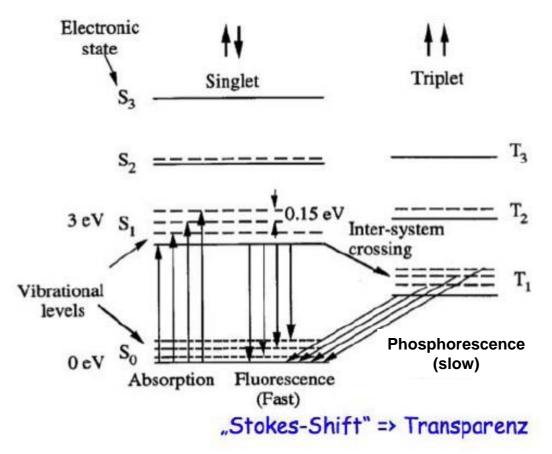

Scintillators and photodetectors

- 1. Generation of Optical Photons
- 2. Transport of Optical Photons
- 3. Detection of Optical Photons

1) Generation of Optical Photons

A) Organic (molecular) scintillators

Naphtalene: π -electron system

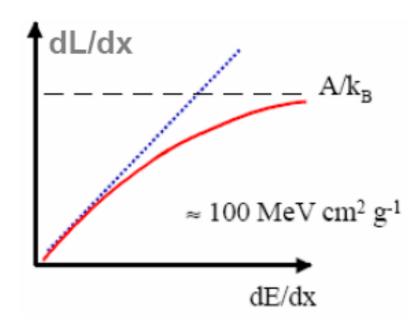

Advantages:

- Fast
- · No need for Xtals
- →liquids, glasses, ...

<u>Disadvantages:</u>

- inefficient
- Non-linear (quenching)
- not good for γ 's

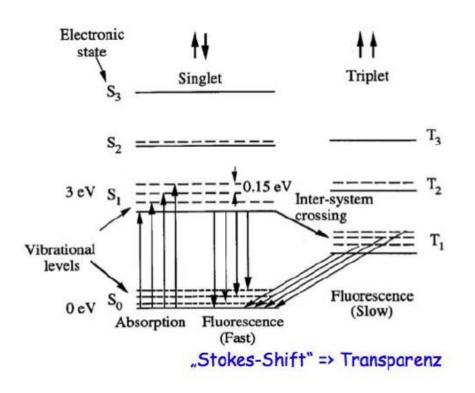
The electronic levels:



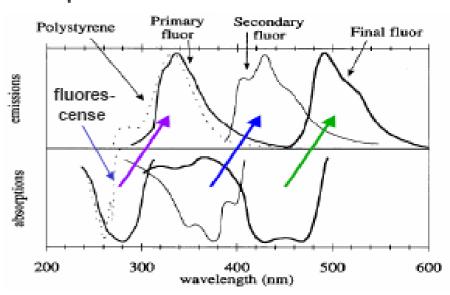
- 1) Prompt fluorescence
- 2) Phosphorescence
- 3) Delayed fluorescence
- → Complicated time structure

Non-linearity: Birk's law

Interaction between two (or more) excited molecules → Non-radiative decay = quenching
 → Becomes more important with increasing ionization density → non-linearity.


$$\frac{dL}{dx} = \frac{A \cdot dE / dx}{1 + k_B \cdot dE / dx}$$

1) Generation of Optical Photons


How to avoid re-absorption?

Natural Stokes shift (not enough)

Wavelength shifters via additional scintillators

Principle of WLS:

