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4.8.1 Introduction 

The article presents the results of the resistive wall impedance study for the PETRA 
III storage ring [1] vacuum chamber that consists of different parts with various 
geometrical (circular and elliptical cross sections) and structural (single layer and 
laminated) configurations conditioned by the technical solutions for high brightness 
synchrotron light sources.  

The study is based on the impedance calculation for a laminated vacuum chamber 
with circular-cylindrical geometry using the field matching technique [2,3]. The field 
transformation matrix concept is introduced to evaluate analytically the longitudinal and 
transverse impedances for a layered vacuum chamber with arbitrary materials and 
thicknesses [4,5]. The results are applied to calculate the impedances for various parts 
of the vacuum chamber listed in Table 1: the finite thickness standard vacuum chamber, 
the metallic wiggler chamber with NEG coating and the injection kicker ceramic –
metallic vacuum chamber.  Impedances are evaluated for chambers with circular and 
elliptical cross sections. Horizontal and vertical geometrical correction factors [6] are 
used for the impedances calculations of vacuum chambers with elliptical cross section. 
The kick factor and the integrated gradient of the longitudinal wake potential are also 
given.  
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Table 1: The main parameters of PETRA III vacuum chambers.  

 Vacuum 
Chamber Material Cross-

section 
Aperture 

(mm) 
Wall thick-
ness (mm) 

Conductivity 
106 (Ωm)-1 

Standard 
straight section 

Stainless 
Steel Circular 47 2 1.5 

Standard arc Aluminium Elliptical 40×20 4 36.6 
Undulators Aluminium Elliptical 28.5×3.5 1 36.6 

Wigglers Aluminium 
+ NEG Elliptical 48×8.95 2.8 36.6 

0.31 

Injection Kicker Ceramic 
+ TSHGS Circular 90 10 - 

2.084 

4.8.2 Resistive Impedance of Multi-Layer Vacuum Chamber  

The longitudinal ( )θω ,,|| rZ  and transverse ( )θω ,, rZ⊥

r
 coupling impedances per 

unit length are defined as a Fourier transformation of the normalized longitudinal and 
transverse components of the integrated Lorentz force of the electromagnetic fields, 
induced by the point charge q  moving with constant velocity v  along the tube axis z . 
The m - pole azimuthal components of the impedances in ultra-relativistic 
approximation are given by [2,3]  
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where ω  is the frequency, ( θ,r ) are the polar coordinates, v/k ω=  is the wave 
number,  1a  is the internal radius of the chamber with circular cross section. The 
frequency dependent part of impedances ( ) )(~

|| kZ m , ( ) )(~ kZ m
T  are coupled by Panowsky-

Wenzel theorem as ( ) ( ) )/(~~
1|| kaZmZ mm

T =  [2]. The dimensions of the longitudinal and 
transverse impedances per unit length are mOhm . For the multi-layered vacuum 
chamber the impedances can be evaluated using the field matching technique [2], i.e. 
the continuity of tangential components of electric and magnetic fields on the layers 
boarders, and introducing the field transformation matrix Q̂  for tangential components 
of the fields [4,5]. The longitudinal impedance can be then expressed via the elements 

ijQ  of field transformation matrix )44(dimˆ ×Q  as 
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The field transformation matrix Q̂  couples the tangential components of the electric and 
magnetic fields at the inner ( 1ar = ) and outer ( 1+= Nar ) surfaces of the pipe and for N  
layer tube is calculated as  

 ( ) ( ) ( )NQQQQ
)))

⋅⋅⋅= 21ˆ ,   (3) 

where )(ˆ iQ  is the field transformation matrix through the i -th layer ( )...3,2,1 Ni =  
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with ii ''0 µεα = , 00 , µµµεεε iiii =′=′ , the relative  dielectric and magnetic 
permeabilities of each layer with respect to the vacuum constants 0ε , 0µ . The seven 

independent elements of the field transformation matrix )(ˆ iQ  are determined by 
corresponding geometrical and electromagnetic layer parameters and are:   
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  (5)  

where 22 ωεµχ iii k −=  ( 0)Re( i >χ ) are the radial propagation constants. The 

functions )4,3,2,1()( =kU i
k  are the combinations of modified Bessel functions of both 

kinds. In the frequency range, the functions )(i
kU  can be approximated by hyperbolic 

functions if the skin depth of a layer is much smaller than the inner radius of the tube, 
i.e. for all practically important cases:  
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In (6) iii aad −= +1  is the thickness of the i -th layer. All elements of the matrix  
)(ˆ iQ  (4) are dimensionless and the determinant of the matrix is equal to 22

1 ii aa + . As is 
seen from (5), for the monopole term 0=m  the following elements of field 
transformation matrix 04342343124211312 ≡======= qqqqqqqq  are vanishing.   

