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4.2.1 Introduction 

4.2.1.1 Wake Fields and Wake Field Instabilities 

An ultra-relativistic electron beam passing through an accelerator cavity generates 
electromagnetic wake fields.  Wake fields act back on the beam and, thus, influence its 
dynamics. The beam-cavity interaction via wake fields may lead to degradation of beam 
quality (emittance growth, energy spread) or even to collective instabilities [1-3]. Such 
instabilities pose the main limitation on the maximum achievable current per bunch or 
on the total beam current or on both of them. 

The integral quantity which describes the total wake field force on an electron bunch 
traveling in the z-direction is the wake potential, 

 ( ' ) /
1( ) '( )z t z s cW s dz E c e B
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= + ×∫
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where Q  is the bunch charge, E
ur

 and B
ur

 are the electromagnetic fields evaluated at the 
retarded time with respect to the relative position s within the bunch [4]. The effect of 
wake fields on the beam dynamics can be roughly estimated from the analysis of the 
wake potential (1). Electromagnetic fields associated with short electron bunches are 
high frequency fields. They propagate within the cavity with nearly the speed of light in 
vacuum, almost synchronously with the bunch. The corresponding wake potential (1) is 
a short range function which is restricted to small values of s. Thus, the wake field of a 
short electron bunch represents, in the first place, a source for single-bunch instabilities. 
Contrary, the low frequency wake fields generated by long bunches tend to dwell in the 
cavity for a very long time. Such wakes are often referred to as captured modes. They 
are responsible for multi-bunch instabilities which arise from the interaction between 
consecutive bunches passing through the cavity. 

Apart from the wake potential (1), other quantities of interest are the loss parameter, 
||k , and the kick parameter, k⊥ . These are defined as: 
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where ||W and W⊥  are the longitudinal and transversal components of the wake potential 
(1), respectively, and ρ is the normalized bunch charge density. The loss parameter can 
be considered as a measure for the energy spread experienced by the bunch due to wake 
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field interaction. The kick factor is useful for the estimation of emittance growth within 
the cavity. Another parameter related to the beam-wake interaction is, 

 ∫
+∞

∞−

⋅= )()()1( |||| sW
ds
dsdsk ρ . (3) 

This parameter is often used in the calculation of the synchrotron tune shift for the 
longitudinally coupled mode instabilities in storage rings such as PETRA III [5, 6]. 

The present paper is concerned with the numerical calculation of the wake field 
related quantities (1)-(3) in the context of the X-FEL and the ILC projects. These 
projects require high luminosity beams with ultra-short electron bunches. The rms 
bunch length for the ILC is 150µm [7]; for the X-FEL as low as 25µm [8]. The main 
focus is, therefore, on the computation of short range wake fields. From the numerical 
point of view, wake field simulations are very challenging. This is mainly related to the 
large computational resources which are needed for an appropriate discretization of the 
extremely high-frequency fields (in the X-FEL case, with frequencies of up to 5THz 
[8]). Furthermore, fully 3D simulations are required in order to account for the often 
complex geometries of the accelerator structures involved. 

4.2.1.2 Numerical Solutions in Wake Field Computation 

In the course of the past 20 years, several wake field simulation codes have been 
used with considerable success in accelerator design. Table 1 gives a brief overview on 
the available wake field codes and their properties. There exists an extensive literature 
on each of these codes. Of particular importance, however, are the numerical algorithms 
which have been developed in the context of wake field simulations. 

The moving window technique for ultra-relativistic bunches (Bane et al [9]) and the 
indirect path wake potential integration (Weiland [10], Napoly et al [11]) represent two 
important milestones in this development. In the moving window technique, 
discretization is applied only on a comparatively small computational grid which 
encloses the ultra-relativistic bunch while moving along the accelerator with the speed 
of light in vacuum. This approach allows for a very efficient calculation of short range 
wake fields. The indirect path wake potential integration allows for the computation of 
wake field contributions in outgoing beam pipes using a semi-analytical approach. The 
indirect integration technique was originally introduced for rotationally symmetric 
structures. Recently, a number of generalizations of this approach for arbitrary 3D 
geometries have been proposed [12, 13]. 