Eigenschaften organischer Szintillatoren

scintillator	density (g/cm ³)	index of refraction	wavelength of maximum emission (nm)	decay time constant (ns)	scintillation pulse height 13	H/C ratio 2
Monocrystals						
naphthalene	1.15	1.58	348	11	11	0.800
anthracene	1.25	1.59	448	30-32	100	0.714
trans-stilbene	1.16	1.58	384	3-8	46	0.857
p-terphenyl	1.23		391	6-12	30	0.778
Plastics 3)						
NE 102 A	1.032	1.58	425	2.5	65	1.105
NE 104	1.032	1.58	405	1.8	68	1.100
NE 110	1.032	1.58	437	3.3	60	1.105
NE 111	1.032	1.58	370	1.7	55	1.096
Plastics 4)						
BC-400	1.032	1.581	423	2.4	65	1.103
BC-404	1.032	1.58	408	1.8	68	1.107
BC-408	1.032	1.58	425	2.1	64	1.104
BC-412	1.032	1.58	434	3.3	60	1.104
BC-414	1.032	1.58	392	1.8	68	1.110
BC-416	1.032	1.58	434	4.0	50	1.110
BC-418	1.032	1.58	391	1.4	67	1.100
BC-420	1.032	1.58	391	1.5	64	1.100
BC-422	1.032	1.58	370	1.6	55	1.102
BC-422Q	1.032	1.58	370	0.7	11	1.102
BC-428	1.032	1.58	480	12.5	50	1.103
BC-430	1.032	1.58	580	16.8	45	1.108
BC-434	1.049	1.58	425	2.2	60	0.995

- Organische Szintillatoren haben niedriges Z (hauptsächlich H und C)
- Geringe γ-Nachweiswahrscheinlichkeit (praktisch nur Comptoneffekt)
- Jedoch hohe Neutron Nachweiswahrscheinlichkeit via (n,p) Reaktionen

¹⁾ relative to anthracene

²⁾ ratio of hydrogen to carbon atoms

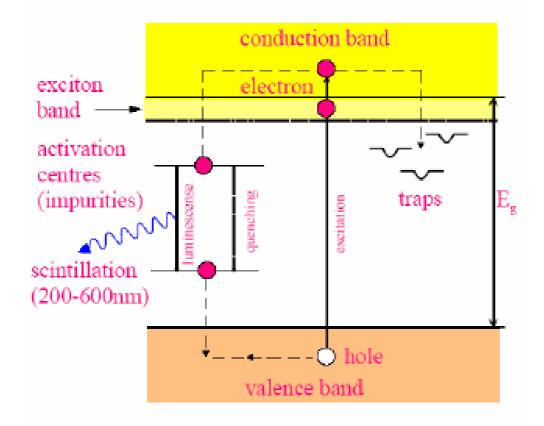
³⁾ Nuclear Enterprises Ltd. Sighthill, Edinburgh, U.K.

⁴⁾ Bicron Corporation, Newbury, Ohio, USA

1) Generation of Optical Photons

b) Inorganic crystalline scintillators (Nal:TI)

Origin does not stem from molecular energy levels but from band-structure levels.


Advantages:

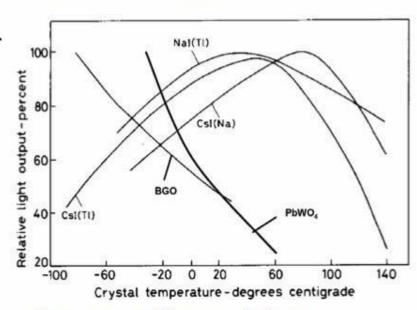
- Good efficiency
- Good linearity
- Radiation tolerance

Disadvantages:

- Relatively slow
- Crystal structure needed (small and expensive)

Three different scintillation mechanisms (crystals like NaI, CsI, BGO, BaF2, ...)

→ > 1 decay time constants


- fast recombination (ns ... µs) from activation centres
- slow recombination due to trapping (~100ms)

