasing the
shunt impedance and decreasing the group velocity.

8.1 Steady-State Beam Loading

So far we have not even discussed the effect of the beam on the accelerator. The stored electro-
magnetic energy in the accelerator produces a longitudinal electric field; the electrons in the beam
will be accelerated by that field and remove energy from it, thus reducing the accelerating field.
We can rewrite Equation 105 to include this term:

dP

dz
= −pw(z) − IbeamE(z), (132)

where Ibeam is the average beam current during the beam pulse. We can now make use of the fact
that the wall losses are related to the RF power and also to the gradient and the shunt impedance
to require that

G2
0(z)

rl
=

ωP (z)

vgr(z)Q(w)
. (133)

We now take a z derivative of both sizes of Equation 133. In the case of a constant-impedance
structure, the only component of the RHS which is a function of z is P (z), thus

2G0(z)
dG0

dz
=

rlω

vgrQw

dP

dz
. (134)

This leads to the following set of substitutions:

2G0(z)
dG0

dz
=

rlω

vgrQw
(−pw(z) − IbeamG0(z)) (135)

= − rlω

vgrQw
(IbeamG0(z) +

G2
0(z)

rl
)

dG0

dz
= −rlα0Ibeam − α0G0(z).

The resulting accelerating field along the cavity and total accelerating voltage are given by [21]:

G0(z) =
√

2α0rlP0 exp(−α0z) − Ibeamrl[1 − exp(−α0z)], (136)

V =
√

rlLP0

√
2τ

1 − exp(−τ)
τ

− rlLIbeam

[

1 +
1

τ
(1 − exp(−τ))

]

.

The first term on the RHS of the structure voltage equation can be recognized as the no-load
accelerating voltage; the second term is the beam loading term. The coefficient in square brackets
goes to 2 for τ → 0, and goes to 1 for τ → ∞.

A similar but more involved mathematical procedure can be performed on the constant-gradient
structure, which yields an expression for the structure accelerating voltage [22]:

V =
√

rlLP0

√

1 − exp(−2τ) − 1

2
rlLIbeam

(

1 − 2τe−2τ

1 − e−2τ

)

. (137)
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In this case, for small values of τ the coefficient in the parentheses on the RHS goes to 2τ , while
for large values it goes to 1.

Note that, if P0 → 0, the first term on the RHS of equation 137 goes to zero, but the second
term does not, and thus the beam is decelerated in an unpowered structure. Furthermore, the de-
celeration efficiency of the structure is determined by the length, shunt impedance, and attenuation
factor. It would appear that a structure that efficiently generates an accelerating voltage from an
external power source also efficiently generates a decelerating voltage from the beam itself.

8.1.1 Power Transfer Efficiency

Since electric power costs money, it’s worthwhile to maximize the RF power transfer efficiency of
an accelerating structure, which is defined to be the ratio of the power taken out of the structure
by the beam to the power put into the structure by the power source. The former is IbeamV , while
the latter is P0, thus we can compute the efficiency of a constant-gradient structure η:

η ≡ V Ibeam

P0
= Ibeam

√

rlL

P0

√

1 − e−2τ − 1

2
I2
beamrl

L

P0

(

1 − 2τe−2τ

1 − e−2τ

)

. (138)

The efficiency is conveniently quadratic in Ibeam and concave-down, implying that a maximum
efficiency occurs at

Iopt =

√

P0

rlL

(1 − e−2τ )3/2

1 − (1 + 2τ)e−2τ
. (139)

Though it is not exactly obvious from Equation 139, the optimal current varies from ∞ at τ = 0
to
√

P0/(Lrl) at τ = ∞. Thus, the current-carrying capacity of the accelerator can be increased
by increasing the input power (which also increases the gradient), decreasing the shunt impedance
(which decreases the gradient), or decreasing the attenuation (which also decreases the gradient).
At zero current the efficiency is obviously zero; at twice the optimal current the efficiency is again
zero, since the beam loading is then so high that the beam achieves no net acceleration. For even
higher currents (or for any current at zero input power) the efficiency is negative – the beam loses
energy passing through the structure. As we shall see later, this can be a useful thing under some
circumstances.

The maximum efficiency, which is the efficiency obtained at the maximum current, is:

ηmax =
1

2

(1 − e−2τ )2

1 − (1 + 2τ)e−2τ
. (140)

For small values of τ the maximum efficiency is 1, while for large values it asymptotically approaches
1/2. For a pulsed linac, there is an additional factor which contributes to the efficiency, which is the
ratio of the beam time to the structure filling time. This factor is important because the structure
must contain adequate RF energy to establish its accelerating field at any time the beam is present,
including the time when the last electron passes through the structure. Since the group velocity in
the structure is typically much slower than the beam velocity, the last electron passes through the
structure in a tiny fraction of the fill time, but the structure still contains one fill time worth of
stored energy, which will now never be used for acceleration. Thus the overall efficiency, including
fill time considerations, is:

η0 = ηmax(τ)

[

2
Ibeam

Iopt
− I2

beam

I2
opt

]

tbeam

tbeam + tf
. (141)
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8.1.2 Disadvantage of High Beam Loading

The accelerating structure is optimally loaded for a beam current Iopt; at this current, all of the
RF power goes either into the beam or into wall losses, and none is sent to the output coupler of
the structure. This leads to an obvious question: why would anyone choose to run their accelerator
at any current but Iopt?

In order to answer the question, consider the expression for the loaded voltage of a constant-
gradient structure, Equation 137. If the beam current varies, the accelerating voltage will also vary;
the relevant coefficient, dV/dIbeam, is given by:

dV

dIbeam

= −1

2
rlL

(

1 − 2τe−2τ

1 − e−2τ

)

. (142)

If, however, we wish to see the relative change in the accelerating voltage given a certain relative

change in the beam current, this is given by:

dV/V

dIbeam/Ibeam

= −1

2
rlL

(

1 − 2τe−2τ

1 − e−2τ

)

I

V
. (143)

From this expression, we see that if we want a stable beam energy at the end of the linac, the
relative stability of the beam current must be greater for larger absolute currents.

We can make the relationship even more explicit by noting that, for an accelerator which is
operated with its optimal current, the unloaded voltage is exactly twice the loaded voltage. Thus,
the loaded voltage and the loading voltage are equal and opposite. We can thus rewrite the
expression for the voltage sensitivity:

dV/V

dIbeam/Ibeam

= − I

Iopt
. (144)

At the optimal current, a 1% fluctuation in the beam current leads to a 1% fluctuation in the
accelerating voltage. At 1/5 of the optimal current, the same relative fluctuation (1%) leads to
only 0.2% fluctuation in the accelerating voltage. The disadvantage of loaded linacs, then, is that
they are “touchy,” or sensitive to small variations in the beam current, as compared to less-loaded
linacs.

8.2 Short-Range Beam Loading

We have already seen that a continuous current I passing through an accelerating structure will
induce a decelerating voltage that lowers the available energy gain in the structure. The relations
which describe this deceleration in the steady state in a travelling wave structure are only valid 1
structure filling time after the current has been introduced. Other methods are needed to estimate
the degree of beam loading which is present during the first structure fill time after beam turn-on.

8.2.1 Transient Beam Loading

Let us assume that our constant-impedance travelling-wave structure has been filled with RF but
that the beam is initially absent; then, at time t = 0, the beam is introduced with uniform current
I(t > 0) = Ibeam. The decelerating voltage in a constant impedance structure between t = 0 and
t = tf is given by [23]:

V (t) =
rlLIbeam

τ
{(1 + τ)[1 − exp(−α0vgrt)] + α0vgrt exp(−α0vgrt)} . (145)
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The above expression becomes equal to the deceleration in Equation 136 as t→ tf (at which time
vgrtf = L or α0vgrtf = τ). A similarly disgusting expression can be derived for a constant-gradient
structure.

