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Operating Cycle in NLC/JLC MDRs
• Each bunch train is stored for three machine cycles

– 25 ms or 25,000 turns in NLC
• Transverse damping time ≈ 4 ms
• Horizontal emittance ×1/50, vertical ×1/7500

300 m Main Damping Ring
3 Trains of 192 bunches

1.4 ns bunch spacing

30 m Wiggler

30 m Wiggler

Injection and RF

Circumference 
Correction and 
Extraction

103 m
Injection 
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160 m
Extraction 

Line

Spin 
Rotation
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What do they look like?

TESLA Damping Rings
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Performance Specifications

1% full width1% full widthInjected Energy Spread

0.13%0.1% rmsExtracted Energy Spread

6 mm4 mmExtracted Bunch Length

2820192Bunches per Train

5 Hz120 HzRepetition Rate

20 ns1.4 nsBunch Spacing

0.02 µm rad0.02 µm radExtracted Vertical γε

8 µm rad3 µm radExtracted Horizontal γε

10 000 µm rad150 µm radInjected γε

TESLA e+NLC MDR

6

Radiation Damping…
• Longitudinal phase space

– Particles perform synchrotron oscillations in RF focusing potential
– Higher energy particles radiate energy more quickly in bends
– At the equilibrium energy, the revolution period is an integer times the 

RF period (the synchrotron principle…)

• Transverse phase space
– Particles perform betatron oscillations around the closed orbit
– Radiation is emitted in a narrow cone centered on the instantaneous

direction of motion
– Energy is restored by the RF cavities longitudinally
– Combined effect of radiation and RF is a loss in transverse momentum

• Damping time in all planes is given by:
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…and Quantum Excitation
• Radiation is emitted in discrete quanta
• Number and energy distribution etc. of photons obey

statistical laws
• Radiation process can be modeled as a series of “kicks” that 

excite longitudinal and transverse oscillations
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Synchrotron Oscillations
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Longitudinal Damping
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Quantum Excitation (Longitudinal)
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Equilibrium Longitudinal Emittance
• We have found that:

• From synchrotron radiation theory:
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• It is often more convenient to describe betatron oscillations 
using action-angle variables:

• The old variables are related to the new ones by:

• The equations of motion take the simple form:

Betatron Oscillations: Action-Angle Variables
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Damping of Vertical Oscillations
• Radiation is emitted in a narrow cone (angle ~1/γ) around 

instantaneous direction of motion, so vertical co-ordinate and 
momentum are not changed by photon emission

• RF cavity changes longitudinal momentum, and hence the 
vertical direction of motion:

• Averaging over all betatron phase angles gives (per turn):

• Hence the equation of motion is:
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Damping of Horizontal Oscillations
• When a photon is emitted at a point where there is some 

dispersion, the co-ordinates with respect to the closed orbit 
change:
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Quantum Excitation of Betatron Motion
• Let us now consider the second order effects.  It is easy to 

show that the change in the action depends to second order on 
the photon energy as follows:

• Averaging over the photon spectrum and around the ring, and 
including the radiation damping gives:
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Summary of Dynamics with Radiation
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The NLC TME Cell

Low dispersion and horizontal 
beta function in the dipole

High field in dipole

Sextupoles at high dispersion 
points, with separated betas

Vertical focusing in the dipole

Cell length ≈ 5 m

18

H Function in the NLC TME Cell
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The TESLA TME Cell

Larger dispersion and horizontal 
beta function in the dipole

Low field in dipole

Sextupoles at high dispersion points

No vertical focusing in the dipole

Cell length ≈ 15 m
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NLC and TESLA TME Cells Compared
• NLC

– Compact cell to keep circumference as short as possible
– High dipole field for greater energy loss, reducing wiggler length
– Short dipole requires very low values for dispersion and beta function
– Gradient in dipole field to improve transverse dynamics

• TESLA
– Circumference fixed by bunch train and kicker rise/fall time
– Long dipole for larger momentum compaction, longer bunch

• Optimum lattice functions at center of dipole:

– Obtained by minimizing I5 for a ring without a wiggler
– It is not usually possible to control the dispersion and beta function 

independently
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Two Simple Scaling Relationships 

