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Abstract

Two de
ecting mode RF systems can be used to separate secondary
kaons from a momentum selected particle beam, primarily consist-
ing of a mix of protons, pions and kaons, by a time of 
ight method.
The principles of this methods and the choices of the parameters are
explained. It is planned to use a 3:9 GHz 13-cell super-conducting
cavity operated in a �-dipole-mode. First, the passband structure
of di�erent cavity shapes, which mainly di�er by the cell-to-cell
coupling and the resulting dispersion slope, is investigated. The
main concern is the frequency di�erence between the �-mode and
the next lowest mode in the same passband and the implications on
the tuneability of the cavity. For three shapes the possible end-cell
designs for a 7-cell and 13-cell cavity are presented. All numerical
�eld calculations are performed by the MAFIA code. An equiv-
alent circuit model, based on a two chain model, is applied to a
7-cell cavity. It is demonstrated that the dispersion diagram ob-
tained by MAFIA calculations can be very well approximated by
this equivalent circuit.
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1 Introduction

The FermilabMain Injector will produce intense beams of protons for �xed target
experiments. For kaon physics [1] the extracted primary proton beam of momen-
tum 120 GeV/c will strike a thick target, and the generated secondary particles
pass through a momentum selection stage. These particles are primarily a mix
of protons, pions and kaons of the same momentum but of di�erent speeds. The
kaons can be separated by a time of 
ight separation using two rf-systems. The
set-up is schematically shown in Fig. 1. Kaons, pions and protons are kicked
by an transverse mode rf-system (#1) and transfered through an optical system,
which performs a �I mapping to the second rf-system. The pions arrive earlier
at the second rf-stations and are kicked onto a beam stopper while the kaons are
passing the beam stopper. The protons arrive later than the pions and kaons and
are kicked to the beam stopper, too.
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Figure 1: Kaon beam separation.

The phase slip between pions and kaons is given by:

�� = 2� f L
1

c

 
1

�K
� 1

��

!
;

where f is the frequency of the rf-systems, L the distance between the two rf-
systems, and �K, �� the normalized (with respect to c) velocities of the kaon and
pion beams. For a momentum of 22GeV=c the velocities are: �K = 0:999748,
�� = 0:99998 and �p = 0:99909 (protons). For the required phase slip of 2�
between the pions and protons, the slip between the pions and kaons is � �=2.
This leads to a condition for the product of the rf-frequency and the distance
between the rf-systems

f � L � ��p
2�

2 c 
2p � 330 GHz � m:
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Since the lifetime of kaons in their rest frame is only � � c = 3:7m or about 200 m
in the laboratory frame for 22GeV=c kaons the distance L should be reasonably
short, consistent with a fraction of the total beam line length and acceptable
frequencies. The following choice ful�ll the requirements:

f = 3:9 GHz; L � 86:5 m:

Copper and niobium models of the transverse mode cavities have been built.
Fig. 2 shows a one cell copper model with beam pipes and a one and two half
cell niobium model between two shorting plates. Furthermore a �ve cell niobium
model (shown in Fig. 3) has been built and tuned to the de
ecting dipole mode.

Figure 2: Copper and niobium models of the transverse mode cavities. Two
shorting plates have been added to the one cell and two half cell niobium model.

The radial kick per unit length �0 due the electric and magnetic �eld of the
dipole mode is given as an integral of Lorentz force:

�0 =
e

E

1

Lcav

Z Lcav

0
dz er � (E? (r; �; z; t = z=c) + c ez � B (r; �; z; t = z=c)) ;

(1)
where e is the charge and E the energy of the kicked particle.

A 3D-view of the electric and magnetic �eld of the �-mode, which is used to
de
ect the beam, is shown in Fig. 4 and Fig. 5. The computer code MAFIA [2]
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Figure 3: Five cell Niobium prototype transverse mode cavity.

has been used to obtain the �elds which are shown in the �gures. The boundary
conditions correspond to the case shown in Fig. 2 where two shorting plates have
been added to a con�guration with one full and two half cells. This situation also
represents the case of a periodic structure of cavities where no end-cell e�ects are
present.

The geometrical properties of the considered cavity shapes are discussed in
the next section, while basic design parameters of dipole (or de
ecting) mode
cavities are introduced in section 3. These parameters are compared for several
cavity shapes in section 4. From the dispersion diagram two regimes can be
distinguished: the weakly and the strongly coupled regime. The design of an
end-cell is discussed in section 5 for both regimes. The results are applied to
7-cell and 13-cell cavities in section 6. It is demonstrated that, it is possible
to obtain a good �eld 
atness of the de
ection �-mode for the weakly and the
strongly coupled regime. Finally, an equivalent circuit model is presented in
section 7. It is shown that the MAFIA results can be very well approximated by
a two-chain equivalent circuit.
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Figure 5: Cavity of shape C15, magnetic �eld of dipole �-mode
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2 Cavity Shapes

The basic shape of a cavity half cell is schematically shown in Fig. 6. The
curve in the (r; z)-plane consists out of two circle segments, which are smoothly
connected by a straight line. The circle at the iris (center (a + ri; 0)) is de�ned
by the equation:

Ri(z) = a+ ri � ri

s
1 �

�
z

ri

�2

;

for 0 � z � z1, while the equator circle is de�ned by:

Re(z) = b� re + re

vuut1 �
 
z � g=2

re

!2

;

for z2 � z � g=2. The connecting straight line is de�ned by the two mid-points
(r1; z1) and (r2; z2):

Rc(z) =
r2 � r1
z2 � z1

(z � z1) + r1;

for z1 � z � z2, with r1 = Ri(z1) and r2 = Ri(z2). The mid-points can be

b

g/2

z1 z2

rir1

re
r2

a

z

r

α

Figure 6: Schematic view of the cavity shape.

calculated from the basic cavity shape parameters a,b,ri,re and g=2. Using the

8



angle � as an auxiliary parameter one obtains

z1 = ri cos� (2)

z2 = �re cos� +
g

2
(3)

since the connecting straight line is tangential with respect to both circles. The
angle � is related to the basic cavity shape parameters according to

tan� =
(g=2)2 � (ri + re)2

(g=2) d+ (ri + re)
q
d2 + (g=2)2 � (ri + re)2

; (4)

where d = b�re�(a+ri) is the radial distance between the two circle centers.(The
details of that calculations are omitted here.)

An overview on all considered cavity shapes can be found in table 1. Three
series (A,B and C) with di�erent iris and equator curvatures are considered.
Furthermore the cavities di�er by their iris radius, which is used to label the
di�erent shapes.

The shape A15 (shown in Fig. 7) is used for the copper and niobium model
cavity prototypes, which have been built for �rst measurements, while the shape
C15 (also shown in Fig. 7) is the most recent (almost �nal) shape. In Fig. 8 all
cavities of shape A and B are shown which are listed in table 1.
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Figure 7: Shape of the de
ecting mode prototype cavity half cell (shape A15)
and the most recent cavity half cell design (shape C15). The midpoints are
(z1; r1) = (3:28; 17:85)mm and (z2; r2) = (5:73; 35:47)mm for cavity A15, and
(z1; r1) = (5:45; 19:74)mm and (z2; r2) = (7:90; 37:34)mm for cavity C15.
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Label 3:9 GHz transverse mode cavities
A curvature radius:

at iris (ri) at equator (re)
3:31 mm 13:6 mm
Iris radius (a) Equator radius (b) a=b

A13 13 mm 47:875 mm 0:2715
A15 15 mm 47:19 mm 0:3179
A17 17 mm 46:437 mm 0:3661
A19 19 mm 45:874 mm 0:4141
A25 25 mm 45:7 mm 0:5470

B curvature radius:
at iris (ri) at equator(re)
4:5 mm 12 mm
Iris radius (a) Equator radius (b) a=b

B15 15 mm 47:19 mm 0:3179
B18 18 mm 46:31 mm 0:3887
B19 19 mm 46:18 mm 0:4114

C curvature radius:
at iris (ri) at equator(re)
5:5 mm 11:41 mm
Iris radius (a) Equator radius (b) a=b

C15 15 mm 47:18 mm 0:3179

Table 1: Geometrical parameters of the cavity shapes. The length of a cavity
half cell is 19:2 mm for all cases.
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Figure 8: Half cell shapes of cavities A13 . . . A25 and B15 . . . B19.
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3 Basic Design Parameters of a

Transverse Mode Cavity

r

zφ

v = c  ez

L

Figure 9: A test particle is traversing a cavity.

The e�ect of the electric and magnetic �elds on a test particle traversing the
cavity parallel to the cavity axis can be calculated from the following integrals of
the Lorentz force:

V? (r; �) =
Z L

0
dz (E? (r; �; z; t = z=c) + c ez � B (r; �; z; t = z=c)) (5)

It is assumed that the test particle is moving with the velocity v = c ez
at the transverse coordinate (r; �) through the cavity of length L (see Fig. 9).
A cylindrical coordinate system has been chosen, ez is the unit vector in the
direction of the z-axis. E? = ez � (E � ez ) is the transverse component of the
electric �eld. The radial kick on the test particle is given by

� =
e V? r

E
; (6)

where E is the energy of the test particle, e the charge of an electron and V? r

the radial component of the transverse voltage vector.
The integrated longitudinal e�ect of the cavity �elds are given by the following

integral:

Vk(r; �) =
Z L

0
dz Ez(r; �; z; t = z=c): (7)

Note that this approach describing the interaction between the test particle and
the �elds is not self consistent. Nevertheless this is a very good approximation
for highly relativistic particles.

It is suÆcient to calculate Vk since the transverse voltage V? is related to the
longitudinal one by the Panofsky-Wenzel-Theorem [4] (see appendix A). Consider
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especially a cavity mode ringing with the frequency f = !=(2�). One obtains in
complex notation for the electric �eld:

E (r; �; z; t) = fE (r; �; z) exp(�i ! t):
For the voltages the following relation are valid:

V? (r; �) =
�i
!=c
r?Vk(r; �)

(8)

Vk(r; �) =
Z L

0
dz fEz(r; �; z) exp(�i ! z=c):

Generally the �elds fE (r; �; z) and fB (r; �; z) in geometries of cylindrical sym-
metry can be written as (multi-pole expansion):

fE (r; �; z) =
X
m

� g
E

(m)
r (r; z) cos(m�) er

+
g
E

(m)
� (r; z) sin(m�) e�

+
g
E

(m)
z (r; z) cos(m�) ez

�
(9)fB (r; �; z) =

X
m

� g
B

(m)
r (r; z) sin(m�) er

+
g
B

(m)
� (r; z) cos(m�) e�

+
g
B

(m)
z (r; z) sin(m�) ez

�
:

The computer codes URMEL [3] and MAFIA [2] can be used to calculate the

�eld components
g
E

(m)
r ,

g
E

(m)
� , etc. As shown in the appendix A one obtains for

the radial component of the transverse voltage for a m-pole mode:

V
(m)
?r (r; �) =

�i
!=c

m

r
Vk(r; �)(m): (10)

For a dipole mode (m=1) V (m)
?r (r; �) is independent of the radius r. The kick

on the beam due to a dipole mode in the cavity does not depend on the radial
position of the trajectory.

From the numerically calculated �elds (using MAFIA [2]) the longitudinal
voltage

V
(1)
L (r) =

Z L

0
dz

g
E

(1)
z (r; z) exp(�i ! z=c); (11)

and the total stored energy of the dipole mode

U =
�0
2

Z
d3r

���� gE(1)

����2 (12)
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are calculated. Usually V
(1)
L (r) is calculated at the iris radius (r = a) of the

cavity. Note that the transverse voltage of a dipole mode is now simply:

V
(1)
?r (r; � = 0) =

�i
!=c

1

r
V

(1)
L (r); (13)

which is independent of r since V (1)
L (r) depends linearly on the radius.