For a heavily-loaded linac, the transient voltage shown above is generally unacceptable because
of the resulting energy spread along the bunch train. It is necessary to compensate the transient
by making the accelerating voltage in the structure vary with time in such a way as to cancel the
loading transient. Popular approaches to this compensation include injecting the beam before the
structure is completely full of energy (“delta-t compensation”), or giving the incoming RF energy
pulse a non-square shape (“delta-v compensation”). If the beam pulse is short compared to the
filling time, the decelerating voltage will be approximately linear in time; in this case, it is possible
to use structures with different accelerating frequencies to perform “delta-f” compensation: because
the beam will not be synchronized to the off-frequency structures, the different bunches within a
train will have different phases with respect to the crest in these structures; this technique can be
used to cancel the linear voltage-time relationship.

8.2.2 Single-Bunch Beam Loading

Beam loading also occurs within a single bunch – loading from the head of the bunch decreases
the accelerating voltage available to the particles in the tail of the bunch. Such loading is typically
described as a wakefield, in other words an induced field that is left in the “wake” of the bunch.

Calculation of the longitudinal wakefield is a difficult process in that the bunch is usually
short compared to any other dimension in the problem (RF wavelength, cell length, cell diameter,
aperture radius), and thus there are very serious speed-of-light and causality issues which enter into
the estimate. A convenient formula for estimation of the wakefield is provided by Bane et. al [24]:
the decelerating electric field a distance z behind a particle of charge q is given by Ewf = qWL(z),
where

WL(z) =
Zc

πa2
exp

(

−
√

z

sz

)

, where (146)

sz ≈ 0.41
a1.8g1.6

d2.4
,

and a is the aperture radius of the iris, g is the interior width of the cell, and d is the cell period
(i.e., g = d − h, where h is the disc thickness); Z is the impedance of the medium, which is the
canonical 377 Ω for an evacuated accelerator structure.

8.2.3 Self-Loading

In the previous discussion of single-bunch loading, a formula for the decelerating voltage behind a
charge is provided. That formula has a nonzero value for z = 0, indicating that a single electron
can experience a wakefield from its own passage!

To understand this, consider a thought experiment proposed by Wangler [40], in which two
particles with charge q and energy U0 in each pass through a resonant cavity with frequency ν, and
there is a longitudinal distance c/2ν between the two particles. At the start of the experiment there
is no stored energy and therefore no voltage in the cavity. The first particle passes through the
cavity and induces a voltage −Vb in its wake (decelerating, as indicated by the sign). The voltage
can only be established if the cavity stores some amount of energy RcavV

2
b , which by conservation

of energy must be removed from the first particle;U1 = U0 − RcavV
2
b . We can also equate the loss

of energy in the first particle to a decelerating voltage, U1 = U0 − qV1. Note that V1 is not required
to be equal to Vb.
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Now the second particle passes through, but at a time difference such that the field in the
cavity is now an accelerating field with voltage Vb. Since the second charge is identical to the
first, it will leave in its wake a decelerating voltage −Vb which cancels the voltage left by the first
particle, so after the second particle is gone the cavity is once again empty of energy and at zero
voltage. However, the second particle has also been accelerated by the voltage left by the first,
hence U2 = U0 − qV1 + qVb.

Now: since the cavity is empty, and energy is conserved, we know that the total energy in the
two particles must be 2U0. Therefore, qVb − 2qV1 = 0, or V1 = Vb/2. That is to say, a point
charge experiences half of the energy loss indicated by the z = 0 wakefield. This is the fundamental

theorem of beam loading.

8.2.4 Single-Bunch Loading Compensation

In general the effect of the single-bunch loading can be computed by convolving the wakefield
WL with the RMS bunch shape, but some semi-quantitative understanding of the interaction is
always welcome. We can achieve this understanding by modelling the bunch with 2 macroparticles:
one with charge q/2 at z = 0, and another with charge q/2 at z = 2σz, thus giving the overall
distribution an RMS length of σz. The decelerating voltage experienced by each particle is given
by:

V1 =
Lq

4
WL(0), (147)

V2 =
Lq

4
WL(0) +

Lq

2
WL(2σz),

=
Lq

4
WL(0)(1 + 2e−∆),

where ∆ =
√

2σz/sx and L is the structure length. The resulting average and RMS energy loss are
given by:

< V > =
Lq

4
WL(0)(1 + e−∆), (148)

σV =
Lq

4
WL(0)e−2∆.

Thus, both the average and the RMS deceleration are worse for short bunches than for long, which
makes intuitive sense.

The RMS energy spread term arises from the fact that the second macroparticle is decelerated
by the voltage left in the wake of the first macroparticle. We can compensate this effect by adjusting
the relative phase of the accelerating field in such a way that the bunch is not riding on the crest of
the wave, but slightly ahead of the crest. This will impart a greater voltage to the tail of the bunch
than to the head, and through careful adjustment of the phase the effect of single-bunch loading
and the effect of the acceleration can be made, in first order at least, to cancel.

What phase is required to compensate the beam loading? If the bunch centroid is accelerated at
phase φ, then the first macroparticle is at phase φ−2πσz/λ, while the second is at phase φ+2πσz/λ.
We can equate the change in energy gain by the two macroparticles to the change in deceleration
due to wakefields:

V [cos(φ− 2πσz/λ) − cos(φ+ 2πσz/λ)] =
Lq

2
WL(0)e−∆. (149)
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We can apply appropriate trigonometric identities and find:

sinφ =
LqWL(0)e−∆

4V

1

sin(2πσz/λ)
. (150)

A reasonable approximation for V � LqWL(0), σz � s0, and σz � λ is:

φ =
LqWL(0)

8πV

λ

σz
. (151)

Since running far off-crest reduces the average energy gain even further, it is worthwhile to note
that a high voltage, low charge, long bunch, or short RF wavelength all reduce the distance the
bunch must be from the RF crest.

8.3 Transverse Wakefields and Beam Break-Up

In the previous section, we saw that the phenomenon of beam loading could be understood in terms
of the electron beam exciting modes in the accelerating structure. In the long-term, only the modes
with the highest Q values tend to survive (i.e., the fundamental accelerating mode), and therefore
the effect can be modelled quantitatively with the rl and Q values determined for the fundamental
TM01 mode, while in the shorter term (such as the length of 1 bunch) a very large number of modes
are present, interactions occur on a time scale which is short compared to the speed-of-light travel
times about the RF structure, and a different model must be used to study beam loading.

We also know from previous discussion that the RF structure has an infinite number of pass-
bands, corresponding to the fundamental TM01 mode and also to a wide variety of other modes. In
particular, the structure has passbands for modes with a dipole characteristic – modes which have
a nonzero deflecting field at r = 0. These include the TM11 mode, which has either a nonzero Bx
or By component at the center of the structure, depending on the mode polarization. In general
the frequency passbands for the dipole modes do not overlap those of the accelerating mode, and
thus they are not excited by the RF power source. They can, however, be excited by the passage
of a beam which has a nonzero dipole moment; a beam which passes off-axis through the structure
fulfills this requirement. Therefore, a beam which passes off-axis through a structure will excite
modes that produce a transverse deflection.

Like the longitudinal effect of beam loading, the transverse deflection effect (known as a trans-

verse wakefield) has a long-term and a short-term characteristic. The long-term character is typi-
cally dominated by a small number of modes with large Q values, while the short-term includes a
vast number of modes with low Q values.

8.3.1 The HEM “Hybrid” Mode

We have previously considered the travelling-wave modes in a cylindrical cavity which have no
longitudinal magnetic field (TM modes), and those which have no longitudinal electric field (TE
modes). Each mode has a distinct cutoff wave number, kc, which depends upon the waveguide radius
b, the mode number (corresponding to a particular Bessel function or derivative of a particular
Bessel function), and the conducting-wall boundary conditions. For example, the TM11 mode
requires that kc = z11/b, where z11 ≈ 3.832, while the TE11 mode requires that kc = z′11/b, where
z′11 ≈ 1.841, and z′11 is the first zero of J ′

1. Because z′11 6= z11, it is generally impossible in regular
waveguide to construct a wave in which TM11 and TE11 modes have the same dispersion relation
(i.e, the same group velocity and phase velocity for a given frequency).