Problem 4
Show that for an isomagnetic ring with the lattice functions tuned
for minimum emittance:
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Scaling Relationships Applied to the NLC

1 bunch train

6 bunch trains

γε0 = 3 µm
Lcell = 6 m
τ = Ntrain 1.6 ms
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Scaling Relationships Applied to the NLC

2 bunch trains

6 bunch trains

γε0 = 1 µm
Lcell = 6 m
τ = Ntrain 1.6 ms
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Damping Wiggler
• A wiggler reduces the damping time by increasing the energy 

loss per turn:

• Wiggler must be located where nominal dispersion is zero, 
otherwise there can be a large increase in the natural emittance

• If horizontal beta function is reasonably small, wiggler can 
significantly reduce the natural emittance (through reduced 
damping time)

• Drawbacks include possible detrimental effect on beam 
dynamics
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Types of Wiggler
• A wiggler is simply a periodic array of magnets, such that the 

field is approximately sinusoidal
• Different technologies are possible:

– Electromagnetic
– Permanent magnet
– Hybrid (permanent magnets driving flux through steel poles)

• Choice of technology comes down to cost optimization for 
given requirements on field strength and quality

• Both TESLA and NLC damping rings have opted for hybrid 
technology
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Modeling the Dynamics in the Wiggler
• Magnet design is produced using a standard modeling code
• Field representation must be obtained in a form convenient for 

fast symplectic tracking
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Fitting the Wiggler Field

28

Tracking Through the Field
• Using an appropriate field representation (that satisfies 

Maxwell’s equations), one can construct a symplectic 
integrator:

• M is an explicit function of the phase-space co-ordinates, and 
satisfies the symplectic condition (so the dynamics obey 
Hamilton’s Equations):
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Dynamics in the NLC Wiggler

Horizontal Kicks and Phase Space

Vertical Kicks and Phase Space
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Chromaticity
• Chromaticity is the tune variation with energy
• Quadrupole focusing strength gets smaller as particle energy 

increases
• It can easily be shown that:

• Since beta functions peak at the focusing quadrupoles in the 
appropriate plane, the natural chromaticity is always negative

• Chromaticity is connected to beam instabilities
– particles with large energy deviation cross resonance lines
– some collective effects (e.g. head-tail instability) are sensitive to the 

chromaticity
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sextupole
k1= x k2

Correcting Chromaticity with Sextupoles

32

Dynamics with Sextupoles
• Sextupoles can be used to correct chromatic aberrations…

• …but introduce geometric aberrations and coupling:

• It is important to keep the required strengths to a minimum by 
designing the linear lattice functions for effective sextupole 
location
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Dynamic Aperture
• Geometric aberrations from sextupoles (and other sources) 

distort the transverse phase space, and limit the amplitude 
range of stable betatron oscillations

Horizontal phase space of NLC TME cell

Vertical phase space of NLC TME cell
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Transverse and Longitudinal Aperture
• Damping rings require a “large” dynamic aperture

– Injected beam power ~ 50 kW average, and radiation load from any
significant injection losses will destroy the ring

– Nonlinear distortion of the phase space may lead to transient emittance 
growth from inability properly to match injected beam to the ring

– For NLC Main Damping Rings, the target dynamic aperture is 15 times 
the injected rms beam size

• We also need a large momentum acceptance
– Injected beam has a large energy spread
– Particles may be lost from insufficient physical aperture in dispersive 

regions, or through poor off-momentum dynamics
– Particles within a bunch can scatter off each other, leading to a 

significant change in energy deviation (Touschek Effect)
• It is important to perform tracking studies with full dynamic 

model and physical apertures
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NLC Main Damping Ring Dynamic Aperture

Dynamic Aperture On-Momentum

δ= +0.005

δ= -0.005

15× Injected Beam Size
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Longitudinal Acceptance
• The longitudinal acceptance has three major limitations:

– Poor off-momentum dynamics
– Physical aperture in dispersive regions
– RF bucket height

• Off-momentum dynamics can be difficult to quantify
– see previous slides

• Physical aperture can be a significant limitation
– 1% momentum deviation in 1 m dispersion is a 1 cm orbit offset