From the voltage and stored energy the following important parameters can
be calculated (this is usually done by the MAFIA post-processor):

k(1)(r) =

���V (1)
L (r)

���2
4U

R(1)(r)

Q
=

2 k(1)(r)

! 
R

Q

!0
=

R(1)(r)

Q

1

(r !=c)2
: (14)

k(1)(r) is the dipole loss parameter. A charge q transversing the cavity with
radial o�set r will lose the energy q2 k(1)(r) into the dipole mode. R(1)(r)=Q is
the dipole mode shunt impedance of the cavity divided by the quality factor of
the cavity.

An important design parameter of a dipole mode cavity is (R=Q)0 which
does not depend on the radius. If the power P is fed into the cavity the following
transverse voltage is obtained:

VT =

vuut2

 
R

Q

!0
P Qext =

1

(r !=c)
VL(r): (15)

Qext is the external quality factor of the cavity, which is for a super-conducting
cavity mainly determined by the coupler. Often the factor 2 is absorbed into the
de�nition of (R=Q)0. Therefore parameters quoted in reference [1] does di�er by
a factor of two from results given in this report.

For a design of the cryogenic system it is important to know the power Psur

developed on the inner cavity due to the surface resistivity Rsur. The power
dissipated into the surface can be calculated from the tangential magnetic �eld:

Psur =
1

2
Rsur

Z
dA jH�j2 : (16)

For a super-conducting cavity the surface resistance is the sum of the BCS
(Bardeen, Cooper, Schrie�er) resistance RBCS , which depends on the frequency
and the temperature, and a residual resistivity Rres.
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The power which is dissipated into the cavity surface can also be characterized
by the quality factor Q or the parameter G1 [5].

Q =
! U

Psur
(17)

G1 = Rsur Q: (18)

G1 is independent of frequency and cavity material. Therefore G1 will be quoted
throughout this report for the di�erent cavity shapes.

In the MAFIA post-processor by default the dissipated power Psur is calcu-
lated for a copper cavity with the surface resistivity:

RCu =

s
! �0
2 �Cu

; �Cu = 5:8 � 107 (
m)�1: (19)

For a frequency of ! = 2� 3:9GHz the surface resistivity of copper is RCu =
16:4m
. From the quality factor for copper and RCu the parameter G1 is ob-
tained.

Furthermore the peak magnetic surface �eld Bmax for a given transverse
cavity voltage VT is calculated by the MAFIA code for each cavity geometry.
This parameter �nally determines which de
ecting voltage can be achieved. We
assume that a peak magnetic surface �eld of 0:1 T is a safe upper limit.
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4 Results for Single Cell Cavities

In this section results for single cell cavities are presented, which have been ob-
tained from numerical calculations with the computer code MAFIA. In Fig. 10
the shape of the cavity C15 is shown together with the MAFIA grid (about 7300
grid points, 0:5 mm step size). No beam pipe is connected to the cavity. The
left and right boundaries of the cavity are shorting plates in the equator plane
of the cavity (i.e. electric boundary conditions in MAFIA). The eigenvalues and
eigenvectors (modes) of that cavity are calculated. Table 2 summarized the re-
sults of the �rst 2 modes, listing not only the frequency but also the parameters
(R=Q)0 and G1. In the same table the results for the �rst 2 modes using magnetic
boundary conditions are included, too.

0. 3.840E-021.920E-02

0.

4.718E-02

2.359E-02

Z

R

+

Figure 10: Single Cell Cavity shape C15 approximated on the MAFIA grid.

mode # f / GHz (R=Q)0 / Ohm G1 / Ohm comment
EE-1 3.899 27.3 228 �-mode (band 1), TM-like
EE-2 4.061 10.9 287 0-mode (band 1),TM-like
MM-1 4.361 3.2 234 0-mode (band 2), TE-like
MM-1 5.349 0.74 508 �-mode (band 2), TE-like

Table 2: Results from the MAFIA eigenvalue solver and post-processor for a
single cell of cavity C15. The value of G1 is calculated without the shorting
plates.

Plots of the electric �eld for these modes are shown in Fig. 11. The �eld is
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Figure 11: Results from a MAFIA [2] calculation: Electric �eld of the EE-1 (top
left graph), the EE-2 (top right graph), the MM-2 (bottom left graph) and the
MM-1 mode (bottom right graph), in the plane � = 0. ( electric or magnetic
(solid/dashed line) shorting plates at both ends of the cavity).
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shown for an azimuthal angle of � = 0, i.e. the azimuthal electric �eld is zero in
that plane. The �rst mode (top left graph of Fig. 11) is the �-mode, which will
be used to de
ect the particles. The cell length Lcell is chosen in such a way that
a particle transversing the cavity with almost the velocity of light will always be
synchronous with the �eld. The electric �eld of a �-mode in a periodic structure
of cavities is schematically shown in Fig. 12. The dashed box marks one cell
of the chain of cavities corresponding to the cell used for the MAFIA one cell
calculations (Fig. 11). All modes of an in�nite periodic chain of cavities can be

r

zφ L
cell

Figure 12: Periodic structure of cavities. The arrows indicate the direction of the
electric �eld of a mode with a phase advance of �.

obtained from single cell calculations using periodic boundary conditions:

fE (1)
(r; z + Lcell) = fE (1)

(r; z) exp(i'); (20)

' is the phase advance per cell. A phase advance of 180Æ (or �) corresponds to the
case shown in Fig. 11 (top left graph), where shorting plates are used at the left
and right boundary of the cavity cell. The modes can be labeled by their phase
advance ' per cell. Numerical calculations with the computer code MAFIA have
been done for 13 di�erent values for ' in the range from 0Æ to 180Æ (15Æ steps
in '). Modes with approximately that phase advance will be present in a 13-cell
cavity. The frequencies of the lowest two pass-bands (see [7]) are graphically
represented in form of dispersions curve in Fig. 13 for the cavity shape A15 and
C15. The �rst passband is shown in Fig. 14 for the cavity shapes A13, A15,
A17, A19 and A25. The slope of the dispersion curves is changing from negative
values (backward wave structure, or negative group velocity) for the shapes A13
and A15 to positive values (forward wave structure, or positive group velocity)
for the shapes A17, A19 and A25.

A 13-cell cavity will be harder to tune if the dispersion curve is very 
at
since more than one mode may be excited during the tuning procedure which
is performed at room temperature. Therefore a further design criteria is the
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total width of passband and especially the frequency di�erence of the modes
with phase advances of 165Æ and 180Æ.
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Figure 13: Dispersion curve of the �rst and second dipole passband of a cavity
with shape A15 and C15.
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Figure 14: Dispersion curve of the �rst dipole passband of the cavities of shape
A13 . . . A25
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The width of a resonance Æf is determined by the quality factor Q: Æf =
f=(2Q). The electric resistivity of Niobium at a temperature of 273 K is 15:2 �
10�8 
m [8], which is about 10 times higher than the resistivity of copper. There-
fore a unloaded Q of about 5000 is expected for the �-mode at room temperature,
i.e. during tuning of the cavity. The relative mode separation of the �-mode and
the 11�=12-mode (165Æ-mode) should be at least three times the relative width
of the resonance:

�f

f�
=

f� � f11�=12
f�

= 3
Æf

f�
= 3

1

2Q
� 3 � 10�4; (21)

to ensure a clear separation of the two modes.

4.1 Comparison of the basic design parameters for di�er-

ent cavity shapes.

The basic design parameters (R=Q)0, G1 and the peak magnetic �eld near the
surface Bmax have been calculated for all cavity shapes listed in table 1 using the
MAFIA post-processor. The quantity (R=Q)0 depends linearly on the iris radius,
see Fig. 15. The cavities of shape B, which have an larger iris curvature than the
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O
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shape A

Figure 15: (R=Q)0 of the cavities of shape A13 . . . A25. The iris radius, which
labels the di�erent cavity shapes, is used for the abscissa.

shape A cavities, have almost the same (R=Q)0 for the same iris radius. Table
3 summarized the results for all considered cavity shapes and shows the relative
advantages of the C15 shape.
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Label f/MHz (R=Q)0 /
 G1 /
 Bmax/T Æf=f� / 10�4

A13 3905:9 31:1 253 0:077 �3:15
A15 3898:7 27:6 247 0:087 �2:36
A17 3900:6 23:1 237 0:097 1:53
A19 3900:1 18:6 238 0:107 9:4
A25 3905:6 8:1 261 0:135 55:7
B15 3904:7 27:3 236 0:077 �2:81
B18 3900:7 20:8 231 0:091 2:72
B19 3892:3 18:6 231 0:095 6:26
C15 3899:7 27:3 228 0:073 �3:04

Table 3: Summary of the results obtained from the MAFIA calculations for one-
cell cavities. The magnetic �eld is calculated near the cavity surface (0:25 from
the surface on the dual MAFIA mesh) for a transverse voltage of 5 MV/m. G1

is calculated without the end shorting plates from the copper Q-values (G1 =
16:4 � 10�3 
 QCu).

The parameter G1 does not signi�cantly depend on the iris radius. It is
about 250
 for the cavities of shape A and about 230
 for shape B (without
the end shorting plates). For a transverse voltage of 5 MV/m the maximum of
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Figure 16: Maximum magnetic �eld near the surface for all considered cavity
shapes at a transverse voltage of 5 MV/m.

the absolute magnetic �eld Bmax = max
���fB (r; � = 90Æ; z)

��� has been calculated
with the MAFIA post-processor. The results for the di�erent cavity shapes are
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shown in Fig. 16. Since the magnetic �eld is allocated in MAFIA to a dual
mesh the peak �eld magnetic �eld Bmax is found near the surface about 0:25 mm
away from the surface. The magnetic �eld at the surface will be higher than
calculated. To estimate the di�erence between the calculated �eld Bmax and the
the surface �eld the radial dependence of

���fB (r; � = 90Æ; z � Lcell=2)
��� has been

investigated for the cavity of shape A15 (see Fig. 17). Using the local slope of

the function
���fB (r; � = 90Æ; z � Lcell=2)

��� near r = 14:5 mm the surface magnetic

�eld can be estimated to be 0:093 T for the cavity of shape A15 at 5 MV/m
transverse voltage. That is about 7 % more than the value quoted in table 3.
Nevertheless, the values quoted in table 3 and displayed in Fig. 16 are useful to
compare the di�erent cavity shapes since the same mesh step size of 0:5 mm have
been used for all calculations.
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Figure 17: Radial dependence of the magnetic �eld in the cavity A15. The
quantity

���fB (r; � = 90Æ; z � Lcell=2)
��� is plotted for r from 0 to 15 mm, i.e. from

the cavity axis to the cavity iris. The value for r = 15 mm is not calculated since
the magnetic �eld is allocated to the dual MAFIA mesh.