The other coefficients in (2) are determined as  
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with ( ) E1N0 C2kalnP += + γ , 577216.0=EC  the Euler constant, γ  the particle Lorentz 
factor . Coefficients ±± BA ,  are defined via the elements of field transformation matrix  
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where the matrix qj;piĥ  is composed as  
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Note that in ultra-relativistic limit ( ∞→γln ) for dipole mode ( 1=m ),  
−+−+ = BBUU // .  

4.8.3 Impedance of Vacuum Chamber with Elliptical Cross Section 

In the case of a elliptical vacuum chamber the impedance significantly depends on 
the transverse position of the beam. We consider the practically important case when 
the beam has a horizontal or a vertical offset with respect to ellipse center. We will 
evaluate the impedances for an elliptical vacuum chamber following the approach 
developed in Ref. [6] that generalize the round chamber impedances for elliptical cross 
section by introducing longitudinal and transverse geometrical correction factors. For 
the elliptical geometry with major a  and minor b  radii the longitudinal and transverse 
impedances may be expressed then via the round chamber impedances with radius b  
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(ellipse minor radius) multiplied by the longitudinal ||G  or transverse vG  (vertical), hG  
(horizontal) geometrical factors: 

  ( ) ( ) ( ) ( ) hvthvss GZZGZZ ,
0

,
0

|| , ωωωω ==   (12) 

The geometrical factors depend on the ellipse aspect ratio ba /  and are defined as  
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with (ξ ,η )  the elliptical coordinates.  
The geometrical factor for the longitudinal impedance is equal to unity ( )1=sG  for 

a round tube ( )1=ba  and closed to unity for large values of ba : 1→sG  for 
∞→ba , i.e. the longitudinal impedance of the round tube of radius b  coincides with 

the impedance of a flat chamber with a distance of b2 between plates [7]. For the 
transverse impedance: for a large aspect ratio ba  the horizontal geometrical factor 
drops while the vertical geometrical factor approaches to 23.18/2 ≈π .  
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Figure 1: The longitudinal (left) and transverse (right) geometrical factors vs aspect ratio ba . 

Standard arc (1), wiggler (2) and undulator (3) chambers. 

Table 2 shows the correction factors for the PETRA III vacuum chambers with 
elliptical cross section. As is seen, the transverse impedance for elliptical vacuum 
chambers is actually dominated by the vertical impedance. 

Table 2: Geometrical factors for PETRA III elliptical vacuum chambers. 

 Standard Arc Wiggler  Undulator 
Aspect ratio ba /   2 5.36313 8.14286 

Longitudinal G|| 0.9531 0.9941 0.9975 
Vertical Gv 1.2213 1.2322 1.2330 
Horizontal Gh 0.0764 0.0088 0.0038 

 
In the current paper the impedances in all the figures are evaluated for the round 

chamber geometry. For the vacuum chambers with elliptical cross-section, the 
transverse vertical impedance should be multiplied by the geometrical factor of 8/2π .   

4.8.4 Impedance of Finite Thickness Single -Layer Vacuum Chamber  

For the single layer vacuum chamber of internal radius a  and finite wall thickness 
d  the monopole ( )0=m  and dipole )1( =m  modes of the impedance in ultrarelativistic 
limit for non-magnetic wall ( )01 µµ =  can be presented in explicit form as  
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If the skin depth of the layer is much smaller than the inner radius of the tube the 
functions 31,UU  are approximated by hyperbolic functions according to (6) and 

)(/ 13 dcthUU χ≈ with d  the wall thickness.  For the infinite wall thickness ( )∞→d  
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and commonly used approximation ( 0εσω << , σ - conductivity) formula (15) is 
converted to well-known presentation of the impedance [1,2]: 
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where 10 =h  for the monopole term, 21 =h  for the dipole term, ( ) 31
0

2
0 2 σZas =  is 

the characteristic distance and  00 ksk =  is the dimensionless wave-number.  
 

4.8.4.1 Standard Straight Section 

Figures 2 and 3 present the longitudinal and transverse multipole impedances for the 
PETRA III standard straight section vacuum chamber with circular cross section (see 
Table 1) based on the exact solution given by (2).  
 