Gebräuchliche anorganische Szintillatoren

Eigenschaften gebräuchlicher Kristalle

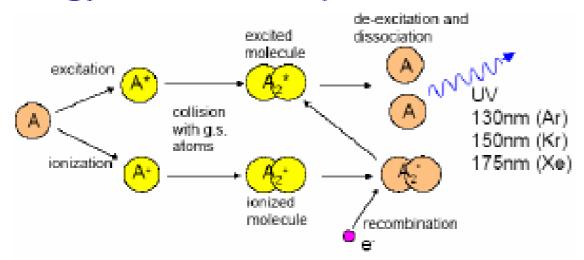
Material	$\begin{array}{c} \lambda_{max} \\ (nm) \end{array}$	τ_f (ns)	ρ (g/cm ³)	Photons per MeV
NaI(TI) (20°C)	415	230	3.67	38,000
pure NaI (-196°C)	303	60	3.67	76,000
Bi ₄ Ge ₃ O ₁₂ (20°C)	480	300	7.13	8,200
Bi ₄ Ge ₃ O ₁₂ (-100°C)	480	2000	7.13	24,000
CsI(Na)	420	630	4.51	39,000
CsI(Tl)	540	800	4.51	60,000
CsI (pure)	315	16	4.51	2,300
CsF	390	2	4.64	2,500
BaF ₂ (slow)	310	630	4.9	10,000
BaF ₂ (fast)	220	0.8	4.9	1,800
Gd ₂ SiO ₅ (Ce)	440	60	6.71	10,000
CdWO ₄	530	15000	7.9	7,000
CaWO ₄	430	6000	6.1	6,000
CeF ₃	340	27	6.16	4,400
PbWO ₄	460	2, 10, 38	8.2	500
Lu ₂ SiO ₅ (Ce)	420	40	7.4	30,000
YAIO ₃ (Ce)	390	31	5.35	19,700
Y ₂ SiO ₅ (Ce)	420	70	2.70	45,000
LaBr ₃ (Ce)	380	20	5.1	63,000

Temperaturabhängigkeit der Lichtausbeute

Konsequenz: Notwendigkeit von

- Kalibration
- Temperaturstabilisierung

<- viel versprechende Entwicklung der letzten Jahre

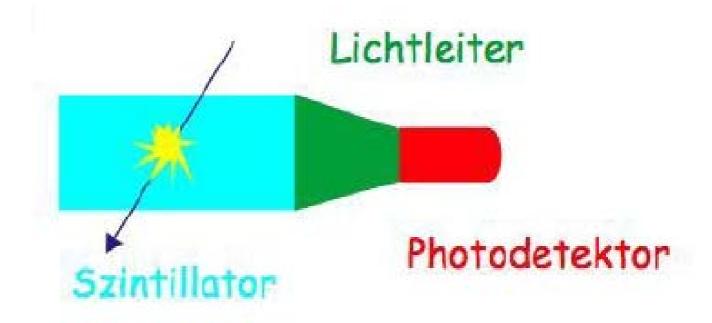

Weitere Daten

Scintillator Crystal Data Table

Material	Nal:TI	CsI:TI	CaF ₂ :Eu	BaF ₂	BGO	YAG:Ce	YAP:Ce	GSO:Ce	cwo	PWO	NB:WO	ZnSe:Te	LAG:Ce
Physical Propertie	s	ik:	1	da ea				10		is to		10.	20
Chemical Formula	Nal:TI	Csl:TI	CaF ₂ :Eu	BaF ₂	Bi4GeO4	Y3AI5O12	YAIO3	Gd ₂ SiO ₅	CdWO ₄	PbWO ₄	NB(WO ₄) ₂	ZnSe:Te	Lu ₃ Al ₅ O ₇
Density g/cm ³	3.67	4.51	3.18	4.89	7.13	4.57	5.37	6.71	7.9	8.28	7.57	5.42	6.73
Hardness-Moh	2	2	4	3	5	8.5	8.6	5.7	4.0-4.5	3.5-4.0	6		
Hydroscopic	Yes	Slightly	No	No	No	No	No		No	No	No		
Crystal Structure	Cubic	Cubic	Cubic	Cubic	Cubic	Cubic	Rhomb.	Mono.	Mono.	Tetra.			Cubic
Therm. Exp PPM	47.5	50	19.5	18.4	7.0	8-9	4-11	4-12	10.2	10.0			
Melting Pt – C°	651	621	1360	1280	1050	1970	1875		1325	1125		1779	
Luminescence Pro	perties	Mil	A)	M				b.					
Integrated Light Output (%Nal:TI)	100	45	50	20/2	15-20	15	40	20-25	35-40	5 (of BGO)			15
Wave Length of Max. Emissions (nm)	415	550	435	325/220	480	550	370	440	490	430/520	540		535
Decay Constant n/s	230	900	940	630/0.6	300	70	25	30-60	5000	2/10/30	20		70
Afterglow (% at 6 ms)	0.5-5	<2	<0.3		<0.005	<0.005	<0.005	<0.005	0.1	-		<0.05	
Radiation Length cm	2.9	1.86	3.05	2.03	1.1	3.5	2.7	1.38	1.06	0.85	0.98		
Photon yield @ 300K - 10 ³ pH/MeV	38	52	23	10	2-3	8	10	8-10	28	22.6- 25.6		8	10

http://www.marketech-scintillators.com/pdfs/ScintillatorsData.pdf

 also noble liquids (Ar, Xe, Kr) scintillate → ionisation + light → precision energy measurement+particle ident.