The dispersion curves of the �rst passband of the cavities of shape A are
shown in Fig. 14, while the corresponding curves for the cavities of shape B are
shown in Fig. 18. Using this data the relative separation of the �-mode to the
11�=12-mode has been calculated. The results are shown in Fig. 19 for the shapes
A, B and C. The mode separation goes from negative to positive at about 17 mm
iris radius and thus indicates two potential regions of iris selection (at or below

21



15 mm or above 18 mm). The relative mode separation exceeds the value of
3 � 10�4 only for the cavities of shape A13, A19, A25, B19 and C15. Therefore
only these cavities will have clearly separated modes at room temperature as
have been previously calculated. The relevance of the mode separation (� from
11�=12-mode) for the tuning of the cavities should be studied with Copper and
Niobium model cavities.
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Figure 18: Dispersion curve of the �rst dipole passband of the cavities of shape
B15, B18 and B19.
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Figure 19: Relative separation Æf=f� of the �-mode and the 11�=12-mode for all
considered cavity shapes.
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The design of an end-cell is investigated for the cavities of shape A15 and
B19 in the next section, while multi-cell cavities are considered in section 6. As
a reference for those sections it is interesting to look at the longitudinal electric
�eld as a function of the z-position for a �xed radius. The electric �eld fEz(r =
1 cm; � = 90Æ; z) is shown in Fig. 20 for the case of the �-mode of cavity shape
C15 (Fig.11,top left graph ). The electric �eld strength (in V/m) corresponds to
the case of a transverse voltage of 5 MV/m, or

VL = (r
!

c
) VT = 4:087 MV=m (22)

for the longitudinal voltage at r = 1 cm (! = 2� 3:9 GHz), i.e. the integral of the
electric �eld according to Eqn. 11. Note that the transit time factor is included
in VT and VL.
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Figure 20: Longitudinal electric �eld (10 mm o� axis) of the �-mode of cavity
shape C15 at 5 MV/m transverse voltage.
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5 End-cell Design

The results presented in the previous section are valid for in�nite periodic struc-
tures or single cell cavities with shorting plates at both ends. If a beam pipe is
connected to the cavity the �eld will be distorted resulting in a change in (R=Q)0,
and the frequency is shifted. The goal is to re-tune the cavity by a variation of
the end-cell geometry. The easiest way is to adjust the equator radius of the
cell. The �eld in the end-cell will still be distorted but the �eld 
atness of the
other cells of the structure are hardly e�ected. Two di�erent cavity shapes are
considered: A15 and B19. While the cavity A15 can be easily re-tuned by a
small change of the end-cell geometry it is much harder to re-tune the cavity of
shape B19. Nevertheless it is interesting to study the e�ects of the end-cell for
that somewhat extreme case. The re-tuning of cavity C15 is similar to A15. Ap-
pendix D shows an alternative end-cell design for cavity C15 which is especially
well suited to mount a coupler.

The e�ects of the end-cells is studied by a one and one-half cell cavity geom-
etry with a beam pipe as shown in Fig. 21 for a cavity of shape A15. At the
left boundary of the cavity an electric boundary condition, corresponding to a
shorting plate, is imposed for the numerical calculations with the MAFIA code.
The results may also be interpreted as �elds in a 3-cell cavity with a symmetry
plane in the mid-cell. The values calculated for the transverse voltage, (R=Q)0

and the peak magnetic �eld are based on that symmetry condition. The longitu-
dinal electric �eld at a �xed radius of the detuned cavity is shown in Fig. 22. The
frequency of the detuned cavity is shifted by 13:6 MHz (shape A15) compared
to the one-cell cavity with shorting plates. Within the resolution of the MAFIA
grid the cavity is tuned back by a change of 0:4 mm of the equator radius of the
end-cell of shape A15. The electric �eld and the longitudinal component of the
electric �eld is shown in Fig. 23 and Fig. 24. The results for the design parameter
are summarized in table 4.

A15 b /mm f /GHz (R=Q)0=cell /
 G1 /
 Bmax/T
periodic 47:19 3:8987 27:5 247 0:087
detuned 47:19 3:9123 24:3 249 0:116
tuned 47:59 3:8995 25:7 249 0:108

Table 4: MAFIA results for the cavity of shape A15. The case of a cavity with
shorting plates and 3-cell cavities without and with tuned end-cells are presented.
The magnetic �eld is calculated near the cavity surface (0:25 from the surface on
the dual MAFIA mesh) for a transverse voltage of 5 MV/m.

The �eld of an end-cell reached only about 70 % of the �eld of a mid-cell, even
after tuning (see Fig. 24). Therefore (R=Q)0=cell is smaller and Bmax larger for a
3-cell cavity compared to the periodic case. This result is less relevant for a 13-
cell cavity since the relative contribution of the end-cells to the mean transverse
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voltage is signi�cantly smaller, see the next section about multi-cell cavities. The
�eld of the end-cell is almost 100 % of the �eld of a mid-cell for the alternative
end-cell design for cavity C15 (see appendix D).

Cavity of shape A15 with an detuned end-cell.
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Figure 21: Cavity of shape A15 with an detuned end-cell (f = 3:9123 GHz). The
electric �eld of the �-mode is shown.
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Figure 22: Cavity of shape A15 with a detuned end-cell (f = 3:9123 GHz). The
longitudinal electric �eld of the �-mode at 5 MV/m transverse voltage is show
at a �xed radius of 1 cm.
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Cavity of shape A15 with a tuned end-cell.

0. 0.1155.760E-02

0.

4.759E-02

2.380E-02

Figure 23: Cavity of shape A15 with a tuned end-cell (f = 3:8995 GHz). The
electric �eld of the �-mode is shown.
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Figure 24: Cavity of shape A15 with a tuned end-cell (f = 3:8995 GHz). The
longitudinal electric �eld of the �-mode at 5 MV/m transverse voltage is show
at a �xed radius of 1 cm.
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For a cavity of shape B19 the �eld of the end cell is signi�cantly distorted due
to the beam pipe. Fig. 25 shows the electric �eld of the distorted �-mode. The
frequency of the detuned cavity is shifted by 52:6 MHz (shape B19) compared to
the one-cell cavity with shorting plates. The cavity is tuned back by a change
of 9:68 mm of the equator radius of the end-cell of shape B19. The electric �eld
of the end cell is still distorted, see Fig. 26. The results for the cavity of shape
B19 are summarized in table 5. From Fig. 27 it is obvious that the end-cell does
practically not contribute to the �eld integral (see Eqn. (11)) and therefore to
the kick. But this end-cell guarantees a good matching between the mid-cells and
the beam pipe which will be shown in the next section for a 7-cell cavity. For the
tuned 3-cell cavity one obtains (R=Q)0 = 15:69
, which results in a very small
value per cell since the end-cells do not contribute.
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Figure 25: Cavity of shape B19 with a detuned end-cell (f = 3:8398 GHz). The
electric �eld of the distorted �-mode is shown.

B19 b /mm f /GHz (R=Q)0=cell /
 G1 /
 Bmax/T
periodic 46:18 3:8924 18:6 231 0:096
detuned 46:18 3:8398 10:5 236 0:186
tuned 36:5 3:8881 5:23 246 0:245

Table 5: MAFIA results for the cavity of shape B19. The case of a cavity with
shorting plates and 3-cell cavities without and with tuned end-cells are presented.
The magnetic �eld is calculated near the cavity surface (0:25 from the surface on
the dual MAFIA mesh) for a transverse voltage of 5 MV/m.
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Cavity of shape B19 with a tuned end-cell.
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Figure 26: Cavity of shape B19 with a tuned end-cell (f = 3:8881 GHz). The
electric �eld of the �-mode is shown.
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Figure 27: Cavity of shape B19 with a tuned end-cell (f = 3:8881 GHz). The
longitudinal electric �eld of the �-mode at 5 MV/m transverse voltage is show
at a �xed radius of 1 cm.
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6 Multi-cell Results

The results from the previous section are now applied to a 7-cell and 13-cell of
shape A15, a 7-cell cavity of shape B19 and a 13-cell cavity of shape C15. The
goal is to investigate the �eld 
atness of the �-mode and to determine the basic
design parameters for these multi-cell cavities. Like in the previous section it is
suÆcient to study one half of the cavity with respect to a symmetry plane in the
middle of the cavity (see Fig. 30). All modes are found if electric (E) or magnetic
(M) boundary conditions are imposed at that symmetry plane using the MAFIA
solver [2].

In a periodic structure the phase advance per cell ' is uniquely de�ned accord-
ing to Eqn. 20. In a cavity with a �nite number of cells a local phase advanced
per cell can be de�ned. Using the following relations

fE (1)
(r; z) exp(i') = fE (1)

(r; z + Lcell)fE (1)
(r; z) exp(�i') = fE (1)

(r; z � Lcell)

2 fE (1)
(r; z) cos(') = fE (1)

(r; z + Lcell) + fE (1)
(r; z � Lcell); (23)

which are strictly valid for a periodic structure, one can de�ne a phase advance
per cell at position z [9] as

'(z) = arccos

 
E(1)
z (r; z + Lcell) + E(1)

z (r; z � Lcell)

2 E(1)
z (r; z)

!
; (24)

where E(1)
z (r; z) is the longitudinal electric �eld as calculated by MAFIA [2]. In

the center cells of the cavities the above de�ned phase advance '(z) is almost
independent from the longitudinal position z, which is demonstrated for a 7-cell
cavity in the following section.

6.1 7-cell and 13-cell cavities of shape A15

The longitudinal electric �eld of the �-mode is shown in Fig. 28 for a 7-cell cavity
of shape A15. The corresponding plot of the electric �eld is shown in Fig. 30,
while the MAFIA results for the design parameter are summarized in table 6.
Furthermore plots of the modes with the lowest frequency of the �rst dipole
passband are show in Fig. 31 to Fig. 36. The frequency, (R=Q)0, G1 of each mode
are given in the caption below each plot. Furthermore the boundary conditions
(b.cond.) are mentioned. E.g. ME means magnetic (M) boundary conditions at
the left boundary (symmetry plane) and electric (E) at the end of the beam pipe.
The phase advance per cell is 180Æ (or �) for the mode shown in Fig. 30, while
the phase advance per cell is 148Æ, 120Æ . . . 14Æ for the modes shown in Fig. 31 to
Fig. 36. The frequencies of these modes are shown together with the dispersion
curve of the �rst dipole passband of cavity A15 in Fig. 37. The phase advance
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of the modes has been calculated according to Eqn. 24 for z = 0:2 � Lcell. Fig. 29
shows the local phase advance '(z) of the �-mode. The phase advance per cell
for that mode is actually 172Æ in the center cell (jzj < Lcell=2). The in
uence
of the end cells is clearly visible in the graph but the local phase advance '(z)
is remarkably constant within the three center cells (jzj < 1:5 � Lcell. The local
phase advance is singular at the zeros of the longitudinal �eld E(1)

z (r; z). The
quoted value for the phase advance of the modes in Fig. 31 to Fig. 36 is always
the local phase advance of the center cell (z = 0:2 � Lcell, some modes have zero
electric �eld at z = 0), well away from any singularity.

A15 b /mm f /GHz (R=Q)0=cell /
 G1 /
 Bmax/T
periodic 47:19 3:8987 27:5 247 0:087
7-cell 47:19 (47:59) 3:8987 26:5 248 0:098
13-cell 47:19 (47:59) 3:8988 26:8 247 0:097

Table 6: MAFIA results for the cavity of shape A15. The case of a cavity
with shorting plates, a 7-cell cavity and a 13-cell cavity with tuned end-cells are
presented. The magnetic �eld is calculated near the cavity surface (0:25 from
the surface on the dual MAFIA mesh) for a transverse voltage of 5 MV/m. The
radius b is given for a mid-(end-)cell.
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Figure 28: 7-cell cavity of shape A15 with a tuned end-cell (f = 3:8987 GHz).
The longitudinal electric �eld of the �-mode at 5 MV/m transverse voltage is
show at a �xed radius of 1 cm.
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Figure 29: 7-cell cavity of shape A15 with a tuned end-cell. The solid line shows
the local phase advance '(z) of the �-mode (f = 3:8987 GHz), while the dashed
line presents the longitudinal electric �eld at a �xed radius of 1 cm in arbitrary
units. The symmetry condition at z = 0 has been used to supplement the electric
�eld values for z < 0.
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Figure 30: 7-cell cavity of shape A15, electric �eld of the mode f = 3:8987 GHz
(b.cond. EE), (R=Q)0 = 185:5 
, G1 = 248 
; phase advance ' = 172Æ.
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Figure 31: 7-cell cavity of shape A15, electric �eld of the mode f = 3:9029 GHz
(b.cond. ME), (R=Q)0 = 0:02 
, G1 = 249 
; phase advance ' = 148Æ.
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Figure 32: 7-cell cavity of shape A15, electric �eld of the mode f = 3:9146 GHz
(b.cond. EE), (R=Q)0 = 1:9 
, G1 = 251 
; phase advance ' = 120Æ.
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Figure 33: 7-cell cavity of shape A15, electric �eld of the mode f = 3:9360 GHz
(b.cond. ME), (R=Q)0 = 0:14 
, G1 = 256 
; phase advance ' = 91Æ.
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Figure 34: 7-cell cavity of shape A15, electric �eld of the mode f = 3:9696 GHz
(b.cond. EE), (R=Q)0 = 1:2 
, G1 = 264 
; phase advance ' = 64Æ.