 

 
Figure 2: Real (left) and imaginary (right) parts of the longitudinal impedance for a standard 

straight section. Tube material- stainless steel, inner radius - 47mm, wall thickness - 2mm.  

 
Figure 3: Real (left) and imaginary (right) parts of the transverse impedance for a standard 
straight section. Tube material- stainless steel, inner radius - 47mm, wall thickness - 2mm.  

For a wall thickness of 2 mm the skin depth is equal to the wall thickness when the 
frequency is equal to kHzf 42~0 . For frequencies 0ff >>  the results are well 
described by the general approximation (16) for infinite wall thickness. 
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 The difference arises for the frequencies 0ff ≤ . Figures 4 and 5 show the real and 
imaginary parts of the longitudinal monopole and transverse dipole impedances in kHz-
frequency region for the exact solution and the approximation (16). 
 

   
Figure 4: Real and imaginary parts of the longitudinal monopole impedance for the exact 

solution and the infinite thickness approximation in the kHz-frequency region. 

 
Figure 5: Real and imaginary parts of the transverse dipole impedance for the exact solution 

and the infinite thickness approximation in the kHz-frequency region.   

As one can see from Figure 5, the transverse impedance given by the approximation 
(16) diverges at 0=ω , while the exact solution gives ( ) ( ) aZjZ m

T πω 20 0−==  for all 
multipoles and does not depend on the the material and the thickness of the chamber 
wall. 

4.8.4.2 Frequency-Dependent Conductivity.  

The frequency dependent conductivity of the metal is given by  

 ( ) ,)1( 1−−= ωτσωσ jst   (17) 

where stσ  is the static conductivity and τ  is the relaxation time. A comparison of the 
longitudinal monopole impedance of the stainless steel tube with a frequency dependent 
(AC) and a frequency independent (DC) conductivity is presented in Fig. 6. The 
relaxation time is taken to be sec102.3 14−⋅=τ , which corresponds to the relaxation time 
of iron at a temperature of K77=T .  

The transverse dipole impedance for the same vacuum chamber with AC and DC 
conductivity is presented in Figure 7. As is seen from the results the impedances 
actually coincide for the given relaxation time.  
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Figure 6: Longitudinal monopole impedance of a standard vacuum chamber for DC and AC 

conductivities. 

 

   
Figure 7: Transverse dipole impedance of a standard vacuum chamber for DC and AC 

conductivities. 

4.8.4.3 Undulator Vacuum Chamber 

 The vacuum chamber of the undulator is an aluminium chamber with elliptical cross 
section and a wall thickness of 1mm. Figure 8 presents the real and imaginary parts of 
the transverse dipole impedance.  
 
 



 

 

134 

 
Figure 8: Transverse impedance of undulator vacuum chamber. 

4.8.5 Impedance of Two-Layer Vacuum Chamber 

The technical solutions for the vacuum chambers of the wiggler magnets and 
injection kickers in the PETRA III storage ring imply the usage of laminated chamber 
configurations. The wiggler magnet chamber is an aluminum chamber of elliptical cross 
section with NEG (Non-Evaporable Getter) coating on the inner side of the wall. The 
injection kicker vacuum chamber is a ceramic chamber of circular cross section covered 
with Titanium-Stabilized High Gradient Steel (TSHGS), a special metal alloy.  

4.8.5.1 Wiggler Vacuum Chamber 

Fig. 9 presents the real and imaginary parts of the transverse dipole impedance for a 
wiggler aluminum vacuum chamber coated with NEG material of 0.5 µm and 1 µm 
thickness. For a NEG thickness of 1 µm, the frequency that corresponds to the skin 
depth equal to cover thickness is in the order of GHz820~0f . For this case, as it can be 
seen from Fig. 9, the impact of the NEG-coating is visible for 
frequencies GHzf 105 −≥ . 
 

   
Figure 9: Real and imaginary parts of the transverse dipole impedance for the PETRA III 

wiggler vacuum chamber coated with NEG material.  
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Figure 10 presents the dependence of the kick factor Tk  and integrated gradient of 
longitudinal wake )1(IIk  produced by the wiggler vacuum chamber versus the NEG 
thickness.   

 
Figure 10: Kick factor (solid) and integral gradient of the longitudinal wake (dashed) versus 

cover thickness. The long-range approximation is plotted as well.  