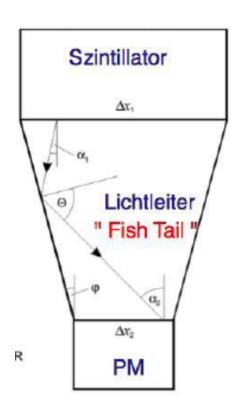

- time constants: ns and 100...1000 ns

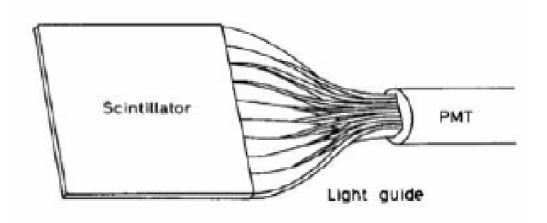
Summary:

- Organics (molecular): fast, large, cheap; inefficient, non-linear
- Inorganics (crystalline):
 Efficient, rad-hard; slow, small
- Noble liquids: Large, cheap, inefficient

Scintillators and photodetectors

- 1. Generation of Optical Photons
- 2. Transport of Optical Photons
- 3. Detection of Optical Photons

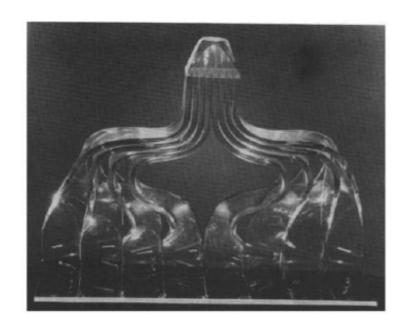

2) Transport of optical photons

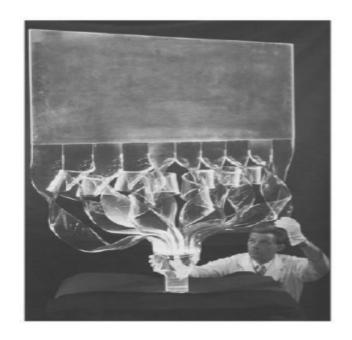

Often it is unavoidable or even desirable to have the photo-detector remote from the scintillator:

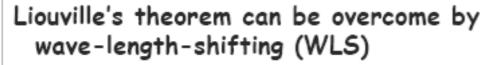
- Space limitations (particle detectors)
- Photodetector out of the magnetic field
- Couple a large scintillator surface (volume) to a single photo-detector
- ...
- → Use optical wave guides: Total internal reflection at interface with material with lower index of reflection.

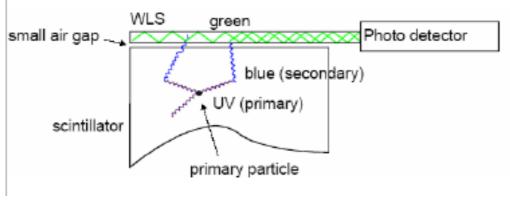
2) Transport of optical photons

Aufgabe der Lichtleiter ist es das im Szintillator erzeugte Licht möglichst verlustfrei zum Photodetektor zu leiten. In der Regel verwendet man Plexiglas (C₅O₂H₈)_n: PMMA (Polymethylmethacrylat)