0. 0.1929.600E-02

0.

4.759E-02

2.380E-02

Figure 35: 7-cell cavity of shape A15, electric �eld of the mode f = 4:0173 GHz
(b.cond. ME), (R=Q)0 = 0:49 
, G1 = 279 
; phase advance ' = 37Æ.
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Figure 36: 7-cell cavity of shape A15, electric �eld of the mode f = 4:0735 GHz
(b.cond. EE), (R=Q)0 = 0:39 
, G1 = 311 
; phase advance ' = 14Æ.
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Figure 37: Dispersion curve of the �rst dipole passband of a cavity of shape A15:
the solid line shows the results obtained for an in�nite periodic structure (see also
Fig. 14), while the points marked with diamonds represents the modes obtained
from a 7-cell cavity using the calculated local phase advance of the center cell as
an abscissa.

The electric �eld of the �-mode of a 13-cell cavity of shape A15 is shown
in Fig. 39. The longitudinal component is shown separately in Fig. 38 to demon-
strate the achieved �eld-
atness.

The frequency of the 12�=13-mode (often also called the � � 1-mode) di�ers
only by 1 MHz (or �2:56 � 10�4) from the �-mode frequency. The electric �eld
of that mode is show in Fig. 40. The tuning of the �-mode of a warm Niobium
cavity seems to be diÆcult since the �eld distribution of the ��1-mode is similar
to the �-mode in the four cells at the ends of cavity and the frequencies di�er
only by 1 MHz. Further plots of the other modes of a 13-cell cavity are not shown
since the 7-cell results already demonstrate the �eld pattern in principle.
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Figure 38: 13-cell cavity of shape A15 with a tuned end-cell (f = 3:8987 GHz).
The longitudinal electric �eld of the �-mode at 5 MV/m transverse voltage is
show at a �xed radius of 1 cm.
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Figure 39: 13-cell cavity of shape A15, electric �eld of the �-mode f = 3:8988 GHz
(b.cond. EE), (R=Q)0 = 349:1 
, G1 = 247 
.
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Figure 40: 13-cell cavity of shape A15, electric �eld of the mode f = 3:8998 GHz
(b.cond. EE), (R=Q)0 = 0:01 
, G1 = 247 
; corresponds to a 12�=13-mode (or
"� � 1-mode").
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6.2 7-cell cavity of shape B19

Furthermore, results for a 7-cell cavity of shape B19 are presented. This type
of cavity with strongly coupled cells require a signi�cant change of the geometry
of the end-cell to re-tune it. Nevertheless a good �eld-
atness of the �-mode can
be achieved. A plot of the electric �eld of that mode is shown in Fig. 47 and
the main design parameter are summarized in table 7. The longitudinal electric
�eld is shown in Fig. 41 to demonstrated the �eld-
atness in the inner cells. All
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Figure 41: 7-cell cavity of shape B19 with a tuned end-cell (f = 3:8912 GHz).
The longitudinal electric �eld of the �-mode at 5 MV/m transverse voltage is
show at a �xed radius of 1 cm.

modes of the �rst dipole mode passband and the 0-mode of the second passband
are show in Fig. 42 to Fig. 48. The frequency, (R=Q)0, G1 of each mode can be
found in the caption of the �gures. There are only six modes in the �rst dipole
passband. Some modes look more like TE-modes while others look more like
TM-modes.
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B19 b /mm f /GHz (R=Q)0=cell /
 G1 /
 Bmax/T
periodic 46:18 3:8924 18:6 231 0:096
7-cell 46:18 (36:5) 3:8911 12:7 235 0:133

Table 7: MAFIA results for the cavity of shape B19. The case of a cavity with
shorting plates and a 7-cell cavities with tuned end-cells are presented. The value
of (R=Q)0=cell is smaller for the 7-cell cavities compared to the periodic case since
the end-cell do not contribute to the transverse voltage. The magnetic �eld is
calculated near the cavity surface (0:25 from the surface on the dual MAFIA
mesh) for a transverse voltage of 5 MV/m.
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Figure 42: 7-cell cavity of shape B19, electric �eld of the mode f = 3:6483 GHz
(b.cond. ME), (R=Q)0 = 0:01 
, G1 = 242 
.
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Figure 43: 7-cell cavity of shape B19, electric �eld of the mode f = 3:7109 GHz
(b.cond. EE), (R=Q)0 = 0:58 
, G1 = 245 
.
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Figure 44: 7-cell cavity of shape B19, electric �eld of the mode f = 3:7857 GHz
(b.cond. ME), (R=Q)0 = 0:05 
, G1 = 245 
.
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Figure 45: 7-cell cavity of shape B19, electric �eld of the mode f = 3:8453 GHz
(b.cond. EE), (R=Q)0 = 0:95 
, G1 = 243 
.
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Figure 46: 7-cell cavity of shape B19, electric �eld of the mode f = 3:8792 GHz
(b.cond. ME), (R=Q)0 = 0:26 
, G1 = 240 
.
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Figure 47: 7-cell cavity of shape B19, electric �eld of the mode f = 3:8911 GHz
(b.cond. EE), (R=Q)0 = 89:0 
, G1 = 235 
 (�-mode).
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Figure 48: 7-cell cavity of shape B19, electric �eld of the mode f = 4:2387 GHz
(b.cond. EE), (R=Q)0 = 0:08 
, G1 = 328 
. First mode from the second
passband.

6.3 13-cell cavity of shape C15

The �eld pattern of a cavity of shape C15 are similar to the pattern obtained for
a A15 cavity. The electric �eld of the �-mode of a 13-cell cavity of shape C15 is
shown in Fig. 50 and the main design parameter are summarized in table 8. The
end-cell has been tuned by an increase of the equator radius by 0:37 mm. The
longitudinal component of the electric �eld 10 mm o� axis is shown separately in
Fig. 49 to demonstrate the achieved �eld-
atness. A complete list of all modes
of the �rst dipole passband can be found in appendix C. The frequency of the
�� 1-mode di�ers by 1.2 MHz (or �3:04 � 10�4) from the �-mode frequency. The
tuning of the �-mode of a warm Niobium cavity seems to be still diÆcult but
probably just possible. The selection of the C15 cavity shape seems best as the
modi�cation of the end cell radius is minimal (compared to B19) and the modes of
the passband behave in a predictable way (all modes are TM-like modes). Results
for the cavity C15 with an alternative end-cell design are shown in appendix D.

The phase advance of each mode has been calculated according to Eqn. 24
in the center cell for z = 0:2 � Lcell. The frequencies of all modes from the �rst
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dipole passband are shown together with the dispersion curve of the �rst dipole
passband of cavity C15 in Fig. 51.

C15 b /mm f /GHz (R=Q)0=cell /
 G1 /
 Bmax/T
periodic 47:18 3:8997 27:3 228 0:073
13-cell 47:18 (47:55) 3:8998 27:0 228 0:077

Table 8: MAFIA results for the cavity of shape C15. The case of a cavity with
shorting plates, and a 13-cell cavity with tuned end-cells are presented. The
magnetic �eld is calculated near the cavity surface (0:25 from the surface on the
dual MAFIA mesh) for a transverse voltage of 5 MV/m. The radius b is given
for a mid-(end-)cell.
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Figure 49: 13-cell cavity of shape C15 with a tuned end-cell (f = 3:8998 GHz).
The longitudinal electric �eld of the �-mode at 5 MV/m transverse voltage is
show at a �xed radius of 1 cm.
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Figure 50: 13-cell cavity of shape C15, electric �eld of the mode f = 3:8998 GHz
(b.cond. EE), (R=Q)0 = 351 
, G1 = 228 
; phase advance ' = 177Æ (�-mode).
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7 Equivalent-CircuitModeling of Transverse-Mode

Structures

7.1 Introduction

From the earliest days of microwave technology lumped equivalent circuit models
for extended resonant structures have been used to de�ne relevant parameters
and aid intuition in device design [10]. The modeling of accelerator structures
by chains of coupled lumped-circuit tanks [11, 12] has become an essential tool
of linac design [13]. For superconducting linacs short, standing-wave structures
operating in the �-mode have become the norm [14]. In the realization of these
systems, equivalent circuitmodels are employed in modeling power 
ow and struc-
ture �lling [16, 17], and most importantly they are used in tuning the individual
cells of the �-mode structure to improve cell-to-cell �eld 
atness and to minimize
peak �elds [14, 18]. This tuning process involves bead pulling to measure a �eld
pro�le and from this calculation of a vector of corrections to cell frequencies.

In making the step from superconducting linac to a superconducting de
ection
system for particle separation many issues are involved. These are discussed in a
previous paper [1]. and the argument is made to retain the architecture of short,
�-mode de
ectors. Because in the transverse modes the peak magnetic �eld is
the limiting factor in the achievable de
ecting gradient, tuning will remain an
essential step in producing structures with good performance. Therefore it is
necessary to know about any candidate de
ecting structure design how its �elds
can be well enough understood for bead measurements to be reliably interpreted
and accurately enough modeled to allow a reasonably eÆcient tuning procedure.

In an accelerating structure the TE-like modes of the de
ecting band lie lower
in frequency than the TM-like modes, but in the de
ecting structure with �-mode
length cells, the opposite is true, and the TM-like band is the lower of the two. In
the strongly-coupled regime, the de
ection band is of the forward-wave type, with
the �-mode at the high-frequency end of the band, and in the weakly-coupled
regime the de
ection band has a backward wave, and the �-mode is the lowest
frequency in the TM band [1]. The progression from one regime to the other is
illustrated in Figure 14 above. Cells of shape A13 and A15 are of backward wave
type; and cells of shape A19 and A25 are of forward wave type. Cell A17 though
of forward wave type is near to the dividing line.

7.2 Equivalent-Circuit Modeling of the Forward-Wave De-


ection Structure

Appendix B.1 of this document shows arrow plots of E-�eld for the lowest 8
modes of a uniform 7-cell structure with beam pipes the same diameter as the
cell irises. The cells in this structure have the shape B19. Ma�a orders modes by
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frequency, and the modes are classed by the boundary conditions and numbered
by frequency. Thus the lowest mode, Figure 58, has a magnetic boundary on the
left, an electric boundary on the right, is the �rst such mode, and is designated
ME-1. The lowest two modes, Figures 58 and 59 , appear to have a transverse
electric character. The second two of the modes, Figures 60 and 61, have both
transverse and longitudinal electric �elds. The third pair of the modes, Figures 62
and 63, have predominately longitudinal electric �elds in the cells and transverse
�elds in the irises, which is characteristic of TM modes with large phase shift
per cell. And in fact the sixth mode, EE-3, is the �-like mode appropriate for
particle de
ection.

The mode illustrated in Figure 64 is one of a pair of beam-pipe modes not
clearly a part of the TEM bands. The mode of Figure 65 can be taken as the
lowest mode of the second TEM passband which has eight modes. The frequencies
of the �rst seven TEM modes are given in Appendix B.2. Higher modes in this
passband leak into the beam pipe and so are not strictly characteristic of the
structure.

It is diÆcult to understand the complicated structure of the modes of the �rst
passband of this structure in the same terms that apply to a single, isolated band,
and the models that have been applied to accelerator structures do not work for
this case. A model for the de
ection modes of the NLC waveguide by Bane and
Gluckstern [6] can, however, be successfully applied.