If, however, we restrict our consideration to the region r ≤ a in a disc-loaded waveguide, we
see that the boundary conditions are somewhat different. Specifically, since we exclude the region
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which includes r = b, we have excluded the boundary condition that Er,θ = 0 at r = b, but we
must impose a boundary condition that Eθ = 0 at r = a. The TM11 and TE11 expressions for Eθ
are, respectively [25]:

Eθ,TM =
ik

k2
cr
E0J1(kcr) sin θ, (152)

Eθ,TE = −ωε
kc
H0J

′
1(kcr) sin θ.

By inspection of Equation 152, it is evident that, in this special case, we can satisfy the boundary
conditions of the system with a TM and TE mode which share a common cutoff wave number if
the amplitudes of the two waves are forced to a particular linear relationship, specifically:

H0 = E0 ·
ik

ωεkca

J1(kca)

J ′
1(kca)

, (153)

and the usual relationship between ω, k, and kc obtains. The resulting mode – a mixture of TE
and TM modes – is known as a “hybrid” mode, usually denoted HEM11.

The expressions found so far for the HEM11 mode will apparently permit any value of kc to
satisfy the boundary conditions for r ≤ a. In order to find the restrictions on kc, it is necessary
to construct a solution for Maxwell’s equations for a < r ≤ b, within which the endcap and barrel
boundary conditions are applied, and then to match the fields at r = a. When this is completed,
the result is that the HEM11 field behaves rather like a TM11 mode, with a cutoff wave number
equal to z11/b. Thus, for any given accelerating structure, the frequency of the lowest-order dipole
mode will be approximately 3.832/2.404 times the cutoff frequency for the accelerating TM01 mode.
The hybrid character of the HEM mode can be seen in the fact that, for some structures, the HEM
dispersion curve is not monotonic between zero and π.

The HEM mode is amenable to the formalism of shunt impedance, Q factors, etc., that was
developed for the accelerating mode. For the deflecting modes, the definition of R⊥/Q is altered
slightly from the form in Section 2.2, since we are interested now in a deflecting voltage, thus [26]:

R⊥
Q

≡ Z
c3

ω3

|
∫

(∂Ez/∂x) cos(ωz/c)dz|2
∫

E2dV
. (154)

Rather than evaluate the integrals in Equation 154 in their monstrous glory, we simply note that
in general R⊥/Q ≈ 3.2 × 10−8Ω sec ω⊥. Similarly, one can reasonably estimate that Q will be
comparable to Q for an accelerating mode with the same frequency. Note that, unlike R/Q for the
accelerating mode, the R/Q for the dipole mode actually increases with frequency.

8.3.2 Multi-Bunch Beam Break-Up

Consider a constant-impedance accelerating structure for which the lowest-order dipole mode has
a transverse shunt impedance R⊥/Q. The deflecting voltage induced a time t after the passage of
a point charge q with transverse offset x is given by [27]

Vx(t) =
xqω2

⊥
2c

R⊥
Q

exp(iω⊥t) exp(−ω⊥t/2Q). (155)

Now consider two bunches, separated by a time t0, which enter a long, quadrupole-focused ac-
celerator with identical offsets x0. The first bunch will to lowest order approximation execute an
unperturbed betatron oscillation – that is, the oscillation amplitude x/σx will remain a constant.
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The second bunch will receive an impulse determined by Equation 155 from the first RF structures
in the accelerator, which will become an offset 90◦ away in betatron phase. After 180◦ in betatron
phase, the first and second bunch will have offsets given by −x0/σx0, and the second bunch will
receive an impulse proportional to this offset; however, since the initial impulse has also changed
sign, the first and second impulses add coherently. As the beam continues along the linac, the sec-
ond bunch will receive continued kicks from the first bunch, and the oscillations of the two bunches
will always be phase locked such that the sign of the latest impulse is the same as the sign of the
sum of all previous impulses. The second bunch will therefore experience runaway amplification of
an initial offset. This is called the beam break-up instability.

In an actual multi-bunch system, the beam break-up phenomenon is somewhat more compli-
cated than described above, for two correlated reasons. First, each bunch delivers an impulse which
is experienced by trailing bunches according to exp[iω⊥(t2 − t1)]; second, the bunch spacing is typ-
ically harmonically related to the fundamental mode frequency, while the dipole mode frequencies
are not. Therefore, the impulse delivered to a given bunch usually contains a large number of
contributions which are in arbitrary phase with respect to one another. For very long bunch trains
this can lead to a saturation, in which each bunch effectively only experiences the kick from the
previous bunch and therefore all of the bunches past the saturation point get approximately the
same kick.

It is clear that, for linear colliders, if the trailing bunches receive deflections which are compa-
rable to the bunch sizes, then the “effective” size of the entire bunch train becomes too large to
deliver good luminosity. Thus, multi-bunch beam break up must be limited to acceptable levels.
Several mechanisms are available for such limitations:
Wait for the dipole mode to decay. The dipole mode, like the fundamental mode, decays
with a time constant of 2Q/ω⊥; after sufficient time, the dipole mode amplitude will be completely
converted into heat in the structure. Unfortunately, this is about the same length of time required
for the fundamental mode to decay into heat, so it’s almost never practical to wait that long between
bunches.
Use a low accelerating frequency. Equation 155 shows that the deflection is proportional to
ω2
⊥R⊥/Q, which in turn means that it is ultimately proportional to ω3

⊥; and in general ω⊥ ∝ ω.
Therefore, reduction of the fundamental mode frequency will drastically reduce the impact of MB-
BBU.
Use a low charge. This will also reduce the MB-BBU problem, but only linearly with charge.
Limit the injection jitter. Since the growth is a function of the injection jitter, but the acceptable
end-linac amplitude is a function of the beam size, limiting the injection jitter to a tiny fraction
of σ will keep MB-BBU to acceptable levels. Unfortunately, in practice it’s almost never possible
to keep the injection jitter down to less than about 0.1 σ, so the other approaches to limiting the
problem must ensure that such a level is acceptable.
Detune the dipole mode frequencies. The synchronous dipole mode frequency is a function of
the cell parameters d, a, b, and h. While d is typically fixed in an accelerator, the other parameters
can be adjusted to cause the different cells to have different values of ω⊥.

Consider for example a structure in which the parameters of the cells have been adjusted such
that the distribution of dipole mode frequencies is Gaussian with standard deviation σω. This will
cause the dipole mode in the time domain to approximately obey:

V (t) ∝ exp(iω̄⊥t) exp(−t2/2σ2
t ), (156)

where ω̄⊥ is the mean dipole mode frequency and σt = 1/σω. If we consider for example a structure
with a fundamental mode frequency of 1 GHz, and dipole mode frequencies around 1.6 GHz, then
if we detune the dipole modes with an RMS bandwidth of 10% (0.16 GHz), then the amplitude of
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the resulting wakefield will fall to 1/e of its initial value in
√

2σt =
√

2/(2π · 0.16GHz), or about
1.4 nanoseconds. This is much shorter than the decay time of the fundamental mode due to wall
losses, so one could imagine waiting a few times σt between bunches.

The detuning technique has a few fundamental limitations. First, it imposes strict construction
tolerances on the RF structure. This is because the detuning basically relies upon the fact that, in a
time t, the different frequencies have different phase advances; thus, a bunch with a positive initial
offset will leave a deflecting impulse that is initially positive in all cells, and at a time t later some
cells will have positive deflections and others will have negative deflections. Cell misalignments
which are comparable to the bunch offset will break the resulting cancellation between deflections
– if the driving bunch has a positive offset from the center of one cell and a negative offset from the
center of another, the phase slippage between the two cells could cause them both to have positive
deflections. Similar tight tolerances apply to the cell frequencies.