In a pioneering work of Zagorodnov et al [14], a novel 3D discretization technique 
for Maxwell equations with no longitudinal dispersion was introduced. This property of 
the numerical scheme is prerequisite for a moving window implementation, since in this 
case, the numerical phase velocity of longitudinal waves must exactly match the speed 
of light in vacuum. An important extension of this work was the Uniformly Stable 
Conformal (USC) scheme [15] for the Finite Integration Technique (FIT). This scheme 
allows for the application of a boundary conformal approximation in a moving window 
implementation. 

Code parallelization is another key issue in wake field simulation. The huge 
computational resources required by the simulation of short electron bunches in 3D 
geometry can only be handled in a parallel computing environment. Hereby, as the 
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bunch lengths become shorter, the accurate but computationally expensive conformal 
approximation of geometrical boundaries appears to be of less importance for the 
overall simulation quality. In many cases, the spatial resolution required by the short 
wave lengths involved in the simulations is by far sufficient for an appropriate geometry 
approximation even when a simple stair-step geometry representation is used. 

Recent developments have seen the implementation of high order Finite Element 
Methods (FEM) in wake field computations [16, 17]. These methods allow for highly 
accurate electromagnetic field solutions. At the current stage, however, the use of 
unstructured or boundary fitted grids associated with the application of these methods 
requires a static computational window. This is an important limitation on efficiency, 
since the computational costs associated with the spatial discretization increase linearly 
with the length of the cavity to be simulated. 

Table 1: Attempted listing of the available wake field codes. 

Code  Dispersionless Moving Window Conformal Parallel 
TBCI / URMEL – + – – 
NOVO + – – – 
MAFIA – + – – 
ABCI – + – – 
GDFIDL – – + + 
ECHO + + + – 
TAU3P – – + + 
CST Particle Studio – – + – 
PBCI + + – + 
NEKCEM – – + + 

 
In the following, the Parallel Beam Cavity Interaction (PBCI) code is discussed. 

PBCI is designed for massively parallel wake field simulations in arbitrary 3D 
geometry. The algorithms use a dispersionless split-operator scheme as well as a 
domain decomposition approach for balanced parallel computations. A description of 
these algorithms is given in Section 1.1.2. The rest of the paper is dedicated to a number 
of wake field applications in the context of the X-FEL and ILC projects. 

4.2.2 The PBCI Code 

4.2.2.1 Finite Integration Technique 

The discretization of electromagnetic fields in PBCI is based on the Finite 
Integration Technique (FIT) [18]. The semi discrete equations of FIT are 
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dt

ε ε

µ
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−
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where the unknowns, e
)

 and h
)

, are interpreted as electric and magnetic voltages along 
the edges of a dual-orthogonal pair of staggered grids and j

))
  is the excitation current. 
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The operator C  denotes the topological curl: εM and µM  are the positive definite and 
diagonal material operators of FIT. 

The integration of (4) in time is typically performed by applying an explicit time-
marching scheme of the form  

 ( )
1

1
nn n

tt ε

+
−⎛ ⎞⎛ ⎞ ⎛ ⎞ ∆= ∆ −⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

e e M jG
h h 0

)) ) )

) ) . (5) 

In (5), ( )t∆G  represents the specific evolution operator of the time integration scheme, 
and t∆  is the integration time step. For the commonly used leapfrog integrator this 
operator is explicitly given by 
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G

M C 1 M CM C
. (6) 

The leapfrog-FIT scheme has been thoroughly investigated in terms of stability and 
dispersion properties. In particular, for Cartesian grids it can be shown that the 
dispersion error is largest for waves propagating in the direction of coordinate axes (see 
below). This property of the scheme is responsible for the large dispersion error 
(numerical noise) which is often observed in particle beam simulations. This is because 
the longitudinal waves associated with the bunch motion dominate the high-frequency 
electromagnetic field spectrum. 

Yet another drawback of the leapfrog scheme is that no moving computational 
window can be used in wake field simulations with ultra-relativistic bunches. Since the 
longitudinal phase velocity of the numerical field solution does not exactly match the 
speed of light in vacuum, unphysical reflections are produced at the boundaries of the 
moving computational window. These errors increase systematically with simulation 
time, thus, deteriorating numerical accuracy. 

