An Introduction to the Physics and Technology of e+e- Linear Colliders

Lecture 1: Introduction and Overview

Nick Walker (DESY)

USPAS Santa Barbara 16th June, 2003

Course Content

Lecture:

- 1. Introduction and overview
- 2. Linac part I
- 3. Linac part II
- 4. Damping Ring & Bunch Compressor I
- 5. Damping Ring & Bunch Compressor II
- 6. Final Focus Systems
- 7. Beam-Beam Effects
- 8. Stability Issues in Linear Colliders
- 9. the SLC experience and the Current LC Designs

This Lecture

- Why LC and not super-LEP?
- The Luminosity Problem
 - general scaling laws for linear colliders
- A introduction to the linear collider sub-systems:
 - main accelerator (linac)
 - sources
 - damping rings
 - bunch compression
 - final focus

during the lecture, we will introduce (revise) some important basic accelerator physics concepts that we will need in the remainder of the course.

Why a Linear Collider?

<u>Synchrotron Radiation</u> from an electron in a magnetic field:

 $P_{\gamma} = \frac{e^2 c^2}{2\pi} C_{\gamma} E^2 B^2$

Energy loss per turn of a machine with an average bending radius ρ:

$$\Delta E / rev = \frac{C_{\gamma} E^4}{\rho}$$

Energy loss must be replaced by RF system

The Bottom Line \$\$\$							
		LEP-II	Super-LEP	Hyper- LEP			
E_{cm}	GeV	180	500	2000			
L	km	27					
ΔE	GeV	1.5					
\$ _{tot}	10 ⁹ SF	2					

The Bottom Line \$\$\$								
		LEP-II	Super-LEP	Hyper- LEP				
E _{cm}	GeV	180	500	2000				
L	km	27	200					
ΔE	GeV	1.5	12					
\$ _{tot}	10 ⁹ SF	2	15					

The Bottom Line \$\$\$							
		LEP-II	Super-LEP	Hyper-			
F	GeV	180	500	LEP			
∟cm	km	27	200	2000			
▲⊏		1.5	12	240			
ΔE	Gev	1.5	12	240			
\$ _{tot}	10 ⁹ SF	2	15	240			

A Little History

A Possible Apparatus for Electron-Clashing Experiments (*).

M. Tigner

Laboratory of Nuclear Studies. Cornell University - Ithaca, N.Y.

M. Tigner, Nuovo Cimento **37** (1965) 1228

"While the storage ring concept for providing clashingbeam experiments (¹) is very elegant in concept it seems worth-while at the present juncture to investigate other methods which, while less elegant and superficially more complex may prove more tractable."

A Little History (1988-2003)

- SLC (SLAC, 1988-98)
- NLCTA (SLAC, 1997-)
- TTF (DESY, 1994-)
- ATF (KEK, 1997-)
- FFTB (SLAC, 1992-1997)
- SBTF (DESY, 1994-1998)
- CLIC CTF1,2,3 (CERN, 1994-)

Over 14 Years of Linear Collider R&D

E_{cm} 100 500-1000 GeV P_{beam} 0.04 5-20 MW σ^* 500 (~50) 1.5 pm	
$P_{\text{beam}} = 0.04 = 5-20 \text{ MW}$	
σ^* 500 (~50) 1.5 nm	
$O_y = 500 (\approx 50) = 1-5$ mm	
$\delta E/E_{\rm bs}$ 0.03 3–10 %	
$L = 0.0003 \sim 3 = 10^{34} \mathrm{cr}$	$n^2 s^{-1}$

994 E _{em} =500 GeV								
	TESLA	SBLC	JLC-S	JLC-C	JLC-X	NLC	VLEPP	CLIC
f [GHz]	1.3	3.0	2.8	5.7	11.4	11.4	14.0	30.0
L×10 ³³ [cm ⁻² s ⁻¹]	6	4	4	9	5	7	9	1-5
P _{beam} [MW]	16.5	7.3	1.3	4.3	3.2	4.2	2.4	~1-4
P _{AC} [MW]	164	139	118	209	114	103	57	100
γε _y [×10 ⁻⁸ m]	100	50	4.8	4.8	4.8	5	7.5	15
σ _y * [nm]	64	28	3	3	3	3.2	4	7.4