This model includes two chains of coupled resonant circuits that are inter
cross coupled at each iris. One of these chains models the coupled TM modes of
the structure, and the other the coupled TE modes. In addition, the two chains
are coupled by means of the �elds associated with the iris which are common to
both TM and TE branches.

The circuit equation for the nth cell of this model is written in the author's
notation:

(x� �) fm � �

2
fm+1 � �

2
fm�1 = �

p
��̂

2
f̂m+1 +

p
��̂

2
f̂m�1

(25)

(x̂� �) f̂m � �̂

2
f̂m+1 � �̂

2
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p
��̂

2
fm+1 �

p
��̂

2
fm�1
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� = 1

�2
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�̂2
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; 1

2�
p

L̂ Ĉ

�; �̂ intra-chain coupling factorsp
��̂ inter-chain coupling factor
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The quantity �c is the unloaded frequency of the model cell with capacitance C
and inductance L.

The left-hand side of these equations are the circuit equations for two chains
of resonators. In the right-hand sides the cross coupling between the chains is
introduced. The demonstration that the cross-coupling factor must have the form
in these equations is the authors major result. This paper deals with a structure
that is both tapered and detuned for the de
ection modes, and the x and � and
their hatted equivalents vary along the cavity chain and so are indexed along
with the amplitudes. For this application it is more convenient to treat these
quantities as constants and enter adjustments to their value explicitly into the
system matrix.

In Appendix B.3 below the system matrix is written down from Equation 25
for a 7-cell structure terminated in whole cells, following Bane and Gluckstern's
prescription for the boundary conditions. Both chains are made antisymmetric
with respect to the iris at each end of the structure. The quantities 
 and 
̂
are corrections to the frequency of the end cells for the impedance of the beam
pipe [14] which is connected at these last irises. Written in this form the gamma
are related to cell frequency as indicated in Equation 24. MAFIA simulations
on a single cell of B19 shape shows that the beam pipe raises the TM mode in
the cell by something just under 70 MHz and lowers TE mode by about 3 times
that amount. This provides estimates for the gamma which are also shown in
Equation 26.

��

�
= �


2
� :0175 and ��̂ � �3�� or 
̂ = �3 


s
x̂

x
(26)

The paper also shows that for the double chain equations in Equation 25, the
dispersion curve is given by the quadratic:

�1 = b+
p
b2 � c where b =

1

2
(x+ x̂+ (�̂� �) cos�)

(27)

�2 = b�
p
b2 � c and where c = xx̂� ��̂+ (x�̂� x̂�) cos �

Here � is the phase shift per cell and as above � = 1=�2, the two branches
of the solution being indicated by the superscripts. These dispersion curves can
be found in MAFIA from single-cavity calculations with periodic boundary con-
ditions. If frequencies are found for the lowest two modes with dipole symmetry
at two values of the phase shift, say 0 and 180 degrees, then Equation 27 can be
solved for values for the four model constants,x and � both hatted and unhatted.
There are four such solutions. Two are written below. The other two are the
same with branches 1 and 2 interchanged.
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Solution 1 Solution 2
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�
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1

2

�
�20 � �2�

�
In these solutions a quantity like �20 is one over the square of the 0-mode frequency
of the second branch. In writing these solutions we have taken the �rst branch to
be of lower frequency and associated with the unhatted variables. It is somewhat
confusing to see two solutions, but note that in the second solution the value
of � will be positive only for the backward wave cases. The form of Equation
25 requires that the model constants be positive, so in dealing with the forward
wave case, Solution 1 must be chosen.

MAFIA simulation of the dispersion curve for shape B19 gives the following
results.

�10 = 3:618490 x = 0:0610025

�1� = 3:894703 x̂ = 0:0579295

�20 = 4:222761 � = 0:00492265 (29)

�2� = 5:032554 �̂ = 0:0184453

With these values for the model constants together with values for the beam pipe
correction given in Equation 26, the eigenvalues and eigenvectors of the matrix
B.3 can be found. The result is shown in Appendix B.4. The 14 modes are
ordered by frequency decreasing left to right, are interpreted as separated into
upper and lower bands with modes 14-7 forming the upper band and modes 6-1
in the lower band. Each mode is presented as a column, the frequency eigenvalue
listed �rst, the eigenvector of the unhatted variables below the frequency, and the
eigenvalue of the hatted variables below that. The unhatted and hatted variables
are referred to as of TM and TE type respectively because in weak-coupled cases,
this identi�cation can be made. As is clear from the form of the system matrix,
Appendix B.3, the column eigenvectors as calculated are 14 values in length,
normalized, with the odd numbered terms giving the values of the unhatted and
the even terms the hatted variables. For display the odd and even numbered
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values have been separated and separately renormalized. The norm that is given
for each type is the divisor required for that renormalization. Thus the original
eigenvector can be reconstituted by putting the TM variables times the TM norm
in the odd numbered positions and the TE variables times the TE norm in the
even positions in a column of 14. For each mode the sum of the squares of the
TM and TE norms is unity, and the relative values give an idea of the relative
makeup of the mode.

Looking at these TM and TE norms for the �rst six modes of the solution,
one can see that modes 1 and 2 have TE norm greater than 0.9, modes 3 and
4 have TM and TE norms approximately equal, and modes 5 and 6 have a TM
norm greater than 0.9. This is consistent with the qualitative impressions drawn
from the arrow plots that are discussed above.

In order to quantitatively compare the results of the model with the MAFIA
simulation that is illustrated in Appendix B.1, it is necessary to extract eigenvec-
tors from the MAFIA �eld tables. This can be done in a rather ad hoc manner
as shown in Appendix B.2. Variables are de�ned for each cell by means of inte-
gration paths. The path for the TM variable integrates the z-component of the
electric �eld parallel to the axis at the radius of the iris. The path for the TE
variable integrates the radial component of the electric �eld at the center of the
cell from the axis to the outer wall. Both of these paths lie at the zero of the
azimuth.

The values of the integrals, normalized and re
ected according to the sym-
metry of the boundary at the center of the structure, are shown in Appendix B.2
together with the frequency eigenvalues found by MAFIA. The method that is
used here does not give values for the norms, but the normalized eigenvectors can
be compared with those found from the model solution listed in Appendix B.4.
This is done for the TM variables in Figure 52 for the TE variables in Figure
53. Here the MAFIA-derived values for modes 1-7 are plotted against the values
calculated from the two-chain model. Overall signs of the MAFIA eigenvectors
are not signi�cant and have been adjusted to match the model solution.

It is clear that the eigenvectors of the model solution are strongly correlated
with the MAFIA simulation. The frequencies are accurately predicted by the
model. The frequencies of modes 1-6 are compared in Figure 54, and the values
are given in Appendix B.2 and B.4.

7.3 Discussion

It is clear that the two-chain model accounts very well for the structure of the
modes in the lower TEM band in the strongly coupled case, and it has consid-
erable explanatory and predictive power as well. It is possible to claim that a
satisfactory model for the strongly-coupled de
ection structure is available. Two
questions remaining are: what is there still to do in this area of modeling; and is
the strongly coupled be preferred to the weakly coupled structure?
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Figure 52: MAFIA-Model Correlation, 7-cell cavity of shape B19, TM-band,
TM-variables.
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There are some modeling issues left. The �rst is the structure end-cell tuning
for �eld 
atness. This is studied by means of MAFIA simulations in Section 6.2
of this paper with the result that with a large increase in end-cell frequency, it
is possible to arrive at nearly 
at de
ection voltage and magnetic surface �eld
in the body cells. The price of this is that the de
ection voltage of the end cell
is greatly reduced and the shunt impedance of the structure is lowered. Studies
with the model show that something like a 
at �-mode can be produced in the
strongly-coupled case, but only with signi�cant tuning of the body cells as well
as the end cells. This situation appears to be a characteristic of de
ection mode
structures since it is seen also in weakly-coupled structures. It is likely that the
cure for this is worse than the disease, and that a 
at �-mode in the sense used
in talking about accelerator structures is not a practical possibility.

There is more work to do in this area of structure design. More work also
in getting a satisfactory procedure for �nding appropriate gamma values for the
beam pipe correction, and more work in setting up the model to be used in
tuning [14]. Trials with the two-chain model have shown that no problems of
a practical mathematical kind stand in the way of structure tuning. It seems
likely that the process can be carried out of making bead measurements of some
structure quantity, calculating from those measurements a set of cell corrections,
and correcting one or more cell. A repetition of this process can adjust this
structure quantity to have any pro�le that is desired. The problem remains of
relating the quantity that is adjusted in this process to the quantity that you want
to adjust. Suppose that the goal is to tune a structure so that the peak magnetic
�eld on each iris is the same. This is quite likely to be the most useful criterion
to use in a superconducting de
ector. Now some quantity must be selected to

48



measure in order to have the information needed to do the tuning. Choose for
example to measure the transverse magnetic �eld along the axis with a metal
bead. For the pure TM �-mode this quantity will have a �xed relation to the
peak magnetic �eld that can be determined from MAFIA simulation. However,
there will be a small component of TE 5�=6 mode (according to the model - see
Appendix B.4, mode 6) which will have a transverse electric �eld on axis that is
di�erent in each cell. The bead will measure the quantity (E2�(cB)2=2), and this
is what is 
attened in the tuning, distorting the 
atness of peak magnetic �eld.
Problems of this kind can be overcome, but a lot of simulation work together
with structure measurement is required. Developing a workable and accurate
tuning method for the strongly-coupled transverse mode structure will require
considerable e�ort.

Now what are the advantages of the strongly-coupled structure and should it
be used for this application? The B19 shape has about twice the bandwidth as
the C15 shape, and a larger iris diameter. However it has a lower (r=Q)0 and a
signi�cantly higher normalized peak magnetic �eld, and we have just argued that
it has a longer development time. Issues of multipacting have not been evaluated
but may be important. The 
atness criterion for the �-mode [12, 15] varies
inversely as the bandwidth and directly as the square of the number of cells in
the structure. Therefore the greater bandwidth is worth the di�erence between a
13 cell and 9 cell structure. This is an advantage, but it is a not a make-or-break
one. Further, the �nal choice of the number of cells in the structure can come
after the �rst model structures have been built and does not a�ect the design of
the basic parts or the tooling, whereas the choice of the strongly-coupled structure
is much more diÆcult to retreat from. If it were a very large system that was
being planned here the development e�ort of the new structure type would not
bulk so large in the program. Since it is a small system, it is attractive to keep
the development cost as small as possible. It is not clear at this time whether
the larger aperture is an advantage, but it is clear that the higher (r=Q)0 is an
advantage from a system and operating point of view, and it is clear that the
peak magnetic �eld is an important consideration. The conclusion is, then, that
the technical advantages of the strongly-coupled structure do not outweigh the
disadvantages in this application, and it is not worth the additional risk to the
project.

7.4 Equivalent-Circuit Modeling of the Backward-Wave

De
ection Structure

7.4.1 The Two-Chain Model

The two-chain model can be applied to the backward-wave case with the same
procedure that is described for the forward-wave case above. For this study a
13-cell structure of the B15 shape is taken. This structure is not uniform, but
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instead has end cells that have been lowered in frequency by increasing the outer
cavity radius from 47.2 to 47.627 mm. This change from the body cavity shape
is made by changing the circle with radius re, see Figure 6 above, to an oblate
ellipse leaving point r2; z2 �xed. Arrow plots for the modes of this structure are
not discernibly di�erent than those for he C15 structure shown in Appendix C.

As before the 4 constants of the model are determined from single-cell calcu-
lations, but for this case the four frequencies that are used are the �, 11�=12, and
0 modes of the TM band and the 0 mode of the TE band. That this gives a very
good representation of the dispersion curves calculated by MAFIA is shown in
Figure 55. It is to be expected that the greatest deviation of the model dispersion
curves from the MAFIA simulation will occur at the highest frequencies. The
model does not include the frequency dependence of the coupling. In addition,
the main region of concern here is the TM band, so it is reasonable to replace
the � mode of the TE band with another �t point.
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Figure 55: Adjusted Dispersion Curves, 13-Cell B15 Shape.