4.8.5.2 Injection Kicker 

The vacuum chamber of the PETRA III injection kicker is a round ceramic tube 
with thickness cm1 , which is covered at the  inner side with Titanium-Stabilized High 
Gradient Steel (TSHGS), a special metal alloy. The layer thickness of the TSHGS is 
equal to mµ7.0 . The relative electrical permitivity of the ceramic material is taken as 

1.9=rε  with a loss tangent of 410~tan −δ , so that the absolute electrical permitivity is 
equal to ( ) VmAsjrcer δεεε tan10 −= . The cover conductivity is in the order of 

116
cov 100841.2 −−Ω⋅= merσ .  

Figure 11 presents the transverse dipole impedance for the injection kicker vacuum 
chamber which is compared with the impedance of ceramic tube and the impedance of a 
pure TSHGS vacuum chamber. As seen from Figure 11, the ceramic tube impedance in 
the low frequency region has a constant value and is characterized by the narrow-
meshed periodical oscillations. It should be noted that the oscillations amplitude 
decreases with the increasing of the wall thickness. The fine structure of ceramic tube 
impedance is characterized by narrow-band resonances (Fig. 12, left). 
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Figure 11: Injection kicker transverse impedance (real part).  

 

   
Figure 12: Fine structure of the transverse impedance for a ceramic (left) and a ceramic + 

TSHGS (right) vacuum chamber. 

The impedance of a covered ceramic tube can be interpreted as a smooth curve: the 
high-level resonances disappear and the low-level notches appear instead of narrow-
band low-level resonances of ceramic tube impedance (Fig. 12, right). In the high 
frequency region, then the skin depth of the cover material surpasses the thickness of 
the cover layer ( )52.00 >k  and the impedance of the ceramic-metal tube is fully 
determined by metallic layer material. 

The kick factor of the injector kicker depends weakly on thickness of the ceramic 
layer if the layer is larger than 2.5 cm, as shown in Fig. 13.  

 
Figure 13: Kick parameter versus ceramic wall thickness. 
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4.8.6 Transverse Kick Factor and Integral Gradient 

 The instability threshold for mode coupling instabilities can be estimated from the 
tune shifts sQ∆ , βQ∆  of the lowest order modes in the longitudinal and transverse 
planes [8]: 
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where ⊥k  is the transverse kick factor,  )1(||k  is the integral gradient of longitudinal 

wake, BI  is the single bunch current, mR 367=  is the storage ring mean radius, β  is 
the average beta function, E  is the particle energy, 0T  is the revolution period, rfV  is 
RF gap voltage and h  is the harmonic number. The following tolerable tune shifts are 
assumed 
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That determines the maximal acceptable values for total integrated gradient ( )1||k  and 
kick factor ⊥k  in the ring. The integral gradient )1(||k  and kick factor ⊥k  of the 
Gaussian bunch with rms length zσ  are defined by the monopole and dipole 
impedances as 
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The total integral gradient of the longitudinal wake and the kick factor of the ring 
are the sum of the contributions from all vacuum chamber components (wigglers, 
undulators, standard sections) 

 i
i i

iitotaliitotal LkkLkk ∑ ∑ ⊥⊥ == β
β
1,)1()1( ||||   (21) 

where iβ  is the local beta function ( m5=yβ  for undulator section, m15=yβ  for 

wiggler section and m20=yβ  for the standard arc), β  is the average beta function 

( m20=β ),  iL  is the length of the corresponding vacuum chamber path. 
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Table 3: The integrated gradient and kick factor. 

Device yβ  
(m) 

Length  
(m) 

k|| (1) 
(V/pC/m) 

k⊥  
(V/pC/m) 

Undulator 5 55 15.57 450.8 
Wiggler 15 80 8.45 203.4 
Arc 20 1411 68.12 247.6 
Total - 1546 91.14 901.8 

 
Table 3 presents the resistive wall contributions to the longitudinal and transverse 

impedance budget of PETRA III (in terms of ( )1||k  and ⊥k ) for a bunch length of 
mm12=zσ . The total integral gradient of longitudinal wake is estimated to be 

mpCVk total 91.14)1( || =  and the total kick factor as mpCVk total //902=⊥ . Thus the 
longitudinal and transverse resistive wall contributions to the total tolerable impedance 
budget are 0.87% and 15.3% respectively. 

4.8.7 Conclusion 

In the present paper the longitudinal and transverse resistive impedances for 
different parts of PETRA III storage ring are evaluated. The impedances for single layer 
finite thickness and two-layer vacuum chambers are evaluated for both circular and 
elliptical geometry of the chamber. The contribution of the resistive wall impedance in 
terms of the kick factor and the integral gradient of the longitudinal wake to the total 
impedance budget have been estimated.  
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