LC	LC Status 2003								
2003 E _{cm}	$E_{\rm em} = 500 {\rm GeV}$								
	TESLA	SBLC	JLC-S	JLC-C	JLC-X/NLC	VLEPP	CLIC		
f [GHz]	1.3			5.7	11.4		30.0		
L×10 ³³ [cm ⁻² s ⁻¹]	34			14	20		21		
P _{beam} [MW]	11.3			5.8	6.9		4.9		
P _{AC} [MW]	140			233	195		175		
γε _y [×10 ⁻⁸ m]	3			4	4		1		
σ _y * [nm]	5			4	3		1.2		

The Luminosity Issue

Collider luminosity $(cm^{-2} s^{-1})$ is approximately given by

 $L = \frac{n_b N^2 f_{rep}}{4} H_D$

where:

- N_b = bunches / train

- N_{b} = particles per bunch f_{rep} = repetition frequency A = beam cross-section at IP
- H_D = beam-beam enhancement factor

For Gaussian beam distribution:

$$L = \frac{n_b N^2 f_{rep}}{4\pi\sigma_x \sigma_v} H_D$$

The Luminosity Issue: RF Power

Introduce the centre of mass energy, E_{cm} :

$$L = \frac{\left(E_{cm}n_b N f_{rep}\right)N}{4\pi\sigma_x\sigma_y E_{cm}}H_D$$

$$n_b N f_{rep} E_{cm} = P_{beams}$$

$$=\eta_{RF\to beam}P_{RF}$$

 η_{RF} is RF to beam power efficiency.

Luminosity is proportional to the *RF power* for a given E_{cm}

 $L = \frac{\eta_{RF} P_{RF} N}{4\pi \sigma_x \sigma_y E_{cm}} H_D$

The Luminosity Issue: RF Power $L = \frac{\eta_{RF} P_{RF} N}{4\pi \sigma_x \sigma_v E_{cm}} H_D$ Some numbers: E_{cm} = 500 GeVN $= 10^{10}$ $P_{beams} = 8 \text{ MW}$ = 100 n_b = 100 Hz f_{rep} Need to include efficiencies: range 20-60% range 28-40% | *linac technology choice* RF→beam: Wall plug \rightarrow RF: *AC power* > 100 MW just to accelerate beams and <u>achieve</u> <u>luminosity</u>

The Luminosity Issues: storage ring vs LC

- $\text{LEP} f_{rep} = 44 \text{ kHz}$
- $LC f_{rep}$ = few-100 Hz (power limited)

$$L = \frac{\eta_{RF} P_{RF} N}{4\pi \sigma_x \sigma_y E_{cm}} H_D$$

 \Rightarrow <u>factor ~400 in *L* already lost!</u>

Must push very hard on beam cross-section at collision:

LEP:
$$\sigma_x \sigma_v \approx 130 \times 6 \ \mu m^2$$

LC:
$$\sigma_x \sigma_v \approx (200-500) \times (3-5) \text{ nm}^2$$

factor of 10⁶ gain! Needed to obtain high luminosity of a few 10³⁴ cm⁻²s⁻¹

The Luminosity Issue: intense beams at IP

$$L = \frac{1}{4\pi E_{cm}} (\eta_{RF} P_{RF}) \left(\frac{N}{\sigma_x \sigma_y} H_D \right)$$

choice of linac technology:

- efficiency
- available power

Beam-Beam effects:

- beamstrahlung
- disruption
- Strong focusing
- optical aberrations
- stability issues and tolerances

see lecture 2 on beam-beam

- strong mutual focusing of beams (pinch) gives rise to luminosity enhancement H_D
- As e[±] pass through intense field of opposing beam, they radiate hard photons [beamstrahlung] and loose energy
- Interaction of *beamstrahlung* photons with intense field causes copious e⁺e⁻ pair production [background]

The *Luminosity* Issue: Beam-Beam

see lecture 2 on beam-beam

beam-beam characterised by *Disruption Parameter:* $D_{x,y} = \frac{2r_e N \sigma_z}{\gamma \sigma_{x,y} (\sigma_x + \sigma_y)} \approx \frac{\sigma_z}{f_{beam}}$

 $\sigma_z = \text{bunch length},$

 $f_{beam} = focal length of beam-lens$

for storage rings, $f_{beam} \square \sigma_z$ and $D_{x,y} \square \square$ In a LC, $D_y \approx 10-20$ hence $f_{beam} < \sigma_z$