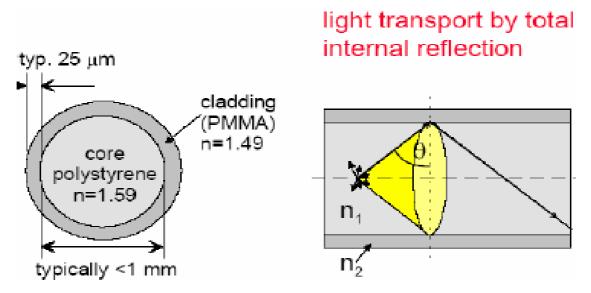


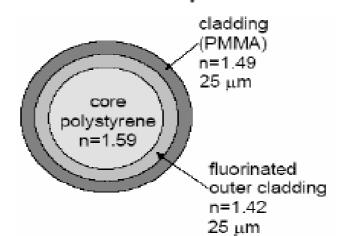



"Adiabatic"; for better time resolution (path length is position independent)


Liouville's Theorem: Phase space volume (area x angle) is preserved

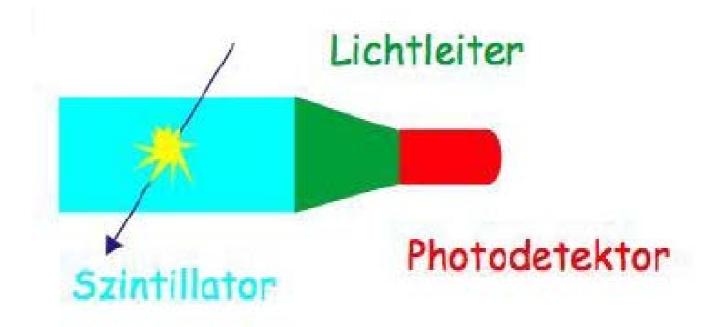
2) Transport of optical photons





- WLS used: BBQ, Y7, K27 embedded in lucite (PMMA), polystyrol, ...
- absorb 300-400 nm emit 500 nm (technique well understood)

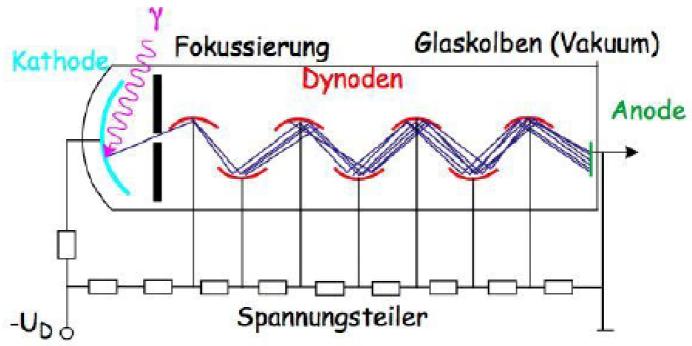
use of "fiber" read-out



- $sin\theta > n_2/n_1 \rightarrow \theta > 70^\circ \rightarrow accept 3.1\%$
- improvement acceptance (5.3%) and transmission (1>10m) → multi-clad fibers

Scintillators and photodetectors

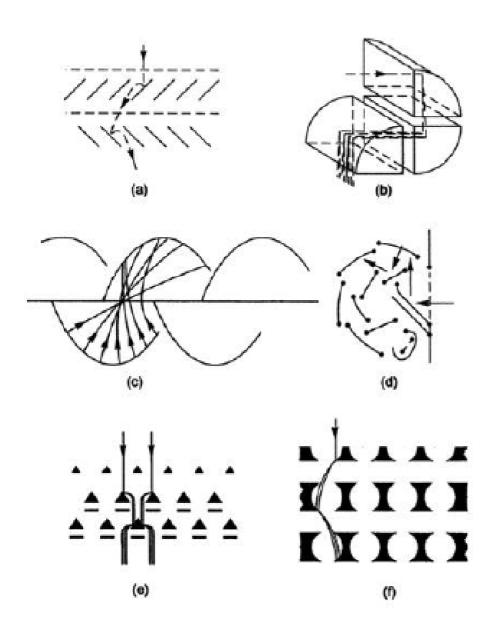
- 1. Generation of Optical Photons
- 2. Transport of Optical Photons
- 3. Detection of Optical Photons


Photodetectors:

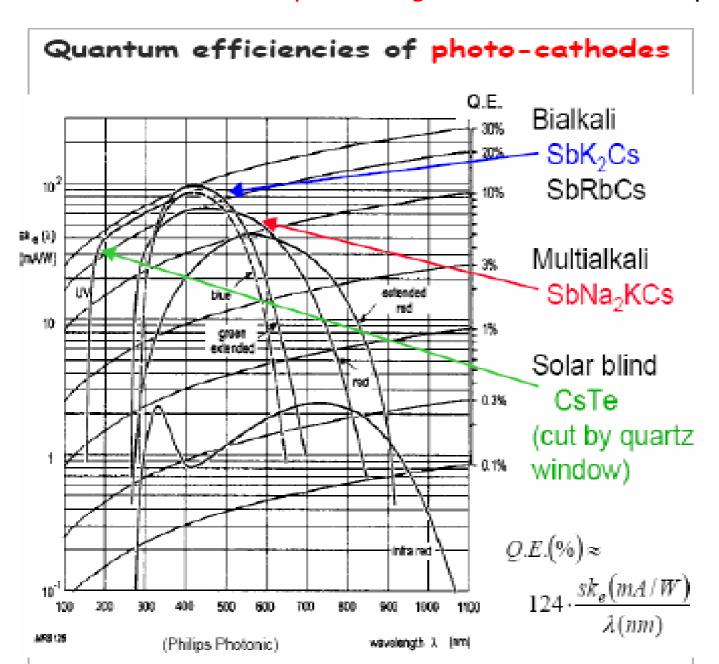
Goal: Conversion of the fluorescent light into an electrical signal that can subsequently be digitized.

Requirements:

- High Quantum Efficiency: QE = N_{photoelectrons}/N_{photons}
- Minimum time spread (keep time resolution)
- Good lifetime
- Large dynamic range
- ...


(still) the workhorse: Photo Multiplier Tubes (PMT's)

Beispiel: 10 Dynoden, jeweils Verstärkungfaktor g = 4

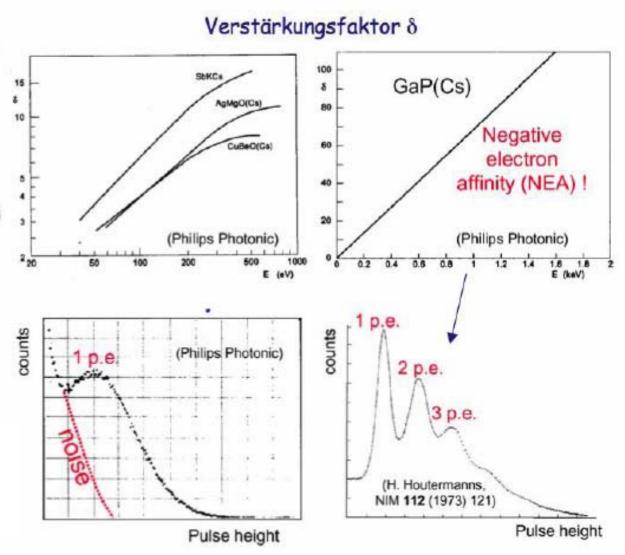

⇒ Gesamtverstärkung:
$$M = \prod_{i=1}^{N} g_i = 4^{10} \approx 10^6$$

PMT's can have different shapes and size

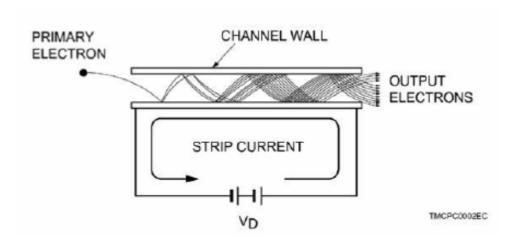
a) Venetian blind (simple, efficient) b) Box and grid (simple, efficient) c) Linear focusing (good time resolution) d) Circular cage (compact) e) Mesh dynodes (good in B fields) f) Foil dynodes (position sensitive)

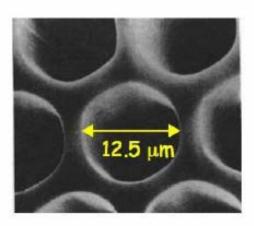
Photo-cathode and first dynode stage are the critical components.