Using these four points an adjusted value for the TE �-mode frequency is
found, and Solution 2 in Equation 28 is used to determine the four model con-
stants. These are:

x = 0:0628238

x̂ = 0:0460754

� = 0:00278398 (30)

�̂ = 0:00850956


 = 0:027778


̂ = �0:06
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The gamma and the gamma hat in this list were set originally to estimated values,
gamma to 0.03 and gamma hat to -0.06 and the model was developed and solved.
Recall that this structure has tuned end cells, and this tuning as well as the beam
pipe correction enter the model via the gammas. Later the value for gamma was
adjusted a small amount to set the frequency of mode 1 to match the MAFIA
value. This was done for convenience in comparing the rest of the frequencies in
the band. The gamma hat was observed to have almost no e�ect on the solution
and remains where it was originally set. We should say, therefore that the model
has �ve constants. More needs to be done to understand what the values of these
corrections should be, particularly for the tuned end cells.

With these constants and a system matrix like that in Appendix B.3 but
expanded from 14 to 26 equations, the frequency eigenvalues and the eigenvectors
can be found and compared to eigenvectors extracted from the MAFIA �eld tables
by the integrations described in Appendix B.2. Only a part of this material is
presented here. Figure 56 shows a correlation plot of the TM eigenvectors in the
TM band. The agreement of the model with the MAFIA simulation is very good.
The plot for the TE vectors is not included here, but it shows good agreement
also. Appendix B.5 compares the model and the MAFIA eigenvectors of mode
1, which is the TM � mode. Also in Appendix B.5 is a list of the MAFIA
frequencies and those found from the model. These two are very close. Mode 1
frequency from the model is set to match the MAFIA frequency as mentioned
above, and the di�erence between the two generally increases with mode number.
The largest di�erence in the TM band is less than 5 MHz.
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Figure 56: Eigenvectors, MAFIA-Model correlation, 13-cell cavity of shape B15,
TM-band.

It is interesting to note that all of the TM norms are greater than 0.95 for
modes in the TM band and all of the TE norms are greater than 0.95 for the
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modes in the TE band. For mode 1 the TM norm is 0.998 which is the largest
in the TM band. Thus mode 1 is very close to a pure TM �-mode. Looking
at the TM vector for mode 1, one can see that the largest variable values are
in the two cells next to the end cell. This means that the structure is slightly
overcompensated, and that the tuning in the end cell should be reduced slightly
for the 
attest �eld. The end cell even in this overcompensated state has a
reduced value. Increasing the compensation can raise this value, but only at the
cost of increasing the values in the two cells inboard from the end cell. This is the
same situation, to a lesser degree, that is seen in the strongly coupled structure
except that in that case the end cell is compensated by raising the frequency
whereas for the weakly coupled structure the end cell frequency is lowered.
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Figure 57: TM Band Frequencies of a MAFIA 13-Cell B15 Structure Compared
to a Single-Chain Model with Flat �-Mode

7.4.2 The Single Chain Model

It might be expected that the weakly-coupled de
ecting structure can modeled by
a single chain of resonators like that used for accelerator structures. The e�ects
of the adjacent TE band might not be too strong. An e�ort has been made to
judge the usefulness of a simple model for tuning. Figure 57 shows the MAFIA
TM frequencies plotted against mode number. Also plotted are frequencies from
a single chain model. The �rst of these has the value of the coupling adjusted
so that the modes 1 and 2 agree with the MAFIA frequencies. The second case
sets k equal to 0.04. It can be seen that the curves for the single chain model
are of quite a di�erent shape from the simulated values, and there is no way to
choose the best approximation. Further, correlation of the model and MAFIA
eigenvectors is much less complete than with the two-chain model but still lie in
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only two quadrants of the plot. Clearly the single chain provides a less accurate
description of the de
ection band than the double-chain, but a description that
is qualitatively correct.

Further, if a �rst order perturbation matrix for mode 1 is calculated from both
the single-chain and the double chain models, they are very close to being the
same. For this calculation the k = 0.0179844 case is used. This choice correctly
models the frequencies of the �rst few modes in the band, and these are the ones
that have the strongest in
uence on the perturbation matrix. The perturbation
matrix calculated from the double-chain model has four times as many terms
as that from the single chain. This can be reduced in a straightforward way by
taking alternate rows and columns, a procedure which is checked by computing
a Jacobian for the TM variables and the TM eigenvalues. The conclusion that
is drawn from this is that the single chain model to �rst order will serve in a
tuning procedure just as well as the double chain model. This has recently been
demonstrated by tuning a �ve cell de
ector in this way. If, however, it is the
intention to solve in higher order or to use measurements on multiple modes to
improve the convergence of the tuning process [18], then further work must be
done to con�rm the usefulness of the single-chain model for these purposes.

One might try to construct a single chain model directly from the TM eigen-
values and eigenvectors derived from MAFIA. Textbooks in matrix analysis show
that the eigenvalue problem can be put into the inverse form A = QDQ�1 where
A is a system matrix, Q is the matrix of its column eigenvectors, and D is the
diagonal matrix of the eigenvalues. Note that when A is symmetric, Q inverse
is equal to Q transpose. However, a check of the matrix Q of the eigenvectors
derived from MAFIA shows that it is not quite unitary, and A is not quite sym-
metric. A is not displayed here, but there are three interesting things about it
that will be mentioned. The diagonal terms are all equal to a part in a thousand
except for the �rst and last. This indicates a uniform structure with tuned end
cells. All of the nearest neighbor coupling terms are equal to a few parts in a
thousand except again the �rst and last pair. The members of these pairs are
di�erent from the other nearest neighbor coupling terms and di�erent from each
other. This suggests that the coupling in the end irises is not the same as in the
body irises and that the stored energy in the end cell is not the same as in the
body cells. The coupling in the body cells is approximately 0:04, a reasonable
value. All of this makes some kind of sense, but the problem here is that there are
higher order coupling terms in the matrix all the way out to the corners. These
fall in size by only about a factor of three with each increasing order, and all are
negative. This is what it takes to make a single-chain model describe a TEM
mode band, but it is absolutely unphysical. One does see, however, that a little
next-nearest-neighbor coupling is not going to �x up this model. The question
to be answered next is whether or not the perturbation matrices calculated from
A are correct. This matrix properly describes the band, but it may not properly
describe the derivatives that are needed for tuning.
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7.4.3 Modeling Problems

The basic tasks of equivalent circuit modeling are to support �rst the design and
then the construction of an RF system. It is clear that there are a good stock
of modeling tools available for these tasks in the separator project. There is
more work to do to get routine structure tuning under way. And a few things
have come up that are di�erent from the parallel activity with an accelerator
structure. It is very important to be alert to these di�erences. One issue that
requires thinking about is the proper handling of the situation in which the cell
impedance varies down the length of a structure. When is longitudinal variation
a perturbation, and when must it be treated in lowest order? Models tend to be
derived from in�nite, uniform structures by procedures that are not very rigorous,
and unfortunately these standing-wave de
ection structures are by their nature
non-uniform.

A second issue has to do with model reduction. How should a MAFIA simu-
lation be reduced in a fully consistent way to an equivalent circuit? It has been
done in this paper in an ad hoc way, but the limits of this way of proceeding are
being seen. For example take the problems that arise when we would like to de-
rive the parameters of a two-chain model from MAFIA �eld tables. Any number
of integral paths or bead measurements can be used to extract eigenvectors, but
cell impedance is left unde�ned in this process, and doing it this way doesn't give
the relationship between vectors of di�erent modes. It is not clear how to get the
equivalent circuit from MAFIA of the norms that were found from the two-chain
model solution. The question of how to measure eigenvectors or determine them
from �eld tables keeps coming up. A bead measurement to de�ne a vector is not
di�erent from a path integral to de�ne a vector, and there is the same confusion.

Gluckstern has worked out a procedure [15] for expanding cavity �elds in
terms of normal modes that is ideally suited to operating with MAFIA �eld
tables. The coeÆcients of this expansion are volume integrals over the cell of
products of �eld vectors. The �elds in chains of cells can be expanded in terms
of the normal modes of closed cells plus the �elds associated with coupling holes,
and coupling is de�ned by surface integrals over the holes. The question of non-
uniform chains is not explicitly dealt with, but the normalization scheme used
seems to solve this problem. Working out and applying this method for the
construction of models for the de
ecting cavities will clear away confusions and
provide stronger working methods. This is an interesting and worthwhile project.

54



8 Conclusion

The passband structure of de
ecting mode cavities with �-mode cell length, which
mainly di�er by the cell-to-cell coupling, has been investigated. In the strongly-
coupled regime, the de
ection band is of the forward-wave type, with the �-mode
at the high-frequency end of the band, and in the weakly-coupled regime the
de
ection band has a backward wave, and the �-mode is the lowest frequency in
the band. The de
ecting modes are of hybrid (TM and TE) character like any
dipole mode in an accelerating structure. But at least in the weakly coupled case
the TM-like modes of the de
ecting band lie lower in frequency than the TE-like
modes, which form the second passband. In the strongly coupled regime TM-
and TE-like modes can be found in the lowest passband (see B).

The progression from the weakly coupled to the strongly coupled regime is
illustrated in Figure 14 above. Cells of shape A13 and A15 are of backward
wave type; and cells of shape A19 and A25 are of forward wave type. Cell A17
though of forward wave type is near to the dividing line. The advantages of the
strongly-coupled structures is a larger iris diameter and the larger bandwidth; the
B19 shape has about twice the bandwidth as the C15 shape. However it has a
lower (r=Q)0 and a signi�cantly higher normalized peak magnetic �eld (see Figure
16). For both coupling regimes it is possible to �nd an end-cell design, which
provides a good �eld 
atness within the body cells. For the cavities of shape
A15, B19 and C15 solutions have been work out in detail using the computer
code MAFIA. In the strongly coupled case the price of the �eld 
atness is that
the de
ecting voltage of the end cell is greatly reduced and the shunt impedance
of the structure is lowered. Therefore the cavities of shape A15 and C15 have a
clear advantage with respect to (r=Q)0 and peak magnetic �eld against cavity B19
or similar cavities within the strongly coupled regime. The somewhat modi�ed
shape of the iris region (larger curvature) of cavity C15 compared with A15
provides a even lower peak magnetic �eld for the same de
ection gradient and a
larger bandwidth.

Equivalent circuit models have been used to compare with Ma�a calculations.
Both one and two chain models have been investigated. It is shown that the
one chain model provides only a qualitatively description of the dispersion curve
in both the weak and strong coupling cases. In addition for the strong case
the two chain model represents not only the dispersion curve well but also gives
eigenvectors in good agreement with those derived from Ma�a. Mixtures of TE
and TM like modes are clearly indicated.

To minimize the peak �elds and to improve the cell-to-cell �eld 
atness dur-
ing the tuning procedure of a multi-cell cavity a equivalent circuit model is an
important tool to process data from a bead pull measurement. Simulations with
a model of two chains of coupled resonant circuits with cross coupling have shown
that no problems of a practical mathematical kind stand in the way of structure
tuning. It seems likely that the process can be carried out of making bead mea-
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surements of some structure quantity, calculating from those measurements a set
of cell corrections, and correcting one or more cell. Whether the one chain model
will be adequate or it will be necessary to use the two chain model still needs to
be determined. . The goal is to tune a structure so that the peak magnetic �eld
on each iris is the same for the �-mode. Therefore it is important to distinguish
the �eld of the �-mode and the next lowest mode in the same passband during
the bead pulling measurements.

