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Abstract 
 

The Report presents the results of the theoretical investigations 
for the resistive wall impedance of a laminated round tube and its 
applications to the PETRA III vacuum chambers as well. The general 
formulae for the impedances of a laminated round vacuum chamber with 
an arbitrary number of layers are given. The results for an arbitrary 
Lorentz-factor and in the ultra-relativistic limit are presented. An 
analysis of the longitudinal and transverse impedance of the e PETRA 
III vacuum chambers has been performed. The kick factor and the 
integrated gradient of the longitudinal wake potential have been 
calculated for the PETRA III vacuum chambers taking into account the 
finite thickness of the chamber wall and the coating of the wall with 
NEG material. The dependence of those parameters on the thickness of 
the wall and the NEG coating have been investigated, too. The results 
have been compared with the long range approximation of the resistive 
wall and the domain of validity for this approximation has been 
investigated as well. The contribution of longitudinal and transverse 
resistive wall impedances of the vacuum chambers to the total 
impedance budget of PETRA III was determined.  
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1. Introduction 

 
The present intermediate report includes the investigations performed within the framework 

of the PETRAIII-CANDLE Collaboration. CANDLE is participating in the study of the impedances 
and wakefields of the PETRA III synchrotron light source. The CANDLE participates in the 
following Tasks: 

 
1. The longitudinal and transverse AC and DC resistive wall impedance of a standard vacuum 

chamber of the ring with circular and elliptical cross sections. 
2. The longitudinal and transverse impedances of the elliptical vacuum chamber of the undulator 

and wiggler sections, including the aluminum vacuum chamber, which is coated with NEG 
material. The results should be compared with the published results of the measurements from 
existing synchrotron light sources. 

3. The study of the vacuum chamber heating due to resistive wake fields. 
4. The impedances due to the metal coating of the ceramic vacuum chamber of the injection 

kicker. 
The geometry and wall material of vacuum chambers, which are considered in the report, are 

presented in Table 1 [1].  
 

N Denomination Material Form 
Inner 

dimensions 
Coating 
material 

Coating  
thickness

Wall 
thickness

1 Standard arc Aluminum Elliptical
r1=40mm, 
r2=20mm 

- - 4mm 

2 
Standard straight 

section 
Stainless 

Steel 
Circular R=47mm    - - 2mm 

3 
Undulator 

vacuum chamber 
Aluminum Elliptical

r1=28.5mm,
r2=3.5mm 

- - 1mm 

4 
Wiggler vacuum 

chamber 
Aluminum Elliptical

r1=48mm, 
r2=8.95mm 

NEG 0.5-1µm 2.8mm 

Table 1: Main parameters of the PETRA III vacuum chambers. 
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 Electrical conductivities of the used materials are given in Table 2,  [1]. 
 

Material Conductivity (Ωm)-1 
Copper         58.0   . 106 
Aluminum         36.6   . 106 
Stainless Steel           1.5   . 106 
NEG (Ti V Zr )           0.31 . 106 

Table 2: Electrical conductivity of wall material. 
 

 In Table 3 the main machine parameters of PETRA III are summarized [2]. 
 

Energy 6 GeV 
RMS bunch length 12 mm 
Emittance 1 nm rad 
Coupling (εy/εx) 1 % 
Total current 100  mA 
Total number of buckets 3840 
Number of bunches 40 and 960 
Beam lifetime (100 mA) 2 h and 24 h 
Run lifetime Top-up 
Drifts for 5m-undulators 3 
Drifts for 2m-undulators 10 
Drifts for 20m-undulators 1  
Sections for wigglers 
(2 x 10 x 4 m) 

West and Nord 

Table 3: Main parameters of PETRA III. 
 

 In the framework of the PETRA III - CANDLE collaboration the following investigations 
have been done: 
 

1. The wake fields due to a point-like charge passing through a circular tube with multi-layer 
walls with an arbitrary number of layers have been calculated. The thickness of the wall is 
finite. In our model arbitrary properties of the material (including magnetic ones) can be 
used for the filling of the layers. The charge moves with an arbitrary constant velocity 
parallel to the tube axis. The problem is solved with the field-matching method for an 
arbitrary field harmonic. Exact solutions and ultra-relativistic limits for the field harmonic, in 
the inner part of tube and for the external fields as well, have been obtained. 



 5

2. A program based on the Mathematica 5 software package has been created to calculate the 
longitudinal and transverse impedance for an arbitrary number of layers and gamma factor 
(including the ultra-relativistic limit) .  