Second, a structure that is detuned in this manner cannot also be a constant-gradient structure.
This is because the degrees of freedom usually used to achieve constant-gradient performance are
the same ones needed for detuning. Structures that have been detuned for wakefield control usually
have an unloaded gradient in the back of the structure that is higher than the gradient in the front
(sometimes this is called “over-constant gradient”).

Third, a real accelerating structure has a finite number of cells. This means that a Gaussian
detuning can be achieved only by having a large frequency spacing for frequencies far from the
mean, and a narrow spacing for frequencies close to the mean. Since the frequency spectrum
is discrete, there will be a minimum mode spacing ∆ω,min. A consequence of this is that the
wakefield from one bunch will regenerate or recohere at a time ∆t ≈ 1/∆ω,min after the bunch
passes through the structure. One way of improving the performance of detuned structures is to
perform the detuning over several structures – if Nstruc structures with Ncell cells each are used, it
allows NstrucNcell dipole frequencies for detuning. This can only give a performance improvement
if the Nstruc structures are a small fraction of a betatron wavelength.
Damp the dipole modes. If the Q of the dipole modes can be artificially lowered below the
wall-loss limit, then the wait time between bunches can be correspondingly reduced. Damping of
high-frequency modes is usually accomplished by cutting slots into the structure which are cut off
to the accelerating mode but not to the dipole mode (due to its higher frequency). The slots lead
to matched waveguides that propagate the dipole modes away from the acceleration section of the
structure, or to lossy material which can absorb the electromagnetic energy in the dipole mode
excitations.

Accelerating structures with dipole-mode damping have been constructed with damping factors
of a few (ie, Q is reduced by a factor of a few) to damping factors of several hundred. Damping an
accelerating structure usually requires more complex design work than for undamped structures,
and potentially requires introduction of lossy material of unknown pedigree into the ultra-clean
accelerator environment. Furthermore, we have already seen that RF “cutoff” is a matter of degree
rather than an absolute, on/off phenomenon. Some amount of the fundamental mode will pass
through the cutoff slots in a damped structure; thus, a structure with dipole mode damping will
also experience a reduction in “Q” for the fundamental mode, and will be required to absorb some
amount of fundamental mode power in the damping system. Greater degrees of dipole damping
obviously lead to larger losses in the fundamental mode, which can lead to unacceptably low shunt
impedance or excessive heating of the dipole mode loads.
Strengthen the Focusing Lattice. By strengthening the quads in the accelerator, the RMS beam
offsets are reduced and the RMS beam angular divergence is increased. Both of these will decrease
the size of wakefield deflections relative to the natural angular size of the beam. Unfortunately,
increasing the focusing strength of the quads also leads to more dispersive emittance growth from
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the energy-dependent focusing of the quads.

8.3.3 Single Bunch Beam Break-Up

As with beam loading, transverse wakefields can have an impact on beam dynamics within a single
bunch, and that impact is difficult to calculate from first principles. A convenient formula is that a
point charge q with an offset x from the center of an accelerating structure with length L generates
a deflecting voltage a distance z behind the charge given by V = qxW⊥(z)L, where

W⊥(z) ≈ 4Zcs0
πa4

[

1 −
(

1 +

√

z

s⊥

)

exp

(

−
√

z

s⊥

)]

, where (157)

s⊥ ≡ 0.169
a1.79g0.38

d1.17
,

and a, g, d are defined as in Equation 146. Note that, at z = 0, W ′
⊥ ≡ ∂W⊥/∂z ≈ 2Zc/πa4.

To see quantitatively the effect of the short-range wakefield, we can follow the harmonic oscillator
approach of Wangler [29]: once again, we imagine that the beam contains 2 macroparticles, with
charge q/2 in each, with a separation between macroparticles of 2σz. Let the transverse coordinates
of the two particles be represented by y1(s) and y2(s), where s is the coordinate along the accelerator
(thus distinguished in this case from z, the coordinate along the bunch); for simplicity, let us assume
that the beam energy is a constant in the linac (ie, the system is configured such that the RF power
and phase exactly compensates the beam loading). To complete our model, let kβ represent the
focusing of the accelerator, and let us assume that it is a constant (as opposed to the actual, discrete
focusing provided by quads in between accelerator elements), and let us assume that the bunch is
so short that we can represent the transverse wakefield with W⊥(s) ≈W ′

⊥(0)s.
If the first macroparticle has an initial offset of y0 and an initial angle of zero, then the equation

of motion
ÿ1 + k2

βy1 = 0 (158)

can be solved by inspection: y1(s) = y0 cos(kβs). Assuming that the same initial conditions are
applied to the second particle, its equation of motion is different due to the presence of the transverse
wakefield driving term:

ÿ2 + k2
βy2 = y1

W ′
⊥qσz
γ

e

mec2
. (159)

Since y1 ∝ cos(kβs), this equation of motion represents an undamped harmonic oscillator which is
driven on resonance, with a solution

y2(s) = y0

[

cos(kβs) + s sin(kβs)
W ′

⊥qσz
2γkβ

e

mec2

]

. (160)

As a function of s, then, the second macroparticle initially executes the same oscillation as the
first, but it develops an oscillation in the opposite betatron phase which grows linearly with s. The
oscillation can be reduced by reducing the wakefield, increasing the beam energy and gradient, or
increasing the focusing strength of the lattice (represented here by the kβ coefficient).

8.3.4 BNS Damping: Smooth Focusing Approximation

A technique to defeat single-bunch beam break-up was proposed by Balakin, Novokhatsky, and
Smirnov, and is thus known as “BNS Damping” [30]. Consider a system similar to the one described
above, except with the exception that the two particles oscillate with different betatron wave
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numbers kβ1,β2 in the linac’s focusing. In this case the equation of motion of the second particle is
given by

ÿ2 + k2
β2y2 =

W ′
⊥qσz
γ

e

mec2
y0 cos(kβ1s). (161)

The equation of motion is now that of an undamped oscillator which is driven at a frequency other
than its resonant frequency. The general solution is

y2(s) = y0 cos(kβ2s) + y0
W ′

⊥qσz
γ

e

mec2
cos(kβ1s) − cos(kβ2s)

k2
β2 − k2

β1

. (162)

The trajectory difference between the first and second particle can be expressed as

y2(s) − y1(s) = y0

(

1 − W ′
⊥qσz
γ

e

mec2
1

k2
β2 − k2

β1

)

[cos(kβ2s) − cos(kβ1s)] . (163)

In order to ensure that the emittance growth from wakefields is minimized, we need to arrange
that y2 − y1 = 0 at the end of the linac. By inspection of Equation 163, this can be done in two
ways: either cos(kβ2s)−cos(kβ1s) = 0 or else the expression in parentheses on the RHS of Equation
163 must be equal to zero.
“Beating” Regime of BNS Damping. The solution

cos(kβ2s) − cos(kβ1s) = 0 (164)

is the “beating” regime of BNS damping. In this regime, the different oscillation frequencies of
the two particles cause the wakefield to initially drive the second particle’s oscillation, and then
to cancel it again (as the phase relationship between the two particles changes sign). Note that
the beating solution requires a variation in betatron wave numbers which is independent of the
amplitude of the driving wakefield term:

kβ2 − kβ1 =
2πn

Llinac

, (165)

where Llinac is the linac length and n is an integer. For the beating solution, the trailing particle
can have either a shorter or a larger betatron wavelength.
“Autophasing” Regime of BNS Damping. If we require

1 − W ′
⊥qσz
γ

e

mec2
1

k2
β2 − k2

β1

= 0, (166)

then the wakefield driving will be locally cancelled (as opposed to the beating regime, in which the
wakefield is only cancelled at the end of the linac or at a few discrete locations along the linac). In
this case the change in betatron wavelength is a function of the wakefield strength, and the trailing
particle must have a larger value of kβ (and thus a shorter betatron wavelength) in order to cancel
the wakefield effect. This regime is known as the “autophasing” regime of BNS damping, and the
wave number relationship is:

k2
β2 − k2

β1 =
W ′

⊥qσz
γ

e

mec2
. (167)

Achieving the Betatron Wavelength Variation. Any means of achieving a smooth variation
in the focusing strength of the linac over the length of the bunch may be used to introduce BNS
damping. One much-discussed method is RF Quadrupoles (RFQ’s), which produce a transverse
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focusing which varies in time. By phasing the RFQ such that the bunch’s longitudinal centroid
passes through on the RFQ’s zero-crossing, the head and tail may be differentially focused.