4.2.2.2 Dispersionless Split-Operator Scheme 

The idea of split-operator methods is based on the modification of the evolution 
operator ( )t∆G  such that no numerical dispersion occurs in the longitudinal, bunch 
propagation direction. The split-operator scheme used in PBCI was originally 
developed for the purpose of suppressing numerical noise in self-consistent Particle-In-
Cell (PIC) simulations [19]. It is obtained by decomposing ( )t∆G  into longitudinal and 
transversal parts using the second order accurate, Strang splitting procedure [20]. The 
resulting Longitudinal-Transversal (LT) splitting scheme reads 

 ( )
1

1
.
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n n n

t l t
t t tt ε
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−⎛ ⎞⎛ ⎞ ⎛ ⎞∆ ∆⎛ ⎞ ⎛ ⎞ ∆⎜ ⎟= ∆ −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

e e M jG G G
h h 0

)) ) )

�) )  (7) 

The propagators, ( )l t∆G  and ( )t t∆G , contain only spatial derivatives in the 
longitudinal and transversal directions, respectively. Thus, the two transversal updates 
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in (7) will not affect plane wave solutions propagating in the longitudinal direction, 
whereas the longitudinal update, ( )l t∆G , represents the time evolution of a simple one 
dimensional system. 

The LT scheme is completed by replacing each of the time evolution operators in 
(7) with second order accurate Verlet-leapfrog propagators. In matrix operator form 
they can be written as 

 ( )

2 3
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; ; ; ; ; ;

; 2
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G
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Exact numerical dispersion relations for the LT scheme using von Neumann 
analysis have been derived in [19]. Here, we only show the behavior of the numerical 
phase velocity as compared to the standard leapfrog scheme. Figure 1 shows normalized 
numerical phase velocities in the xz-plane, which are computed from the dispersion 
relations as, ( )/v ckω= , where ω  and k  are the numerical frequency and wave 
number, respectively, and c  is the speed of light in vacuum. In each of the two graphs, 
two different grid resolutions have been used. 
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Figure 1: Normalized numerical phase velocities for the (a) leapfrog and (b) LT schemes in the 
xz-plane. The solid and dashed lines show the normalized phase velocities for a grid resolution 

of 5 and 10 grid points / wave length, respectively. In (b), the “magic time step” is used. 

The dispersion error of the leapfrog scheme becomes largest in the directions of 
coordinate axes. Contrary, the LT scheme (Fig. 1b) minimizes the dispersion error in 
the longitudinal, z-direction. Thus, the effect of operator splitting consists in rotating the 
optimum dispersion direction in the longitudinal direction. In particular, at the so called 
“magic time step”, /t z c∆ = ∆ , the LT scheme has no numerical dispersion along this 
direction (see Fig. 1b). The exact propagation of longitudinal waves allows for a 
moving window implementation. Additionally, the integration scheme (4) is purely 
explicit in time which makes the time stepping algorithm easily parallelizable. 

4.2.2.3 Termination Conditions for Long Beam Pipes 

Wake fields generated by a geometrical discontinuity on the accelerator walls may 
catch-up the bunch at a very large distance (time) behind the discontinuity. For any 

z
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fixed traveling distance, z, within the structure, a longitudinal wake potential can be 
defined as 

 1 '( , ) ' , , ',
z

z z
z sW s z dz E x y z t

Q c−∞

+⎛ ⎞= =⎜ ⎟
⎝ ⎠∫ . (9) 

The total longitudinal wake potential is, then, ( , )zW s ∞ . The numerical integration of 
( , )zW s ∞  in the time domain, however, is often impossible. The distance where the 

bunch is caught by the wake fields is inversely proportional to the bunch length. Thus, 
in particular, for short electron bunches, the integration time becomes prohibitively 
large for a full time domain simulation. 

The simple approach used in PBCI for overcoming this difficulty is schematically 
shown in Fig. 2. The total wake potential is separated into a “direct part”, ( ,0)zW s , 
containing the incoming beam pipe and the discontinuity, and a “transient part” which 
accounts for the wake field force in the outgoing pipe. The direct wake potential is 
integrated according to (9) using the time domain simulation data. For the computation 
of the transient wake potential a modal expansion of the electromagnetic field solution 
in a transversal plane within the outgoing pipe is performed. Assuming the location of 
the plane at 0z = , the general form of such an expansion is 