Einfluss auf Energieauflösung

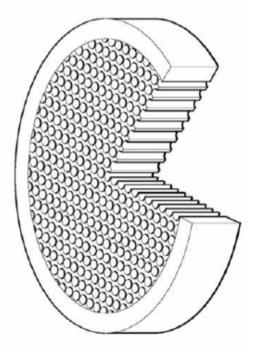

Energieauflösung bestimmt durch die Fluktuation in der Anzahl der Sekundärelektronen:

- pro Dynode gibt es einen Verstärkungsfaktor von $\delta(E) = 3...20$
- die Anzahl der emittierten Elektronen folgt einer Poisson-Statistik

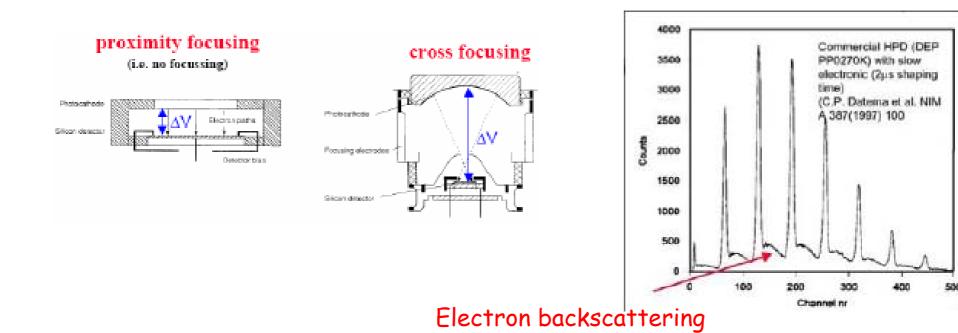

$$P(\bar{n},m) = \frac{\bar{n}^m e^{-m}}{m!}$$


relative Fluktuation

$$\frac{\sigma_{\bar{n}}}{\bar{n}} = \frac{1}{\sqrt{\bar{n}}}$$


Special structures: Micro-channel plates

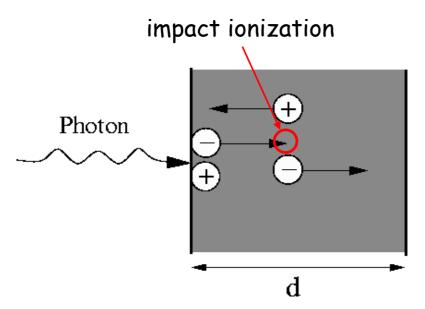
Characteristics:


- fast (transit time spread 50 ps)
- works at B-fields of 0.1 Tesla
- limited life-time (0.5 C/cm2)
- limited rate capability
- used commercially (and research) as image intensifiers

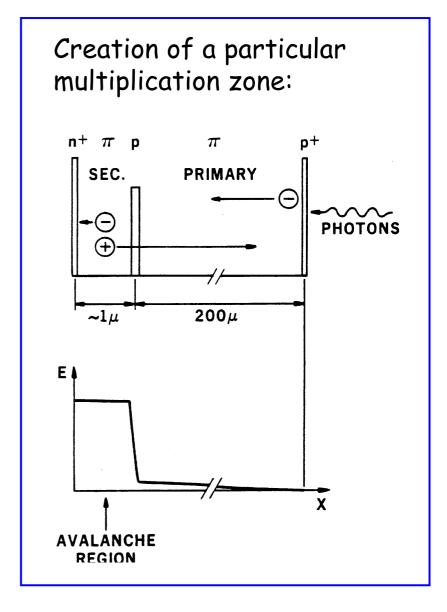
Hybrid Photo diodes (HPD)

Combination of:

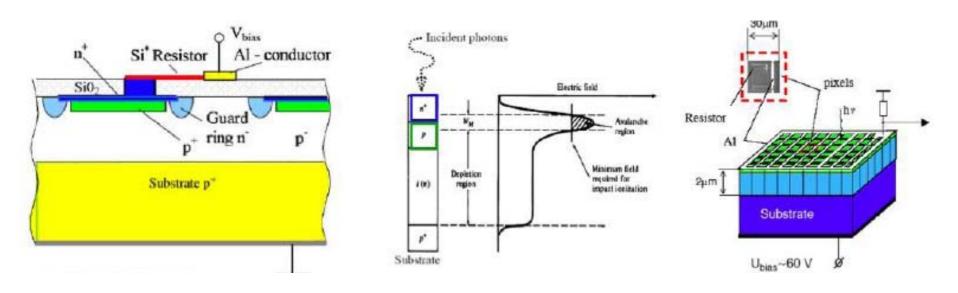
- Photocathode (like in a PMT)
- · Vacuum electron acceleration structure
- Silicon detectors (direct detection of electrons)


of silicon diodes

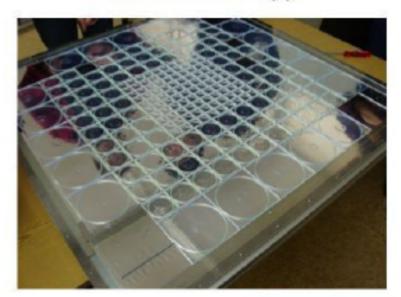
Avalanche Photodiodes

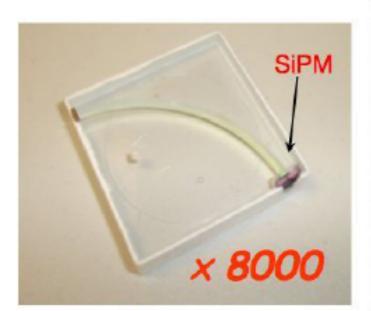

Solid state detectors with internal amplification

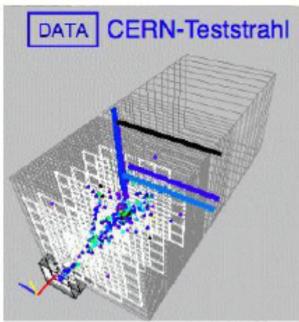
(c.f. proportional counter)


Charge carriers are accelerated sufficiently to form additional electronhole pairs

An electron-hole pair is created on the left by incident light

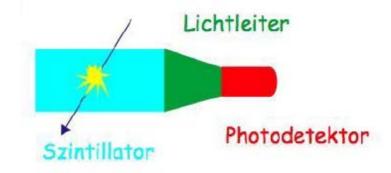

Silicon PM's = Pixellated avalanche diodes; run in Geiger mode (very high gain)




- Small dimensions ~ 300 μm pixel size
- Insensitive to B-fields
- Low voltages
- High gains (strong signals)
- Relatively cheap.

Tile HCAL für den ILC DESY Prototyp

DESY is very active in developing Calorimeters for ILC



Comparison of various photo-detectors

	PMT	APD	HPD	SiPM	
Photon					
detection					
efficiency:					
blue	20%	50%	20%	12%	
green - yel-	a few %	60-70%	a few %	15%	
low					
red	<1%	80%	<1%	15%	
Gain	10^{6} - 10^{7}	100-200	10^{3}	10^{6}	
High voltage	1-2 kV	100-500 V	20 kV	25 V	
Operation in	problematic	OK	OK	OK	
the magnetic					
field					
Threshold	1 ph.e.	\sim 10 ph.e.	1 ph.e.	1 ph.e.	
sensitivity					
$S/N\gg 1$					
Timing /10	~100 ps	a few ns	~100 ps	30 ps	
ph.e.					
Dynamic	$\sim 10^{6}$	large	large	$\sim 10^{3}/{\rm mm}^{2}$	
range					
Complexity	high (vac-	medium	very high	relatively	
	uum, HV)	(low noise	(hybrid	low	
		electronics)	technology,		
			very HV)		

Summary Scintillators and photo-detectors

- 1. Generation of Optical Photons
- 2. Transport of Optical Photons
- 3. Detection of Optical Photons

- 1) Generation: Organic and inorganic scintillators; noble gasses and liquids
- 2) Transport: waveguides; wavelength shifters; optical fibers.
- 3) Detection: PMT; HPD; APD or SiPM.

Each component and combination has its own advantage and disadvantage. Application specific (HEP, Photon Science, Medical Imaging, Industrial Imaging