Since RFQ’s require additional space in the linac, another solution which preserves the linac
packing fraction is desired. Typically, BNS damping is achieved by running the bunch off the RF
crest, which introduces an energy spread which is correlated between the head and tail of the bunch.

If the bunch is run off-crest such as to produce a fractional RMS energy spread σE/Ebeam,
then particle 1 will have an energy given by Ebeam + σE , and particle 2 will have an energy given
by Ebeam − σE . This means that, in terms of the design focusing strength, the two particles will
experience focusing given by:

k2
β1 = kβ2(1 − σE/Ebeam), (168)

k2
β2 = kβ2(1 + σE/Ebeam).

Assuming that the required energy spread is small, we can rewrite the beating BNS condition
as:

σE/Ebeam =
πn

Lacckβ
. (169)

We can simplify this expression by replacing kβ with 2π/λβ , where λβ is the betatron wavelength;
we can further simplify by replacing λβ with Lcell/νβ, where νβ is the fractional tune of the linac
betatron cell (i.e., νβ = 0.25 for 90◦ per cell betatron phase advance) and Lcell is the length of the
cell; and we can replace Llinac with LcellNβ , where Nβ is the number of focusing cells in the linac:

σE/Ebeam =
n

2Nβνβ
. (170)

We can similarly estimate the energy spread required for the autophasing BNS condition:

σE/Ebeam =
1

8π2

W ′
⊥qσz

Ebeam

L2
cell

ν2
β

. (171)

As advertised, the autophasing condition requires that the energy of the tail be lower than the
energy of the head, and the required energy spread is reduced when the quad spacing is reduced,
the betatron phase advance per cell is increased, or the bunch length is reduced. Note that the
combination of longitudinal and transverse wakefields requires some willingness to compromise,
since the former are mitigated by long bunches and positioning the beam ahead of the RF crest,
while the latter are mitigated by short bunches and positioning the beam behind the RF crest.

The derivation of the autophasing condition above is based on the assumption of smooth focus-
ing, which is equivalent to an infinitely-long quadrupole with a constant magnetic field gradient.
This is different from the reality in two important ways: first, a constant focusing gradient in one
plane would constitute a constant defocusing gradient in the other plane, which would impractically
drive the beam in the defocusing plane along a hyperbolic-cosine trajectory; second, a constant fo-
cusing gradient would require that the quadrupole be equal in length to the accelerator, which
would not leave much room for the accelerating structures. Both of these issues can be addressed
by replacing the assumed focusing system with discrete-focusing quadrupole elements in a FODO
configuration. In such a situation, the autophasing condition is that the chromatic focusing of a
FODO cell cancels the two-particle wakefield effect in both the horizontal and the vertical planes.
The autophasing condition is slightly different under this circumstance [31]:

σE/Ebeam =
1

16

W ′
⊥qσz

Ebeam

L2
cell

sin2(πνβ)
. (172)

Note that, for small values of the phase advance per cell, the FODO expression for the autophasing
energy spread is close to half that required for the smooth-focusing approximation.
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8.3.5 Loading and Efficiency for Off-Crest Acceleration

In the preceding sections, we have seen that it is often advantageous or essential to accelerate beams
off-crest in order to manage single-bunch effects. How does this influence the multi-bunch beam
loading and the overall efficiency of acceleration?

In Section 8.1, we considered the case of accelerating a continuous train of on-crest bunches, and
used conservation of energy to arrive at expressions for the loaded gradient and structure voltage.
We found that both the gradient and the voltage could be expressed as the sum of two terms: the
unloaded gradient/voltage (the term which is proportional to

√
P0), and the beam loading term

(which is proportional to Ibeam). If we change the relative phase of the beam and the supplied RF
power, φ, then, from the beam’s point of view, the first term is reduced by a factor of cosφ, while
the second term remains the same (since the beam is always in phase with itself). For a constant
gradient structure, then:

Vbeam = Vnoload cosφ+ Vloading (173)

= cosφ
√

rlLP0

√

1 − exp(−2τ) − 1

2
rlLIbeam

(

1 − 2τe−2τ

1 − e−2τ

)

.

So what happens to the resulting efficiency? We can follow the formalism of Section 8.1 find the
optimum current Iφ and maximum efficiency ηφ for off-crest acceleration in terms of the equivalent
on-crest quantities Iopt and ηmax(τ):

Iφ = Iopt cosφ, (174)

ηφ(τ) = ηmax(τ) cos2 φ.

Finally, since the efficiency remains a concave-down parabola with zeroes at Ibeam = 0 and Ibeam =
2Iφ, we can write:

η = ηmax(τ) cos2 φ

[

2
Ibeam

Iopt cosφ
− I2

beam

I2
opt cos2 φ

]

tbeam

tbeam + tf
, (175)

where, again, Iopt and ηmax(τ) are the optimum beam current and maximum efficiency for on-crest
acceleration.

Note that we can now write the beam voltage, Vbeam, and the variation of the voltage over the
beam’s longitudinal extent, V ′

beam ≡ dVbeam/dz, as follows:

Vbeam = cosφVnoload + Vloading,mb + Vloading,sb (176)

V ′
beam = kz sinφVnoload + V ′

loading,sb,

where Vloading,sb is the single-bunch loading discussed in Section 8.2.2. Because the multi-bunch
loading is always in phase with the beam (ie, φloading,mb = π), and the derivative of the voltage
V ′ is proportional to the sine of the phase angle, it follows that there is no V ′ contribution from
the multi-bunch loading. The interesting result of this is the following: when computing the phase
angle required for BNS damping or single-bunch loading compensation, it is the unloaded voltage or
gradient which should be used. This is because the actual goal of running off-crest is to introduce
a certain value of V ′ from the supplied RF power, and we see from the relation above that V ′ is
proportional to the unloaded voltage.
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8.4 Limitations to the Accelerating Gradient

Because real estate costs money (and, in most places an accelerator physicist would like to live and
work, it can be a great deal of money), there is an inevitable evolutionary pressure to ever-higher
accelerating gradients (and thus shorter accelerators). Consequently, understanding the limitations
in gradient for an accelerator are critical to selecting a design.

We have already seen that, for a given accelerator, increasing the gradient requires an increase
in the input power; thus, the gradient can be limited by economic considerations (cost of electrical
energy, or “wall-plug power,” from the grid, or cost of RF power sources and infrastructure).
Indeed, for a given accelerator structure design there is an optimum gradient at which the costs
which are linear in system length are equal to the costs which are linear in system power. Even
disregarding the economics of the situation, there are physical phenomena which limit the gradient
which is practically achievable in an accelerating structure.

8.4.1 Field Emission and Dark Current Capture

Field emission is the emission of electrons from the surface of a metal exposed to a strong elec-
tric field. The electrons near the surface of the accelerating structure are, according to classical
physics, trapped: the binding energies of the electrons are on the order of eV per angstrom (or 104

MeV/meter), while the typical electric fields in the accelerator are a few tens of MeV per meter.
Thus, classical physics indicates that no field emission should occur.