• RF bucket height comes from non-linearity of the longitudinal 
focusing
– Previous study of longitudinal dynamics assumed a linear slope of RF 

voltage around the synchronous phase
– Valid for small oscillations with synchronous phase close to zero-

crossing
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RF Bucket Height
• The “proper” equations of longitudinal motion (without 

damping) are:

• These may be derived from the Hamiltonian:
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Longitudinal Phase Space
• The Hamiltonian is a constant of the motion, which allows us 

to draw a phase-space portrait
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Alignment Issues
• The final luminosity of the collider is critically dependent on 

the vertical emittance extracted from the damping rings
• In a perfectly flat lattice, the lower limit on the vertical 

emittance comes from the opening angle of the radiation
– Gives about 10% of the specified values for NLC and TESLA

• Magnet misalignments give the dominant contribution to the 
vertical emittance
– Quadrupole vertical misalignments

• Vertical dispersion
• Vertical beam offset in sextupoles

– Quadrupole rotations and sextupole vertical misalignments
• Couple horizontal dispersion into the vertical plane
• Couple horizontal betatron oscillations into the vertical plane

40

Betatron Coupling
• In a damping ring, the dominant sources of betatron coupling 

are skew quadrupole fields
– Normal quadrupoles have some “roll” about the beam axis
– Sextupoles have some vertical offset with respect to the closed orbit

• Particles with a horizontal offset get a vertical kick

Particle on
closed orbit

Particle with
horizontal
amplitude

Vertical kick
depends on
horizontal
amplitude
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Effects of Betatron Coupling
• In action-angle variables, the “averaged Hamiltonian” for a 

coupled storage ring can be written:

• The equations of motion are:
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Solutions to the Coupled Hamiltonian
• The sum of the horizontal and vertical actions is conserved:

• There are fixed points at:

• With radiation, the actions will damp to the fixed points
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The Difference Coupling Resonance
• The equilibrium emittance ratio is given by:

• The measured tunes are given by:
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What is the Coupling Strength?
• We add up all the skew fields around the ring with an 

appropriate phase factor:

• ks is the skew quadrupole k-value.
• For a rotated quadrupole or vertically misaligned sextupole, 

the equivalent skew fields are given by:
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Vertical Dispersion
• In an electron storage ring, the vertical dispersion is typically 

dominated by betatron coupling
– Emittance ratios of 1% are typical

• For very low values of the vertical emittance, vertical 
dispersion starts to make a significant contribution

• Vertical dispersion is generated by:
– Vertical steering

• vertically misaligned quadrupoles
– Coupling of horizontal dispersion into the vertical plane

• quadrupole rotations
• vertical sextupole misalignments
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Vertical Steering: Closed Orbit Distortion
• A quadrupole misalignment can be represented by a kick that 

leads to a “cusp” in the closed orbit

• We can write a condition for the closed orbit in the presence of
the kick:

• We can solve to find the distortion resulting from many kicks:
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• The vertical dispersion obeys the same equation of motion as 
the vertical orbit, but with a modified driving term:

• We can immediately write down the vertical dispersion arising 
from a set of steering errors:

• Including the effect of dispersion coupling:

Vertical Steering: Vertical Dispersion
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Effects of Uncorrelated Alignment Errors
• Closed orbit distortion from quadrupole misalignments:

• Vertical dispersion from quadrupole rotation and sextupole 
misalignment:

• Vertical emittance generated by vertical dispersion:
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Examples of Alignment Sensitivities

• Note:
Sensitivity values give the random misalignments that will 
generate a specified vertical emittance.  In practice, coupling 
correction schemes mean that significantly larger 
misalignments can be tolerated.
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Collective Effects
• Issues of damping, acceptance, coupling are all single particle

effects - they are independent of the beam current
• Particles in a storage ring interact with each other (directly or 

via some intermediary e.g. the vacuum chamber)
• A wide variety of collective effects limit the achievable beam 

quality, depending on the bunch charge or total current
• The consequences of collective effects are

– Phase space distortion and/or emittance growth
– Particle loss

• Damping rings have high bunch charges, moderate energies 
and small emittance
– Vulnerable to a wide range of collective effects

• Too wide a subject to enter into here!