Enhancement factor (typically $H_D \sim 2$):

$$H_{Dx,y} = 1 + D_{x,y}^{1/4} \left(\frac{D_{x,y}^3}{1 + D_{x,y}^3} \right) \left[\ln\left(\sqrt{D_{x,y}} + 1\right) + 2\ln\left(\frac{0.8\beta_{x,y}}{\sigma_z}\right) \right]$$

'hour glass' effect

The Luminosity Issue: Beamstrahlung see lecture 2 on beam-beam

RMS relative energy loss
$$\delta_{BS} \approx 0.86 \frac{er_e^3}{2m_0c^2} \left(\frac{E_{cm}}{\sigma_z}\right) \frac{N^2}{(\sigma_x + \sigma_y)^2}$$

we would like to make $\sigma_x \sigma_y$ small to maximise luminosity BUT keep $(\sigma_x + \sigma_y)$ large to reduce δ_{SB} .

Trick: use "flat beams" with $\sigma_x \Box \sigma_y = \delta_{BS} \propto \left(\frac{E_{cm}}{\sigma_z}\right) \frac{N^2}{\sigma_x^2}$

Now we set σ_x to fix δ_{SB} , and make σ_y as small as possible to achieve high luminosity.

For most LC designs, $\delta_{SB} \sim 3-10\%$

The Luminosity Issue: Beamstrahlung

Returning to our L scaling law, and ignoring H_D

$$L \propto rac{\eta_{RF} P_{RF}}{E_{cm}} \left(rac{N}{\sigma_x}
ight) rac{1}{\sigma_y}$$

From flat-beam beamstrahlung

 $\frac{N}{\sigma_x} \propto \sqrt{\frac{\sigma_z \delta_{BS}}{E_{cm}}}$

hence

$$L \propto rac{\eta_{RF} P_{RF}}{E_{cm}^{3/2}} rac{\sqrt{\delta_{BS} \sigma_z}}{\sigma_y}$$

The Luminosity Issue: story so far

$$L \propto rac{\eta_{\scriptscriptstyle RF} P_{\scriptscriptstyle RF}}{E_{\scriptscriptstyle cm}^{^{3/2}}} rac{\sqrt{\delta_{\scriptscriptstyle BS}} \sigma_z}{\sigma_y}$$

For high Luminosity we need:

- high RF-beam conversion efficiency η_{RF}
- high RF power P_{RF}
- small vertical beam size σ_{v}
- large bunch length σ_z (will come back to this one)
- could also allow higher beamstrahlung δ_{BS} if willing to live with the consequences

Next question: how to make a small σ_v

The Luminosity Issue: A final scaling law?

$$L \propto \frac{\eta_{RF} P_{RF}}{E_{cm}^{3/2}} \frac{\sqrt{\delta_{BS} \sigma_z}}{\sigma_y} \qquad \sigma_y = \sqrt{\frac{\beta_y \varepsilon_{n,y}}{\gamma}}$$

where $\varepsilon_{n,y}$ is the normalised vertical emittance, and β_y is the vertical β -function at the IP. Substituting:

$$L \propto \frac{\eta_{RF} P_{RF}}{E_{cm}^{3/2}} \sqrt{\frac{\delta_{BS} \gamma}{\varepsilon_{n,y}}} \sqrt{\frac{\sigma_z}{\beta_y}} \propto \frac{\eta_{RF} P_{RF}}{E_{cm}} \sqrt{\frac{\delta_{BS}}{\varepsilon_{n,y}}} \sqrt{\frac{\sigma_z}{\beta_y}}$$

hour glass constraint

 β_v is the same 'depth of focus' β for hour-glass effect. Hence $\beta_v \ge \sigma_z$

The Luminosity Issue: A final scaling law?

$$L \propto \frac{\eta_{RF} P_{RF}}{E_{cm}} \sqrt{\frac{\delta_{BS}}{\varepsilon_{n,y}}} H_D \qquad \beta_{y*} \sigma_z$$

- high RF-beam conversion efficiency η_{RF}
- high RF power P_{RF}
- small normalised vertical emittance $\varepsilon_{n,v}$
- strong focusing at IP (small β_{v} and hence small σ_{z})
- could also allow higher beamstrahlung δ_{BS} if willing to live with the consequences

Above result is for the <u>low</u> beamstrahlung regime where $\delta_{BS} \sim$ few % Slightly different result for <u>high</u> beamstrahlung regime