The fact that field emission does occur can be attributed to two phenomena [34]:

• The surface of the accelerator structure contains a number of microscopic imperfections
(bumps, scratches, etc.). Because the conducting surface is an equipotential, the electric
field at a small imperfection will be enhanced by a factor (usually denoted, unfortunately, as
β) which can be as large as a few hundred.

• The phenomenon of quantum tunneling permits electrons in the walls of the structure to be
emitted by surface fields which are much smaller than those which are classically required.

The combination of these features leads to an average field-emitted current given by [34]:

ĪFE ≈ 5.7 × 10−12 × 104.52/
√

ΦAe(βEs)
2.5

Φ1.75
× exp

(

−6.53 × 109Φ1.5

βEs

)

, (177)

where ĪFE is the field-emitted current in amperes, Ae is the emitter area in meters, Es is the
unenhanced surface field in eV/meter, Φ is the metal’s work function in eV (about 4.5 eV for
copper and about 4.3 eV for niobium).

Electrons liberated by the field emission process typically have fairly low energies and velocities,
but they are able to interact with the accelerating field of the structure. This field will accelerate
the liberated electrons, just as it does the beam electrons. If the accelerating gradient is low, the
electrons will not build up much velocity and will be overtaken by the accelerating wave (which
has a phase velocity of c), and thus decelerated. If, however, the gradient is sufficiently large, the
field-emitted electrons will be accelerated to near-light speed in a single half-cycle of the RF or
even less. In this case, the field-emitted electrons can become synchronous with the RF, in which
case they are called dark current. The accelerating gradient required to capture dark current is
given by:

Ecapture = 1.6 MeV
ω

2πc
. (178)
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Even captured dark current can rarely propagate far down a linear accelerator. This is because
the dark current from a given structure will get an acceleration comparable to that experienced
by the design beam, but the initial energy of the dark current is almost zero, while the initial
energy of the beam in a given structure is several (or many) GeV; therefore, in the main linac
of a linear collider, the beam energy is very different from the dark current energy at the linac
quadrupole magnets, and the dark current will be over-focused and “blown out” of the accelerator.
Nonetheless, no accelerator can operate with excessive dark current: it can drive wakefields, blind
beam diagnostics, and cause radiation (and radiation damage). In a superconducting accelerator,
dark current is even worse: it absorbs the energy stored in an RF cavity and then, after being
“blown out,” dumps it into the cryo system, thus enlarging the heat load on the cryo system. Linac
structures for linear colliders must typically be operated below the dark current capture gradient,
or must be extremely clean and smooth to suppress formation of dark current, or both.

8.4.2 RF Breakdown

RF breakdown is a phenomenon in which a plasma discharge (or spark) forms in an accelerating
structure. The discharge causes an impedance mismatch in the structure; as a result, the RF power
propagating from the input coupler is reflected at the spark location.

It goes without saying that an RF structure cannot provide decent acceleration under breakdown
conditions, since the incoming RF power is reflected back out the input coupler. In addition,
such breakdowns are correlated with small pits that appear in the structure; therefore, excessive
breakdowns can lead to permanent structure damage.

Interestingly, much of the physics of RF breakdown is still not very well understood. It is gen-
erally agreed that RF breakdown is initiated by field emission: if the field-emitted current becomes
large enough, the heat dissipated by the current flow in the structure will cause vaporization of
material, leading to plasma formation and breakdown [32]. Furthermore, breakdowns are typically
accompanied by a dramatic increase in field-emission current. It is also observed that the rate and
severity of breakdowns increases rapidly as the accelerating gradient of a structure is increased,
which is consistent with the rapid rise in field-emission current as a function of electric field.

Because RF structures usually arrive from manufacturing in a state which encourages RF break-
downs – highly gas-loaded surfaces, lots of nucleation points for field emission, etc. – the structures
are usually prepared for operation through a semi-controlled set of RF breakdowns known as “RF
processing.” During RF processing the total pulse energy (peak power and pulse length) is set
to a low value and slowly increased. At a given RF power level, a number of breakdowns occur,
and eventually the breakdown rate is lowered; the pulse energy is then increased, and the cycle is
repeated. It is believed that, by using RF pulses with low energy, field-emission nucleation sites are
vaporized when they are just barely above the breakdown threshold, and thus a minimum amount
of energy is dissipated in the breakdown event; if the breakdown occurred when a larger RF pulse
was used, the resulting increase in energy transferred to the breakdown would do more damage to
the surface of the structure.

Although in principle the procedure above should permit any structure to be processed to
just about any gradient if sufficient processing time is allocated, in practice it is observed that
any given structure has a maximum field above which processing is ineffective. This may be due
to the formation of secondary nucleation points when a primary nucleation point is vaporized; a
breakdown at high power will tend to absorb more energy than one at low power, which can cause
molten or vaporized material to be expelled from the breakdown site and re-solidify elsewhere; if the
newly-formed site is as large or larger than the original one, then the achievable gradient is lower
after the breakdown than before, and processing cannot make further progress once this becomes
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the statistical norm. A rough empirical formula for the maximum achievable surface electric field
in a structure is [32]:

Es, max ≈ 195MV/m[ν(GHz)]1/2. (179)

The accelerating gradient is usually a factor of 2-4 lower than the peak surface field.
It is not understood why the breakdown limit should have a frequency dependence, since the

basic mechanism of field emission is independent of frequency. It has also been observed that RF
breakdown can be mitigated through use of lower group velocity structures, or a reduced pulse
length (the breakdown limit seems to scale roughly as t−1/4 [33]).

Because of the very low surface resistance and temperature of superconducting structures, true
RF breakdown is almost exclusively a phenomenon of normal-conducting structures.

8.4.3 Pulsed Heating

When RF power is introduced into an accelerating structure, the resulting current flows in the
structure walls will cause the temperature of the surface conducting layer to rise. Typically the
surface layer’s temperature will be restored to its original value by thermal conductivity between RF
pulses. Thus, the structure will experience continual thermal cycling during pulsed operation. Such
thermal cycles can cause structure damage through fatigue, which causes cracking and roughening
of the surface. One might expect, then, that a structure which is continually operated with a
large pulsed temperature rise will begin to develop RF breakdown problems, and indeed there is
an observed relationship between these two effects.

The temperature at the surface of a structure after a time t is usually dominated by the heat
deposition per unit area and the diffusion distance into the material (rather than the skin depth).
This temperature rise is given by [35]:

∆T (t) =
1

Dcε
√
παd

∫ t

0

dt′√
t− t′

dP (t′)

dA
, (180)

where D is the density, cε is the specific heat at constant strain, kT is the thermal conductivity,
and αd ≡ kT /(ρcε) is the thermal diffusivity; for copper, these quantities are 8.95 × 103 kg/m3,
385 J/kg/K, 390 W/m/K, and 1.13× 10−4 m2/second, respectively. The power dissipated per unit
area is given by Equation 69. If we consider a single-cell cavity operating in the TM010 mode, the
peak temperature rise in the cavity will be given by:

∆T (t)max =
√
t

0.0587ε2

T 2Dcε
√
παd

b2ω2Rs(ω)G2, (181)

where G and T are the on-crest unloaded accelerating gradient and the transit factor, respectively.
How severe a limitation is Equation 181 in an accelerating structure? Let us consider again our

example structure with ω = 2π × 1.33 GHz, b = 10 cm, and ψ = 158◦ (yielding a transit-angle
factor of 0.7119); a 1 msec pulse with an unloaded gradient of 10 MV/m will yield a temperature
rise of approximately 2.9 degrees Kelvin. Because b and ω are generally inversely proportional to
one another, all of the remaining frequency dependence is in the surface resistance term. Thus, we
expect that the surface heating will increase with the square root of frequency as well as the square
root of pulse length.