 ( )( , ,0, ) ( ) ( , ) expn
z n z

n

E x y t d c e x y i tω ω ω
∞

−∞

= ∑∫  (10) 

where ( , )n
ze x y , is the n-th (TM) eigenmode solution in the pipe and ( )nc ω  is the 

frequency domain spectral coefficient of the mode extracted by Fourier analysis. Using 
(10) and the vanishing of wake fields at infinity, the wake potential contribution of a 
single wave guide mode within the pipe, 
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where ( )nk ω  is the wave number of the mode. The total longitudinal wake potential is, 
then, given by 

 1( , ) ( ,0) ( , ) ( )n
z z z n

n

W s W s e x y W s
Q

∞ = + ∑ . (13) 

From the point of view of numerical implementation, the above procedure includes 
the solution of a 2D eigenmode problem in the outgoing pipe, the Fourier analysis of the 
modal coefficients and the inverse Fourier transforms (12). Hereby, the number of wave 
guide modes considered in the analysis may be critical to the validity of numerical 
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results. However, since only a 2D eigenmode problem needs to be solved, the 
calculation of a large number (several hundred) of modes can be typically performed 
with a comparably small computational effort. 

 

 
Figure 2: Separation of the wake potential computation into a direct part and a transient part in 

the outgoing beam pipe. 

Apart from the explicit frequency domain representation of the modal coefficients, 
the procedure used in PBCI is equivalent to the approach proposed in [13, 21]. In [13], 
the inverse Fourier transform (12) is avoided by introducing centered differences in 
time and space for the time dependent modal coefficients. Maintaining the explicit 
frequency domain representation, however, is of advantage for purposes other than the 
calculation of wake potentials. In particular, this representation allows for the 
reconstruction of the full time domain simulation data at any downstream position in the 
outgoing pipe. 

 

 
Figure 3: Time domain simulation (top) vs. frequency domain reconstruction within the 

moving window (bottom) in the separating pipe of PITZ. For illustration, only 15 waveguide 
modes were used in the reconstruction. 

Such a situation is illustrated in Fig. 3. Exemplarily, the PITZ diagnostics section 
[22] (see also Section 4.2.3.2) is considered. About one third of the structure consists of 
a homogeneous pipe separating a small step at the entrance from the rest of the 
structure. The modal expansion is performed shortly behind the step. Using the 
frequency domain representation, the full electromagnetic field solution is reconstructed 
within the moving window at the end of the pipe. There, the time domain wake field 
simulation for the rest of the structure is resumed. This procedure results in considerable 

Incoming pipe Outgoing pipe 

z 

Direct integration path Expansion plane (z = 0) 

-20      -10        0       10        20

Expansion 

Ez / [kV / m] 

Reconstruction 

Moving window 

Beam 



 

 

45

computational savings when the cavity consists of a number of inhomogeneous sections 
separated by long beam pipes. 

4.2.2.4 Code Parallelization 

In 3D simulations involving short electron bunches, huge computational resources 
in terms of both memory and CPU time are needed. Such simulations can only be 
handled in a parallel computing environment (cluster). The parallelization model used 
in PBCI is based on a geometrical decomposition of the computational domain 
(partitioning) between the single processes in the cluster. Each processing node is 
responsible for performing computational tasks on the field data contained within the 
respective subdomain. 

In Fig. 4, the partitioning approach is shown schematically for a three-node cluster. 
Starting with the global computational domain, an orthogonal bisection procedure is 
recursively applied. The procedure results in a binary tree, whose internal nodes are 
intermediate subdomains whereas the leaf nodes correspond to active (computational) 
subdomains. Because of the local nature of the FIT operators, only field values residing 
on the subdomain boundaries need to be exchanged in the computation. For Cartesian 
grids, the orthogonal bisection approach minimizes the number of such boundary values 
and, thus, the communication overhead in the field update equations. 

 

 
Figure 4: Example decomposition of the computational domain on a three-node cluster. 

In order to determine the optimum partitioning which results in equally balanced 
workloads among the processing nodes, PBCI implements the load balancing scheme 
proposed in [23] for Particle-In-Cell simulations. The bisection procedure is performed 
on the basis of computational weights iW  which are assigned to each grid point. The 
total computational load associated with a given intermediate subdomain is, iW W=∑ , 
where the summation includes only grid points within the subdomain. If the subdomain 
has to be partitioned between N  processes, the bisection is such that  

 left left

right right

W N
W N

= ,      with    left 2
NN ⎡ ⎤= ⎢ ⎥⎢ ⎥

, right 2
NN ⎢ ⎥= ⎢ ⎥⎣ ⎦

 (14) 

where leftW , rightW  and leftN , rightN  are the computational weights and the number of 
processes, respectively, assigned to the two subdomains created by subdivision. This 
algorithm allows for an almost ideally balanced distribution of computational 

Global computational 
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Intermediate subdomain 

Active subdomain 

Domain bisection 
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workloads. In addition, it can be applied to simulations involving an arbitrary number of 
processors on heterogeneous clusters. 