3. Numerical calculations of the longitudinal and transverse resistive wall impedances of the 
PETRA III vacuum chambers have been performed. The integral parameters: gradient of the 
longitudinal wake potential and transverse kick factor have been calculated as well. The 
resistive wall impedance budget for the PETRA III devices was composed. 

 
 

 
2. Resistive wall impedance for multilayer round tube 

 
A round tube is often used as a working model of vacuum chambers and other elements of 

the accelerating structures. Some components of accelerating facilities have a round form in reality 
(see, for example, [1]), but even in the case of more complicated cross sections the round tube 
approximation permits one to do the qualitative estimation of impedances of these structures. The 
classical ultra-relativistic formulae [3,4], generally used for the impedance calculation, were derived 
for the homogeneous unbounded single-layer tube [3] and generalized for the case of one finite-
width metallic [3] or ceramic [5] internal cover. The methods based on the numerical rigorous 
solutions of the boundary conditions equations, using recursive expressions for the arbitrary number 
of layers, are given in [5-8]. An analytical solution for a single layer tube with a finite thickness of 
the wall was obtained in [9], and an expression for the transverse dipole impedance of a two-layer 
tube (with an externally unbounded outside layer) was derived in [8]. An increasing number of  
layers leads to a growing number of the boundary equations, which involves difficulties especially 
in the process of finding an analytical solution. Some analytical and numerical studies of the 
impedance for multi-layer tube are given in several references [10-17]. A simple exact formula for 
the monopole impedance of the two-layer tube with a finite wall thickness in the ultra-relativistic 
limit has been derived in [18]. For the same geometry more complicated formulae, but which can 
still be used for direct numerical calculations, are given in [19] for the multipole components of the 
impedance. The case of a three-layer tube is already difficult to solve [20], caused by the 
complications of modelling and calculations [21].   
 The plain disk-like charge was taken as a basic model for the driving charge in references [3-
7, 18, 19]. In the ultra-relativistic limit the model allows an interpretation of the results as the 
multipole expansion of the impedance of a point-like charge [19, 22], but for a non-relativistic beam 
the fields pattern, generated by a disk-like charge,  differs essentially from the point-like one. In this 
report we are using the basic definition of the impedance [3] with a point-like charge as a driving 
source. We are presenting the field of a driving point-like charge in terms of field harmonics [23] 
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and we have derived the internal and external exiting field components for an arbitrary velocity of 
the charge and for a multi-layer tube with finite wall thickness and an arbitrary number of layers. 
The ultra-relativistic limit of the solution is obtained as well. The results have been compared with 
the existing ones [3-5, 9, 18], and the uniform convergence of the exact solution to the ultra-
relativistic approximation has been shown as well.  

For an arbitrary γ  (relativistic factor), and a homogeneous infinite tube (with arbitrary cross-

section) the longitudinal and transverse coupling impedances per unit length may be expressed as a 
Fourier transformation of the longitudinal or transverse normalized component of the Lorentz force, 
which is independent from the longitudinal coordinate ( )z [5]: 

 

( ) ( )
e

rrErrZ s
o
z

s

rr
rr ,,,,,,||

γωγω −= ,    (2.1) 

( ) ( ) ( )[ ]( )⊥⊥⊥ ×−−= s
o

s
o

s rrBvrrE
e
jrrZ rrvrrrrrrr

,,,,,,,,, γωγωγω ,  (2.2) 

 
where e  and zvv =  are the value and velocity of the driving charge, traversing the tube parallel to 
the longitudinal axis; ω  is the revolution frequency, rrs

rv ,  are the positions of the driving and test 

charge;  oE
v

 and oB
r

 are the electric field strength and the magnetic induction respectively, produced 
by the charge. Both, the longitudinal and the transverse impedance may be presented as a sum of 
two terms in the general case of a wall with a finite conductivity:   
 

∞+= |||||| ZZZ R , ∞
⊥⊥⊥ += ZZZ R vvv

,     (2.3) 

 
where the second term describes the impedance of an ideal conducting wall and the first one 
presents the impact of the finite conductivity of the wall, and can be interpreted as the resistive wall 
impedance. 
 As it was mentioned above, for the adequate presentation of the impedance it is necessary to 
take into account the finite thickness of the vacuum chamber wall and its lamination.  