8.4.4 Gradient Limit in Superconducting Structures

The gradient of a superconducting cavity is typically set by the acceptable heat load in the cryo
system: due to its low but finite surface resistance, a superconducting cavity dissipates a small
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amount of heat when energy is stored in it, and the heat load scales as the square of the gradient.
Furthermore, as the gradient in such a cavity is increased, the Q value of the cavity begins to drop
for reasons not well known (although increased dark current is a possible candidate). This “high-
gradient Q droop” causes the heat load to increase faster than the square of the gradient above
some threshold. Note, however, that the heat load is a “soft” limit to the gradient, in principle
amenable to correction by adding more cooling capacity.

A harder gradient limit is set by the distressing tendency of superconductors to enter the
normal conducting state (“quench”) when a high surface field is applied to them. For elemental
niobium the critical magnetic field is 0.2 Tesla. For a TM010 cavity the relationship between the
accelerating and the surface magnetic field is given by Equation 71. For a pillbox cavity, therefore,
Hmax = E0/ZJ

′
0,max, and since J ′

0,max = 0.582, the maximum accelerating field achievable in a
superconducting cavity is given by:

Emax = 1.72ZHc. (182)

For Hc = 0.2 T/µ = 1.6 × 105 amperes per meter, one obtains an estimate of 104 MV/meter as a
limiting field, independent of frequency. When the transit-time effect is taken into effect (assuming
a standing-wave structure operating in π-mode), the limiting gradient is around 66 MV/m, and
more sophisticated calculations which take into account the actual shape of the cavity and the
iris apertures arrive at an estimate of about 50 MV/m as a gradient limit. In principle, the peak
magnetic field could conceivably exceed the DC critical field by 20% or so [41], but in practice no
superconducting linear accelerator structure has even achieved the level of 50 MV/meter implied
by the DC limit.

9 Optimization, or, Linear Accelerator Numerology

With the information collected above, we can begin to consider what the properties of a linear
collider’s main linac should be. The task is a daunting one in that no less than 19 parameters are
required to specify the linac:

• Global parameters: total energy gain Vtot, repetition rate f , and total length Llinac of the
linac (3)

• RF Power source parameters: Frequency ω and number of power sources Nklys (2)

• RF structure parameters: Structure radius b, iris radius a, cell length d, structure length L ,
iris thickness h (5)

• Beam parameters: Average current < I > , bunch train duration tbeam, charge per bunch q,
bunch length σz (4)

• Phase parameters: average phase φ̄, RMS deviation from average phase σφ (2)

• Given the parameters above, the power required for the linac Ptot can be deduced (1)

• Quadrupole lattice: quad spacing Lq, phase advance per betatron cell νβ (2).

The total energy gain Vtot is set by experimental requirements on the center-of-mass energy,
and can be taken to be a constant at about 240 GeV (since the desired center-of-mass energy is 500
GeV, and the beam enters the linac with a nonzero energy). Similarly, the beam average power
must be around 10 MW to provide the desired luminosity; 10 MW/240 GeV yields an average
current < I > of 42 microamperes. The bunch length σz must be approximately matched to the
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vertical depth-of-focus at the IP, to avoid unwanted emittance dilution from the “hourglass effect”
– this yields a typical RMS bunch length of 200 µm. The bunch charge q is limited to typical values
of 1010 particles, or 1.6 nC, to limit detector backgrounds from the beam-beam effect. Finally, for
economic reasons we wish to minimize the total linac length Llinac and the linac average power Ptot,
and for now we will ignore the number of power sources Nklys. This adds up to 4 “given” values, 2
minimization parameters, and one parameter which can be ignored – out of 19!

In order to add some insight, let us consider the most successful linear accelerator in history:
the SLAC linac.

9.1 The SLAC Linac

The SLAC linac was constructed in the early 1960’s and has received a handful of modest upgrades
since then. The present configuration includes approximately 300 quadrupole magnets and 1000
constant-gradient accelerating structures. The structure parameters are given in Table 1. Note
that the parameters in Table 1 include an additional 6 of the linac parameters (a, b, d, h, ω,
L); the remaining parameters in the table are completely determined by the choices made for the
aforementioned 6.

Table 1: Parameters of the SLAC constant-gradient travelling-wave structure. From G.A. Loew,
R.B. Neal, “Accelerating Structures,” in Linear Accelerators (edited by P. Lapostolle and A. Septier
(1970).

Parameter symbol Units Value

Frequency ω/2π Hz 2856 MHz

Length L m 3.048

Cell radius b cm 4.17–4.09

Iris radius a cm 1.31–0.96

Cell length d cm 3.50

Phase shift per cell ψ - 2π/3

Disc thickness h cm 0.584

Quality Factor Q - 13,000

Shunt impedance per meter rl MΩ/m 52–60

Filling Time tf nsec 830

Group Velocity vgr %c 2.0–0.65

Attenuation τ “nepers” 0.57

The SLAC structure is routinely operated at unloaded on-crest gradients of about 21 MeV/meter,
or 63 MV per structure. Assuming a typical shunt impedance of 56 MΩ, the input power needed
to sustain this gradient is about 35 MV per structure, and we will use this as our “baseline design”
parameters.

Although the lattice parameters for the linac FODO lattice vary, the typical quadrupole spacing
is 12 meters (1 quad per 4 RF structures), with a phase advance per FODO cell that tapers to 45◦

at the end of the linac. For our purposes today, we will limit ourselves to a quadrupole spacing of
12 meters and a phase advance per FODO cell of 90◦.

9.2 SLAC Structure for TeV-Scale Linear Collider

Let us use the example of the SLAC structure in parameterizing a linac for a linear collider.
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First, the average current < I > is 42 microamperes. The single-bunch charge is 1.6 nC, so the
time-averaged bunch rate must be 1 bunch per 38 microseconds. It is clear that this beam cannot
be efficiently accelerated by this linac in a CW (continuous-wave) manner, because the inter-bunch
time would exceed the structure filling time. Apparently it will be necessary to pulse the linac and
to group the bunches closer in time – into bunch trains.

9.2.1 Single Bunch Requirements

Let us assume that the SLAC structure runs at an unloaded on-crest voltage of 63 MV. The
longitudinal wake factor, WL(0) = Z0c/pia

2, can be computed for a typical iris aperture of 1.135
cm, yielding a wake factor of 2.8×1014V/C/m. Equation 151 indicates that the single-bunch beam
loading can be compensated, to lowest order, with a mean phase angle of about 26◦. This sounds
like a lot, but bear in mind that cosine(26◦) is about 0.90, so the actual reduction in accelerating
field seen by the beam is quite acceptable.

In a similar vein, the slope of the transverse wake potential, given by 2Z0c/πa
4, or about

4.3 × 1018 V/C/m3. Assuming, as we do, that the FODO cell length and phase advance are a
constant, the RMS correlated energy spread required for “autophasing” is given by Equation 172
to be 50 MeV. At the 240 GeV end of the linac, this corresponds to 0.02% of the beam energy,
while at the 10 GeV end it is 0.5%.

Given the parameters so far discussed, the simplest way to introduce the “autophasing” energy
spread is to run the beam behind the RF crest (so that the head will gain more energy than the
tail) until such time as a correlated energy spread of 50 MeV is achieved, and henceforward run
the beam 26◦ ahead of the crest (to maintain, more or less, the resulting 50 MeV energy spread).
Algebraically, the length of linac required to introduce the autophasing energy spread is given by:

LBNS−in =
σE
V

Lstruc

kzσz sin(φBNS−in)
. (183)

A further refinement is that the single-bunch loading provides a correlated energy spread with the
correct sign for autophasing; thus, for example, running the bunch on-crest will result in an energy
spread equivalent to running a zero-loading bunch 26◦ off-crest. If we consider the expression above,
for 26◦ off-crest and zero loading the required 50 MeV energy spread is introduced in about 450
meters; this means that, given the single-bunch loading we expect, we can run with the beam at
the RF crest for 450 meters and achieve the autophasing energy spread, then switch to accelerating
26◦ ahead of the crest to approximately maintain the autophasing condition.