4.2.3 Applications 

4.2.3.1 Tapered Transition for PETRA III 

PETRA III [6] will serve as a dedicated 3rd generation synchrotron radiation facility 
at DESY. The impedance model presented in [24, 29] shows that an important 
contribution to the total impedance budget of PETRA III comes from the tapered 
transitions which are installed between the “standard” vacuum chamber and the 
undulator vacuum chamber. A total of 16 such transitions will be used in the ring. The 
basic geometry of the tapered transition including the vacuum pumping ports is shown 
in Fig. 5. The detailed geometrical dimensions for two slightly different geometrical 
configurations (referred to as Variant 1 and 2) can be found in [25]. 

 

   

Figure 5: Geometry of the tapered transition together with a schematic view of the moving 
computational window. The subdomain bounds of the resulting parallel partitioning are shown 

as red lines for an exemplary computation on 7 processors.  

The wake potentials of the tapered transition have been calculated with MAFIA [26] 
and PBCI for different mesh resolutions. Although the electron bunch considered in the 
simulations is comparably long ( 10mmσ = ), the geometrical complexity of the structure 
with a total length of 1mL ≈ , necessarily leads to a large computational mesh. Figure 5 
illustrates the moving window approach used in PBCI. Also shown are the resulting 
subdomains for an exemplary parallel partitioning on 7 processors. 

In Fig. 6, the longitudinal wake potential for Variant 1 of the taper geometry is 
shown. The MAFIA result corresponds to a step size of 0.1mmz∆ = , 1mmx∆ =  and 

0.5mmy∆ = . Due to computer memory limitations it was not possible to use a finer 
mesh in MAFIA. It can be seen that MAFIA does not give sufficiently accurate results 
for this smoothly tapered structure although the step sizes in all directions are much 
smaller than the bunch length. A convergent result was obtained in PBCI using a 
discretization with 0.25mmx y z∆ = ∆ = ∆ = . PBCI converges to a wake potential which 
is about 30% lower than the MAFIA result. The loss and kick parameters obtained with 
the two codes are summarized in Table 2. 
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Figure 6: Longitudinal wake potential for Variant 1 of the tapered transition. The curves 
obtained for different mesh resolutions are shown. 

Table 2: Comparison of the loss and kick parameters of the tapered transition obtained with 
MAFIA and PBCI. 

Code 
||k  / 

(V/nC) 

)1(||k / (V/pC 
m) 

k⊥  / (V/pC) 

Variant 1 / MAFIA -7.4 -6.8 138.6 
Variant 1 / PBCI -7.1 -4.8 75.6 
Variant 2 / PBCI -5.2 -4.6 62.8 

 

4.2.3.2 Analysis of the PITZ Diagnostics Section 

In this application, the wake fields induced by the different components within the 
diagnostics double cross of the PITZ injector [22] are estimated. This section is the first 
in the X-FEL beam line which breaks axial symmetry. Thus, a 3D simulation of the 
structure is necessary. The geometrical layout of the ten-port vacuum device is shown in 
Fig. 7. The investigation includes three separate simulations for comparing the 
influence of the wake fields induced by the different geometrical obstacles within the 
structure. In the first simulation, the geometry was simplified to the beam tube 
including only the small step at the entrance of the section. The second simulation 
included the vacuum vessel without shielding tube. The third simulation considered the 
full geometry as shown in Fig. 7. 

The simulation results for an electron bunch of rms-length 2.5mm are summarized 
in Fig. 8. For resolving the small details of the geometry, a total of 250 million grid 
points were needed in the discretization. It was found, in particular, that the small step 
of 1mm height is responsible for 10-15% of the induced wake fields. The effect of the 
vacuum vessel inside the cross is about six times higher. The wake field effects are 
reduced, as expected, when the tube shielding is included. 
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Figure 7: Geometrical view of the diagnostics double cross in the PITZ injector. 
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Figure 8: Longitudinal wake potentials induced by the different obstacles within the PITZ 
diagnostics section. 