Slight random detuning between cells causes HOMs to decohere Will recohere later: needs to be damped (HOM dampers)

e⁻ Source

- laser-driven photo injector
- circ. polarised photons on GaAs cathode \rightarrow long. polarised e⁻
- laser pulse modulated to give required time structure
- <u>very</u> high vacuum requirements for GaAs $(<10^{-11} \text{ mbar})$
- beam quality is dominated by <u>space charge</u> (note $v \sim 0.2c$)

factor 10 in x plane factor ~500 in y plane

SHB = sub-harmonic buncher. Typical bunch length from gun is ~ns (too long for electron linac with $f \sim 1-3$ GHz, need tens of ps)

see lecture 5 Damping Rings: transverse damping $\tau_D \propto \frac{\rho^2}{E^3}$ suggests high-energy and small ring. But Remember: $8 \times \tau_D$ required RF power: $P_{RF} \propto \frac{E^4}{\rho^2} \times n_b N$ needed to reduce e^+ vertical emittance. equilibrium emittance: $\mathcal{E}_{n,x} \propto \frac{E^2}{2}$ Store time set by f_{rep} : $t_s \approx n_{train} / f_{rep}$ an example: Take $E \approx 2 \text{ GeV}$ radius: $\rho = \frac{n_{train} n_b \Delta t_b c}{2\pi}$ $B_{bend} = 0.13 \text{ T} \Longrightarrow \rho \approx 50 \text{ m}$ • $<\!P_{\gamma}\!> = 27 \text{ GeV/s} [28 \text{ kV/turn}]$ • hence $\tau_D \approx 148 \text{ ms}$ - Few ms required!!! Increase $\langle P_{\gamma} \rangle$ by $\times 30$ using *wiggler magnets*

Damping Rings: limits on vertical emittance

- Horizontal emittance defined by lattice
- theoretical vertical emittance limited by
 - space charge
 - intra-beam scattering (IBS)
 - photon opening angle
- In practice, ε_y limited by magnet alignment errors
 [cross plane coupling]
- typical vertical alignment tolerance: Δy ≈ 30 µm
 ⇒ requires beam-based alignment techniques!

The linear bunch compressor chicane (dispersive section) $\Delta z \approx R_{56} \qquad R_{56} = -\frac{\langle \delta z \rangle}{\delta^2} = -\frac{\delta_c \sigma_{z,0}}{F^2 \delta_u^2} = \frac{k_{RF} V_{RF}}{E} \left(\frac{\sigma_{z,0}}{\delta_u}\right)^2 \frac{1}{F^2}$ $\sigma_{z,0} = 2 \text{ mm}$ $\delta_u = 0.1\%$ $\sigma_z = 100 \mu \text{m} \Rightarrow F_c = 20$ $f_{RF} = 3 \text{ GHz} \Rightarrow k_{RF} = 62.8 \text{ m}^{-1}$ E = 2 GeV

see lecture 7magnetic multipole expansion: $B_y(x) = B\rho\left(\frac{1}{\rho} + K_1x + \frac{1}{2}K_2x^2 + \frac{1}{3!}K_3x^3...\right)$
dipole quadrupole sextupole octupole 2^{nd} -order kick: $\Delta y' = \begin{cases} -k_1y\delta & quadrupole \\ -k_2xy & sextupole \end{cases}$ introduce horizontal
dispersion D_x $X \to X + D_X\delta$
 $\Delta y' = -\frac{k_2xy}{k_1} - \frac{k_2D_xy\delta}{k_1}$ need also to cancel
geometric (xy) term!
(second sextupole)

Final Focusing: Fundamental limits

see lecture 7

Already mentioned that $\beta_{v} \ge \sigma_{z}$

At high-energies, additional limits set by so-called *Oide Effect*: synchrotron radiation in the final focusing quadrupoles leads to a beamsize growth at the IP

minimum beam size:
$$\sigma \approx 1.83 (r_e \lambda_e F)$$

occurs when $\beta \approx 2.39 (r_e \lambda_e F)$

independent of E!

occurs when

F is a function of the focusing optics: typically $F \sim 7$ (minimum value ~ 0.1)

Stability

- Tiny (emittance) beams
- Tight component tolerances
 - Field quality
 - Alignment
- Vibration and Ground Motion issues
- Active stabilisation
- Feedback systems

Linear Collider will be "Fly By Wire"

see lecture 8