9.2.2 Bunch Train Requirements

For on-crest operation at 63 MV unloaded voltage, 35 MW input power, equation 139 shows
that an average current of 0.81 amperes will fully load the structure. Although this is the most
efficient, full loading would make linac operation unstable (recall that at full loading, 1% variation
in beam current results in 1% variation in energy gain) and would reduce the loaded voltage by
50% (resulting in an uncomfortably-long linac). The SLAC linac has been operated at 20% loading
in recent years, so we can take this as a “baseline” and consider a beam current of about 0.16
amperes.

With a single-bunch charge of 1.6 nC, an average current of 0.16 amperes corresponds to a
bunch spacing of 10 nanoseconds. A bunch spacing of 29 RF periods corresponds to 10.1 nsec, so
this is probably a good spacing to choose.

The dipole-mode frequency of the SLAC structure is approximately 4.1 GHz. If the dipole
modes are gaussian-detuned with a 10% bandwidth and a 3 sigma cutoff, the resulting wakefield
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amplitude as a function of time is shown in Figure 12. Although in principle the wakefield should
fall to utterly negligible levels in 10.1 nanoseconds, given the parameters above, the small number
of modes (43) causes a relatively quick regeneration of the wake, such that the reduction factor
from t = 0 to t = 10.1 nanoseconds is only about a factor of 20. Although a factor of 20 reduction is
helpful, it may not be sufficient to guarantee that the multi-bunch emittance growth is acceptable.
An additional factor can be achieved, if necessary, by using RF structures with different HOM
frequencies. Such an approach effectively increases the total number of modes applied to the
detuning process.
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Figure 12: Envelope of the long-range transverse wakefield, relative to the t = 0 wake, for an 86-cell
S-band structure with HOM detuning parameters as described in the text.

9.2.3 Pulsed Heating, Train Length, and Repetition Rate

Thus far we have determined that the bunch trains in the SLAC structure should consist of bunches
separated by approximately 29 RF periods to attain a beam loading factor of 20%. We have not,
however, determined how long each train should be. In principle the RF efficiency is maximized
when the bunch train length is maximized (since the ratio of the filling time to the beam time is
reduced), therefore we want to understand the limitations on the available bunch train length.

In section 8.4.3, we saw that for a 1.33 GHz structure at 10 MeV/meter gradient, a 1 millisecond
RF pulse will generate a temperature rise of about 2.9 kelvin. Extrapolating from that structure
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to 2.856 GHz and 21 MeV/meter, we find that the same 1 msec pulse yields a temperature rise of
about 18 kelvins. This constitutes the ultimate limit to the length of the bunch train, and reduces
the energy lost to filling time to negligible levels.

A more drastic limitation on the bunch train length is the available pulse length from a high-
powered RF source. The “highest recorded pulse energy in a multi-megawatt klystron” was pro-
duced at 3.0 GHz, with 160 MW peak power and 3.0 µsec pulse length. Assuming we can trade off
pulse length for peak power, and that we will accept a number of klystrons equal to the number of
RF structures (but not greater), then this klystron could be reconfigured to produce the required 35
MW for 13.7 µsec. This would allow 830 nanoseconds for filling the structure, followed by 12.9 µsec
for the bunch train. With a bunch spacing of 10.1 nsec, the bunch train would contain about 1280
bunches. Furthermore, at the speed of light, 12.9 µsec corresponds to 3.8 km train length. This
means that a large damping ring circumference is needed, but the size is much less than HERA-e
(at 6.3 km circumference), to say nothing of LEP (almost 27 km circumference).

The average bunch rate required for the facility is 1 bunch per 38 µsec, or 2.6 × 104 bunches
per second; with 1280 bunches per train, this means that a repetition rate of about 20 trains per
second is required. Of course, the train length and repetition rate can also be traded against one
another. At 120 trains per second, the train is reduced to about 210 bunches and the damping ring
circumference is reduced to about 2/3 of a kilometer.

9.2.4 Putting it All Together

The “SLAC-LC” uses 3 meter long, 2856 MHz RF structures operating at an unloaded gradient of 21
MeV/meter set in a FODO lattice with 1 quad per 4 RF structures. The power required to achieve
the desired gradient is 35 MW/structure. With a beam current of 0.16 amperes (corresponding
to 20% loading) and a beam-to-RF phase of 26◦ (required for single-bunch loading compensation),
the loaded gradient in the linac is 20% lower than the unloaded, or about 17 MeV/meter. Half of
the reduction is from the off-crest running for single-bunch loading, and half is from steady-state
loading. The 0.16 ampere beam current corresponds to 1 bunch of 1.6 nC every 29 RF cycles (10.1
nsec).

For a structure with an attenuation coefficient τ = 0.57, the maximum RF-to-beam efficiency
is 73%. In this case, with the off-crest operation and the limited beam loading, the efficiency from
steady-state operation is just under 24%. Assuming a maximal bunch train length set by the power
source issued discussed above, the beamtime-filltime factor is 0.94; if a shorter train and higher
linac pulse repetition rate is selected, the factor is reduced (for example, to 0.72 at 120 linac pulses
per second). Thus, the overall efficiency of acceleration is between 17% and 23%.

The main drawback of the S-band linac is its combination of low gradient and low shunt
impedance. At 17 MeV/meter, the length of each linac is over 14 km. In order to double the
unloaded gradient from 21 MeV/meter to 42 MeV/meter, the input power must quadruple from
35 MW to 140 MW. At this point, the RF source described above becomes limited to about 3 µsec
pulse length, constraining us to use the less-efficient 120 Hz operational model. Furthermore, the
beam average current must be doubled to maintain the same loading factor. Since single bunch
charge cannot be increased due to beam-beam forces at the IP, we must instead double the number
of bunches per train and halve their spacing. This makes the cumulative effects of the long-range
wakefields significantly dicier. Furthermore, experience at SLAC suggests that gradients of around
30 MeV/meter are the limit for reliable operation of this structure.

In the interest of a cheaper linear collider, we can go away from the SLAC structure in two
directions: we can increase the achievable gradient and shunt impedance by going to a higher
frequency structure (yielding in the main a shorter linac), or we can switch to a lower-frequency,
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superconducting structure operating in a standing-wave mode (yielding in the main a more energy-
efficient linac).

10 Recommended Reading

The “bible” of linacs is Linear Accelerators, edited by Pierre Lapostolle and Albert Septier and
published in 1970. This volume contains articles published by the luminaries of the field at that
time on a vast array of topics in electron, proton, and ion linacs. The book is hard to find and
harder to carry due to its size. Warning: several statements and assertions in this book have proved
to be untrue.

Another useful book on the topic is RF Linear Accelerators, written by Thomas Wangler and
published in 1998. This book has the benefit of a single author, so its notation and style are
consistent throughout the text, and it is a far more modern book than Lapostolle and Septier. Its
main drawback, in my opinion, is that it left more of the formalism to the imagination than a
mathematically-weak individual (such as myself) would prefer.

Absolutely indispensable for general accelerator phsyics is Particle Accelerator Physics, by Hel-
mut Wiedemann (now director of USPAS), which includes the main results on waveguides, cavities,
and accelerating structures.

General mathematics and physics texts: I recommend Elementary Applied Differential Equa-

tions by Richard Haberman (1987), Foundations of Electromagnetic Theory, by John Reitz, Fred-
erick Milford, and Robert Christy (1980), and of course Classical Electrodynamics, By John David
Jackson (1975). The latter is especially recommended for its information on the different systems
of units and dimensions used in electrodynamics problems, and has an entire section on RF systems
written in an ingenious combination of MKSA and Gaussian units. I’ve heard that there is a third
edition, published in 1990, which moves even more in the heretical direction of MKSA units for
theoretical electrodynamics problems, but I have no experience with it.
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