Finally the weakly coupled cavity shape C15 has been selected as the shape to
use in the R&D program contingent on favorable multipacting results. Strongly
coupled shapes with large irises seem inappropriate because of the complexity
of their mode patterns, the lower (R=Q)0, and higher peak magnetic �eld all of
which o�set any advantages of greater bandwidth. C15 with its larger curvature
in the iris is an improvement over the original A15 in that Bmax is reduced and
df=f increased.
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A Properties of the Longitudinal and

Transverse Voltage of a Cavity

The purpose of this appendix is to derive the formulas used in the section 3,
which relate the transverse voltage vector V? (r; �) to the longitudinal voltage
Vk(r; �).

The longitudinal e�ect of the cavity �elds are given by the longitudinal
voltage - de�ned as:

Vk(r; �) =
Z L

0
dz Ez(r; �; z; t = z=c); (31)

while the transverse voltage vector is the integral of the Lorentz force:

V? (r; �) =
Z L

0
dz (E? (r; �; z; t = z=c) + c ez � B (r; �; z; t = z=c)) : (32)

The following two subsections demonstrate in detail the relationship between
V? (r; �) and Vk(r; �) based on the Panofsky-Wenzel Theorem [4] and on the fact
that Vk(r; �) is a harmonic function of the transverse coordinates.

A.1 The relation between V? and Vk

From the Maxwell equation r � E = � @
@t
B it follows:

ez � @

@t
B =

@

@z
E? � r?Ez: (33)

The contribution to the transverse voltage due to magnetic �eld can be written
in terms of the electric �eld:Z L

0
dz c ez � B (r; �; z; z=c) = C0 + (34)Z L

0
dz c

Z z=c

t0
d�

 
@

@z
E? (r; �; z; � )� r?Ez(r; �; z; � );

!

with a steady functionC0(r; �) due to the time integration (C0(r; �) =
R L
0 dz c ez �

B (r; �; z; t0)). This expression (Eqn. (34)) can be simpli�ed if one calculates the
total derivative of

R
d�E? with respect to z:

c
d

dz

Z z=c

t0
d� E? (r; �; z; � ) = E? (r; �; z; z=c)+c

Z z=c

t0
d�

@

@z
E? (r; �; z; � ): (35)

Combining Eqn. (34) and (35) yields:Z L

0
dz c ez � B (r; �; z; z=c) = �cr?

Z L

0
dz

Z z=c

t0
d� Ez(r; �; z; � )

+C0(r; �)

�
Z L

0
dz E? (r; �; z; z=c) (36)

c
Z L

0
dz

 
d

dz

Z z=c

t0
d�E? (r; �; z; � )

!
:
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The last term gives the contribution from the boundaries, which is zero for a
closed cavity due to the boundary conditions for the electric �eld on a metallic
surface. This term can also be neglected if the length L is large enough that the
electric �eld is very small at the boundaries of the integration, which may be
located in the beam pipe.

Therefore one obtains for the transverse voltage:

V? (r; �) = �cr?

Z L

0
dz

Z z=c

t0
d� Ez(r; �; z; � ) + C0(r; �): (37)

This result is essentially the Panofsky-Wenzel Theorem, which was originally
formulated in terms of the vector potential [4]. The integral of the Lorentz force
can be totally expressed as a transverse gradient of an integral of the longitudinal
electric �eld.

The further considerations are now restricted to a cavity mode ringing with
the revolution frequency !, i.e. one obtains in complex notation for the electric
�eld:

Ez(r; �; z; t) = fEz(r; �; z) exp(�i ! t):
In this case it is possible to solve the integral on the time variable � in Eq. (37).
The contribution from the lower boundary at t0 is exactly canceled by C0(r; �),
and the following expression is obtained:

V? (r; �) =
�i
!=c
r?

Z L

0
dz fEz(r; �; z) exp(�i ! z=c); (38)

which can also be rewritten in terms of the longitudinal voltage.
The �nal result for any cavity mode is therefore:

V? (r; �) =
�i
!=c
r?Vk(r; �)

(39)

Vk(r; �) =
Z L

0
dz fEz(r; �; z) exp(�i ! z=c):

The next short subsection established an important property of the longitudinal
voltage, which will �nally show that the transverse voltage does not depend on
the radius r for any dipole mode.

A.2 Properties of Vk(r; �) and the Dependence of V? on

the radius.

In the pipe region of the cavity (radius smaller than the cavity iris radius) it is
possible to expand the electric �eld in terms of waves (Fourier transformation in
t and z) :

Ez(r; �; z; t) =
1

(2�)2

Z 1

�1
d!

Z 1

�1
dkz fEz(r; �; kz; !) exp(�i(! t� kz z)): (40)
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For a cavity mode the electric �eld is a solution of the wave equation. The Fourier
component fEz(r; �; kz; !) ful�lls therefore the equation:

r2
?
fEz(r; �; kz; !) =

�
k2z � (

!

c
)
2
� fEz(r; �; kz; !): (41)

This can be used to show that the longitudinal voltage is a harmonic function of
the transverse coordinates (r; �):

r
2
? Vk(r; �)

=
1

(2�)2

Z L

0
dz

Z 1

�1
d!

Z 1

�1
dkz r

2
?fEz(r; �; kz; !) e

�i(! z=c�kz z)

=
1

(2�)2

Z 1

�1
d!

Z 1

�1
dkz fEz(r; �; kz; !)

Z L

0
dz

�
k2z � (

!

c
)
2
�

e�i(! z=c�kz z)

= 0; (42)

since the integration with respect to z yields a Æ - function and fEz(r; �; kz; !)
has no poles with respect to the variables kz and !. The property

r2
?Vk(r; �) =

 
1

r

@

@r
(r

@

@r
) +

1

r2
@2

@�2
)

!
Vk(r; �) = 0 (43)

of the longitudinal voltage enables one to determine how Vk(r; �) varies with
respect to r for a given azimuthal dependence of the the cavity mode.

Suppose the electric �eld is periodic in �, i.e.

Ez � cos(m�)

then a solution of the Eqn.(43), which is regular at r = 0, is

Vk(r; �)(m) = Vm rm cos(m�); (44)

with a constant Vm. The transverse voltage is according to the results of the
previous section (see Eqn. (39) ):

V? (r; �) =
�i
!=c

 
@

@r
Vk(r; �) er +

1

r

@

@�
Vk(r; �) e�

!
; (45)

with the unit vectors er and e� in the radial and azimuthal direction.
Finally one obtains for the radial component of the transverse voltage for a

m-pole mode:

V
(m)
?r (r; �) =

�i
!=c

m

r
Vk(r; �)(m): (46)

For a dipole mode (m=1) V (m)
?r (r; �) is independent of the radius r. The kick

on the beam due to a dipole mode in the cavity does not depend on the radial
position of the trajectory.
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B A 7-cell cavity of shape B19

with an uncompensated end-cell

B.1 Modes from a MAFIA calculation

0. 0.1929.600E-02
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4.618E-02

2.309E-02

Figure 58: 7-cell cavity of shape B19, electric �eld of dipole mode ME-1.
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Figure 59: 7-cell cavity of shape B19, electric �eld of dipole mode EE-1.
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Figure 60: 7-cell cavity of shape B19, electric �eld of dipole mode ME-2.
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Figure 61: 7-cell cavity of shape B19, electric �eld of dipole mode EE-2.
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Figure 62: 7-cell cavity of shape B19, electric �eld of dipole mode ME-3.
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Figure 63: 7-cell cavity of shape B19, electric �eld of dipole mode EE-3.
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Figure 64: 7-cell cavity of shape B19, electric �eld of dipole mode EE-4 or ME-4.
This is a trapped mode.
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Figure 65: 7-cell cavity of shape B19, electric �eld of dipole mode EE-5. This is
the �rst mode of the second passband.
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B.2 Eigenvalues and Eigenvectors from a MAFIA Calcu-

lation

Path for TM
Variable

Variable
Path for   TE

Figure 66: Integration Paths for the TM and TE Variables

Mode 7 Mode 6 Mode 5 Mode 4 Mode 3 Mode 2 Mode 1

Frequency
4.2406 3.8873 3.8632 3.8182 3.7539 3.6862 3.6365

TM Variables
-0.0595 0.0760 0.1636 0.2709 0.3923 0.5045 0.5817
-0.3148 -0.3046 -0.5091 -0.5264 -0.3216 0.0294 0.3531
-0.4924 0.4935 0.4627 -0.0607 -0.4926 -0.3444 0.1921
-0.5566 -0.5620 0.0000 0.5400 0.0000 -0.5020 0.0000
-0.4924 0.4935 -0.4627 -0.0607 0.4926 -0.3444 -0.1921
-0.3148 -0.3046 0.5091 -0.5264 0.3216 0.0294 -0.3531
-0.0595 0.0760 -0.1636 0.2709 -0.3923 0.5045 -0.5817

TE Variables
-0.5173 0.4594 0.4589 0.4452 0.3986 0.3043 0.1651
-0.4196 -0.4671 -0.2169 0.1204 0.4151 0.5158 0.3517
-0.2373 0.2660 -0.3023 -0.5360 -0.1722 0.3759 0.4683
0.0000 0.0000 0.5495 0.0000 -0.5275 0.0000 0.5094
0.2373 -0.2660 -0.3023 0.5360 -0.1722 -0.3759 0.4683
0.4196 0.4671 -0.2169 -0.1204 0.4151 -0.5158 0.3517
0.5173 -0.4594 0.4589 -0.4452 0.3986 -0.3043 0.1651
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B.3 System Matrix
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Figure 67: System matrix.
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B.4 Table of Eigenvalues and Eigenvectors from Double-

Chain Model

B.4.1 Upper Band

Mode 14 Mode 13 Mode 12 Mode 11 Mode 10 Mode 9 Mode 8 Mode 7

Frequency/ GHz
4.9749 4.8266 4.6451 4.4903 4.3935 4.3316 4.2762 4.2362

TM norm
0.1010 0.2220 0.3818 0.5905 0.8022 0.9221 0.9621 0.9880

TM Variables
0.367 -0.188 0.076 -0.380 0.587 0.603 0.442 -0.211
-0.531 0.023 -0.418 0.486 -0.175 0.207 0.449 -0.340
0.288 0.478 0.565 0.012 -0.354 -0.167 0.321 -0.461
0.000 -0.687 0.000 -0.487 0.000 -0.362 0.000 -0.504
-0.288 0.478 -0.565 0.012 0.354 -0.167 -0.321 -0.461
0.531 0.023 0.418 0.486 0.175 0.207 -0.449 -0.340
-0.367 -0.188 -0.076 -0.380 -0.587 0.603 -0.442 -0.211

TE norm
0.9949 0.9750 0.9242 0.8070 0.5970 0.3869 0.2728 0.1547

TE Variables
0.195 -0.367 -0.495 0.560 -0.511 -0.229 0.242 -0.450
-0.348 0.491 0.340 0.022 -0.372 -0.454 0.014 -0.479
0.463 -0.353 0.173 -0.431 0.105 -0.492 -0.467 -0.262
-0.503 0.000 -0.468 0.000 0.424 0.000 -0.668 0.000
0.463 0.353 0.173 0.431 0.105 0.492 -0.467 0.262
-0.348 -0.491 0.340 -0.022 -0.372 0.454 0.014 0.479
0.195 0.367 -0.495 -0.560 -0.511 0.229 0.242 0.450
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B.4.2 Lower Band

Mode 6 Mode 5 Mode 4 Mode 3 Mode 2 Mode 1

Frequency/ GHz
3.8873 3.8632 3.8182 3.7539 3.6862 3.6365

TM norm
0.9827 0.9228 0.8022 0.6190 0.4080 0.2002
TM Variables
0.076 0.164 0.271 0.392 0.505 0.582
-0.305 -0.509 -0.526 -0.322 0.029 0.353
0.493 0.463 -0.061 -0.493 -0.344 0.192
-0.562 0.000 0.540 0.000 -0.502 0.000
0.493 -0.463 -0.061 0.493 -0.344 -0.192
-0.305 0.509 -0.526 0.322 0.029 -0.353
0.076 -0.164 0.271 -0.392 0.505 -0.582