4.2.3.3 ILC-ESA Collimators 

 The collimator considered is part of the ILC-ESA test beam program [27]. A 
schematic view and the dimensions of the structure are shown in Fig. 9. Due to the 
extremely short bunch length ( 300 mσ µ= ) a discretization with 20 mx y z µ∆ = ∆ = ∆ =  is 
used. This results in a computational model with ~4.5·108 grid points. 

Figure 10 shows the convergence behavior of the longitudinal wake potential with 
grid resolution. It is interesting to note that convergence is obtained for 10-15 grid 
points / sigma. This figure corresponds to the standard resolution imposed by wave 
length in typical FIT simulations. Thus, in this case, the simple stair-step geometry 
approximation used in the current implementation of PBCI does not seem to influence 
simulation accuracy. 

Figure 11 shows the directly computed part of the wake potential vs. the wake 
potential transition in the outgoing pipe. The catch-up distance of the wake fields 
behind the collimator can be estimated to 2.4m. Due to this large distance, the transition 
potential is expected to dominate the solution. This is clearly seen in Fig. 11.  

Step 
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Figure 9: Beam and side views of the collimator #8 for the ILC-ESA test beam experiments. 
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Figure 10: Convergence of the wake potential vs. grid resolution for the ILC collimator #8. 
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Figure 11: Direct vs. transition wake potential. 150 waveguide modes were used in the 

computation of the transition wake potential. 

4.2.3.4 TESLA HOM-Couplers 

Both, the X-FEL and the ILC use accelerating cavities, based on the TESLA 
superconducting technology. The ~1m long cavities consist of 9 resonating cells which 
support an accelerating mode at 1.3GHz. At each side of the TESLA cavities two 
Higher Order Mode (HOM) couplers are mounted on the upstream and downstream 
beam pipes, respectively. HOM couplers are designed primarily for absorbing the 
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higher order modes which are exited by the bunch within the cavity. Figure 12 shows 
the beam view of the X-FEL HOM couplers which will be installed at DESY. Each of 
them contains a notch filter which reduces the coupling to the accelerating mode. 
Furthermore, they are rotated with respect to each other by 115º in order to maximize 
the total coupling to the dipole modes [28]. 

Figure 13 and 14 show the PBCI results for the transverse wake fields induced by a 
1mm bunch passing through the upstream coupler. The curves are shown for different 
grid resolutions in order to demonstrate the convergence behavior of the solution. In the 
simulations, a computational window of dimensions 100x100x10mm was used. Thus, a 
moderate discretization with 10 grid points / sigma in each direction already leads to a 
computational mesh with 108 grid points. This figure illustrates the need for 
parallelization in wake field simulations with short electron bunches. In the present 
case, a computer cluster with 384 processor cores was used. The computation time on 
this platform amounts to ~12 hours for the largest mesh used (20 points / sigma). 

 

 
Figure 12: Beam view of the X-FEL upstream and downstream HOM couplers. 
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Figure 13: Convergence of  Wx vs. grid resolution for the X-FEL upstream coupler. 

As in the case of the ICL collimator #8 (Section 4.2.3.3), numerical convergence is 
obtained for a mesh resolution with 10-15 grid points / sigma. This behavior is typical 
for difference schemes such as FIT. It indicates that, for short bunches, the mesh size 
condition imposed by the dominant wave length tends to be more restrictive than the 
one related to the geometry approximation. This is an important observation knowing 
the high computational costs which are required by the meshing procedure in the 
boundary conformal approximation [15]. 

Upstream coupler Downstream coupler
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Figure 14: Convergence of  Wy vs. grid resolution for the X-FEL upstream coupler. 
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4.3.1 Introduction 

 Understanding wake fields and impedances is of great importance for the 
performance of accelerators. Instabilities driven by the wakes of the beams can very 
much limit the perforce of accelerators in both beam intensity and quality. At Elettra 
there has always been a strong activity concerning wake fields, including also many 
measurements and observation on the storage ring like the impedance evolution with the 
addition of many low vertical gap vacuum chambers or the impedance increase due 
NEG coated chambers [6]. With the advent of the modern free-electron lasers in the last 
decade, the wakefield/impedance problem has significantly grown up since the beam 
quality may be seriously degraded, limiting thus the lasing process itself or even worse, 