TE norm
0.1854 0.3852 0.5970 0.7854 0.9130 0.9797
TE Variables
0.459 0.459 0.445 0.399 0.304 0.165
-0.467 -0.217 0.120 0.415 0.516 0.352
0.266 -0.302 -0.536 -0.172 0.376 0.468
0.000 0.549 0.000 -0.528 0.000 0.509
-0.266 -0.302 0.536 -0.172 -0.376 0.468
0.467 -0.217 -0.120 0.415 -0.516 0.352
-0.459 0.459 -0.445 0.399 -0.304 0.165
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B.5 Some Results from the Modeling and MAFIA Studies

of a 13-Cell Structure of B15 Shape with a Tuned End

Cell

Frequencies Eigenvector of Mode 1
Model MAFIA Model MAFIA

Mode TE Band TM norm 0.9978

26 5.24409 5.21510 -0.2170 -0.2229
25 5.24371 5.16365 0.2952 0.2950
24 5.13532 5.08871 -0.2902 -0.2932
23 5.07492 4.99978 0.2864 0.2872
22 4.99223 4.90444 -0.2836 -0.2813
21 4.89604 4.80710 0.2820 0.2775
20 4.79324 4.71166 -0.2814 -0.2782
19 4.68957 4.61988 0.2820 0.2775
18 4.58967 4.53434 -0.2836 -0.2813
17 4.49717 4.45638 0.2864 0.2872
16 4.41515 4.38822 -0.2902 -0.2932
15 4.34705 4.33252 0.2952 0.2950
14 4.29868 4.29423 -0.2170 -0.2229

TM Band TE norm 0.0665

13 4.07615 4.07400 -0.7068 -0.7065
12 4.05985 4.05519 -0.0145 -0.0011
11 4.03545 4.03099 0.0115 0.0133
10 4.00943 4.00625 -0.0086 -0.0193
9 3.98540 3.98317 0.0057 0.0158
8 3.96461 3.96328 -0.0029 -0.0035
7 3.94729 3.94624 0.0000 0.0000
6 3.93329 3.93278 0.0029 0.0035
5 3.92232 3.92197 -0.0057 -0.0158
4 3.91411 3.91405 0.0086 0.0193
3 3.90843 3.90842 -0.0115 -0.0133
2 3.90509 3.90505 0.0145 0.0011
1 3.90405 3.90405 0.7068 0.7065
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C Modes of a 13-cell cavity of shape C15

with a tuned end-cell

C15 mid-cell end-cell
half cell length g=2 19:2 mm 19:2 mm
iris radius a 15:0 mm 15:0 mm
iris curvature ri 5:5 mm 5:5 mm
equator radius b 47:18 mm 47:55 mm
equator curvature re 11:41 mm 11:41 mm
Mid-points z1 5:447 mm 5:449 mm

r1 19:74 mm 19:76 mm
z2 7:899 mm 7:895 mm
r2 37:34 mm 37:68 mm

Table 9: Geometrical parameters of the cavity input shapes. The input shapes
are approximated on a mesh, with about 7300 points per cell.

mode # f / MHz (R=Q)0 / Ohm G1 / Ohm
1 3899:8 351 228
2 3900:9 0:001 229
3 3904:4 0:709 230
4 3910:1 0:033 232
5 3918:4 0:394 234
6 3929:3 0:071 236
7 3942:9 0:296 239
8 3959:4 0:132 244
9 3978:5 0:183 250
10 3999:6 0:188 257
11 4021:5 0:062 266
12 4041:7 0:126 275
13 4056:4 0:004 284

Table 10: Results from the MAFIA eigenvalue solver and post-processor for 13-
cell cavity of shape C15 with a tuned end-cell.
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Figure 68: 13-cell cavity of shape C15, electric �eld of the mode f = 3:8998 GHz
(b.cond. EE); phase advance ' = 177Æ (�-mode).
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Figure 69: 13-cell cavity of shape C15, electric �eld of the mode f = 3:9009 GHz
(b.cond. ME); phase advance ' = 165Æ (11�=12- mode).
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Figure 70: 13-cell cavity of shape C15, electric �eld of the mode f = 3:9044 GHz
(b.cond. EE); phase advance ' = 150Æ.
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Figure 71: 13-cell cavity of shape C15, electric �eld of the mode f = 3:9101 GHz
(b.cond. ME); phase advance ' = 136Æ.
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Figure 72: 13-cell cavity of shape C15, electric �eld of the mode f = 3:9184 GHz
(b.cond. EE); phase advance ' = 122Æ.

0. 0.3070.154

0.

4.755E-02

2.378E-02

Figure 73: 13-cell cavity of shape C15, electric �eld of the mode f = 3:9293 GHz
(b.cond. ME); phase advance ' = 107Æ.
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Figure 74: 13-cell cavity of shape C15, electric �eld of the mode f = 3:9429 GHz
(b.cond. EE); phase advance ' = 93Æ.
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Figure 75: 13-cell cavity of shape C15, electric �eld of the mode f = 3:9594 GHz
(b.cond. ME); phase advance ' = 79Æ.
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Figure 76: 13-cell cavity of shape C15, electric �eld of the mode f = 3:9785 GHz
(b.cond. EE); phase advance ' = 65Æ.
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Figure 77: 13-cell cavity of shape C15, electric �eld of the mode f = 3:9996 GHz
(b.cond. ME); phase advance ' = 51Æ.
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Figure 78: 13-cell cavity of shape C15, electric �eld of the mode f = 4:0215 GHz
(b.cond. EE), phase advance ' = 38Æ.
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Figure 79: 13-cell cavity of shape C15, electric �eld of the mode f = 4:0417 GHz
(b.cond. ME); phase advance ' = 25Æ.

72



0. 0.3070.154

0.

4.755E-02

2.378E-02

Figure 80: 13-cell cavity of shape C15, electric �eld of the mode f = 4:0564 GHz
(b.cond. EE); phase advance � = 12Æ (�=15-mode).
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D Cavity of shape C15

with an alternative end-cell design

The purpose of this appendix is to show how an end-cell could look like which
is well suited to mount a coaxial coupler with an inner conductor penetrating
into in an enlarged beam pipe. Fig. 81 shows the considered con�guration of a
mid-cell and an end-cell with an iris diameter of 18 mm [19]. The longitudinal
electric �eld at 5 MV/m transverse voltage is show at a �xed radius of 1 cm in
Fig. 82.
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Figure 81: Cavity of shape C15, the electric �eld of the �-mode (f = 3:8992 GHz)
is shown.
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Figure 82: Cavity of shape C15 with an alternative end-cell design (f =
3:8992 GHz). The longitudinal electric �eld of the �-mode at 5 MV/m trans-
verse voltage is show at a �xed radius of 1 cm.
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The end-cup is slightly shorter than a regular cup. Furthermore are transition-
cup (trans.-cup) is needed to adapt the end-cup to the mid-cell. A complete list
of the geometrical parameters is given in table 11.

C15a mid-cell trans.-cup end-cup
half cell length g=2 19:2 mm 19:2 mm 18:6 mm
iris radius a 15:0 mm 15:0 mm 18:0 mm
iris curvature ri 5:5 mm 5:5 mm 5:5 mm
equator radius b 47:18 mm 47:37 mm 47:37 mm
equator curvature re 11:41 mm 11:41 mm 11:41 mm
Mid-points z1 5:447 mm 5:448 mm 5:457 mm

r1 19:74 mm 19:75 mm 22:82 mm
z2 7:899 mm 7:897 mm 7:278 mm
r2 37:34 mm 37:52 mm 37:38 mm

Table 11: Geometrical parameters of the cavity input shapes of cavity C15 with
an alternative end-cell design. The input shapes are approximated on a mesh,
with about 7300 points per cell.

All modes of the �rst dipole mode passband of a 13-cell cavity of shape C15
with an alternative end-cell design are summarized in table 12. The electric �eld
of the �-mode and the � � 1-mode (modes # 1 and # 2 in the table) are show
in Fig. 83 and 85. A good �eld-
atness is achieved for the �-mode (see Fig. 84).
The peak magnetic �eld for a transverse gradient of 5 MV/m is 0:079 T.

mode # f / MHz (R=Q)0 / Ohm G1 / Ohm
1 3899:6 348 229
2 3900:6 0:006 230
3 3903:7 0:846 230
4 3909:1 0:066 231
5 3916:7 0:766 233
6 3926:8 0:071 236
7 3939:4 0:412 239
8 3954:9 0:061 242
9 3973:0 0:045 247
10 3993:6 0:038 254
11 4015:8 0:045 262
12 4037:6 0:038 254
13 4054:9 0:011 282

Table 12: Results from the MAFIA eigenvalue solver and post-processor for a
13-cell cavity of shape C15 with an alternative end-cell designed.
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Figure 83: 13-cell cavity of shape C15, electric �eld of the mode f = 3:8996 GHz
(b.cond. EE); �-mode.
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Figure 84: 13-cell cavity of shape C15 with a alternative end-cell design (f =
3:8996 GHz). The longitudinal electric �eld of the �-mode at 5 MV/m transverse
voltage is show at a �xed radius of 1 cm.
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Figure 85: 13-cell cavity of shape C15, electric �eld of the mode f = 3:9006 GHz
(b.cond. ME);� � 1-mode.
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E Separator System and RF Cavity Parameters

Table 13: Separator System Parameters
Beam momentum, pc 22 GeV
Main Injector cycle time 3 sec
Extracted beam duration per cycle 1 sec
Main Injector intensity used 5 � 1012 proton
Secondary beam intensity � 1:4� 1010

Secondary beam current � 2:2� 10�9 amp
Potential beam loss on cavities � 2 %
Power in lost beam 11 W

RF Station Con�guration 2 stations
Distance between stations 86.5 m
Station de
ection angle 0.68 mrad
De
ection per station 15 MV
Total de
ection 30 MV
De
ection gradient 5 MV/m
Total e�ective RF length 6 m
Station e�ective RF length 3 m
Total # cavities 12

System requirements @30MV
Cryo power @1.8K bath, 2K surface 8.5 W/m
Cryo power @2.0K bath 20 W/m
Total cryo power @2.0K� 120 W

Qext 6 � 107

RF power @ 5MV/m 400 W/m
design margin �2
RF power/2m(4cav) 1600 W
RF power @ source supply 2.4 kW
# RF supplies/station 2
Total # RF supplies 4
Total RF power 10 kW

�contingency factor= duty factor
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Table 14: Separator RF Cavity Parameters
Frequency 3.9 GHz
mode �, �TM110
Equator diameter body, (end) 94.36 (95.10) mm
Iris diameter 30 mm
Cell length 38.4 mm
cells/cavity 13
cells/m 26
E�ective RF length/cavity 499.2 mm
# cavities/m e�ective 2
Overall length/cavity 660 mm

(R/Q)0/cavity� 351 Ohm
(R/Q)0/m 702 Ohm
Vtrans 5 MV/m
Epeak@ 5 MV/m 18.5 MV/m
Bpeak@ 5 MV/m 0.077 T

Coupling factor (f0 � f�)/f 0.04
f� � f��1 1.0 MHz
polariz-tune-split. 10 : : : 40 MHz
tuning range � 1 MHz
Qcopper 1:4� 104

Qnb@273K Qcu/3
f/2Qnb@ 273 K 0.42 MHz

G1 =Q� Rsur 228 Ohm
Rsur @ 2K, Tc/T=4.6 1:1� 10�7 Ohm
Q@Rsur 2:1� 109

Power dissipated@5MV, 2K 8.5 W/m
Qext 6� 107

full bandwidth f/Qext 65 Hz
U (stored energy) 0.73 Joules/m

Beam tube
Mode TE11
Decay length 10.9 mm
Beam tube length 80.5 mm
Freqcutoff 5.856 GHz

�P=V2/2(R/Q)0�Q
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