We are examining the homogeneous infinite multi-layer round tube with finite wall thickness 
and with vacuum in its inner and outer sides (Fig.1). The outer and inner radii of the tube are equal 
to 0a  and ma  ( m  the layer’s number) correspondingly. Each layer is filled with a material with an 
arbitrary dielectrical permittivity iε  and magnetic permeability iµ  ( )mi K,3,2,1= . The point-like 

charge is moving with the constant velocity v  (less than speed of light c ) parallel to the axis of the 
tube with an offset sr . 
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Fig.1: Point-like charge in a multi-layer tube with a finite wall thickness. 
 
The modal expansion terms of the resistive wall longitudinal coupling impedance for the 

round multiplayer tube with an arbitrary number of layers, based on the exact solution of the 
Maxwell equations, are presented below: 
 

                       ( ) ( ) ( ) ( )ϕϕλτ n
e

EnDrI
ee

EZ z
n

o
zn coscos1

2||

∞

−−=−= .                                     (2.4) 

For the same case, the harmonic components of the transverse impedance can be presented in the 
following way: 
 

                         ( ) ( ) ( ) ( ) ( )ϕτϕλτϕ n
e

EjnrID
e

vBE
e
jZ r

n
oo

r
n
r coscos1 2

2
2

∞

⊥ −′−=−−= ,  (2.5) 

( ) ( ) ( ) ( ) ( )ϕτϕλτ ϕϕϕ njEn
rk
rInD

e
vBE

e
jZ

v

no
r

on sinsin1 2
2

∞
⊥ −=+−= , 

 
where 2D  is a constant coefficient, ( )xIn  is a modified Bessel function of the first 
kind ( )K,2,1,0=n , τλ vk= , vkv ω=  and 1−= γτ .  The second term in (2.4), (2.5) presents the 

contribution the impedance from ideal conducting wall: 
 

( )
( ) ( ) ( ) ( ) ( )( )mnnmnn

mn

n
o

r aIrKaKrI
arI

rIjnUvBE λλλλ
λλ

λβϕ >>
<∞∞ −−=−= 2 , 

                    ( )
( ) ( ) ( ) ( ) ( )( )mnnmnn

mn

n
o

z aIrKaKrI
aI

rIUE λλλλ
λ

λτ
>>

<∞ −−= , 0=∞
zjvB ,  (2.6) 

                         ( )
( ) ( ) ( ) ( ) ( )( )mnnmnn

mn

n
r aIraKr

aI
rjUvBE λληλλξ

λ
λξ

βϕ >>
<∞∞ −==

0
2 , 

 
where mar ≤≤0 ( ma  is the inner radius of the tube),  
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                         ,
⎩
⎨
⎧

≤
≥

=>
ss
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ss
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with 10,0 =δ  , 00,0 =>nδ  and ( )xKn  is the modified Bessel function of the second kind 
( )K,2,1,0=n ; The external field components ( ∞<≤ ra0 , where maa >0  is the external radius of 

the tube) may be presented in the following way: 
 

                     ( ) ( ) ( ) ( )rKDrjvBrKDrE n
r
zn

r
z λτλλτλ 34 , −==    (2.8) 

                              ( ) ( ) ( ) ( ){ } 2143143 rKjDDrKjDD
E
E

nnr
r

r

λλϕ
−+ −±+=

⎭
⎬
⎫

 

                             ( ) ( ) ( ) ( ){ } 214
2

314
2

3 rKDjDrKDjD
vB
vB

nnr
r

r

λβλβϕ
−+ −−+±=

⎭
⎬
⎫

 

 
The coefficient 2D  in (2.5) for the impedance and the coefficients 3D  and 4D  (2.8) for the external 
radiation are being determined by the following formulae (the coefficient 1D  is used in the 

expression for the internal field, which is not presented here): 
 

                    4,3,2,1, =−= ∞ iGGjvBD ii ϕ                                                           (2.9) 

 

with ( ) ( )
( )mn

sn
n

m aI
rI

a
ZevB

λ
λβδ

πϕ .0
0 2

2
−=∞ , Ω= π1200Z  the impedance of free space, and 

 

                                  ( ) ( ) 41421 FIFjnIG mn
m

mn ξτ
ξ

ξ
−= , 

                                  ( ) ( ) 21422 FIFIG mnmn ξτξ +′= , 

                                  ( ) ( ) ( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Π′−Π−Π−= 4213 mn

m

mn
mnmn IIjnIIG ξ

ξ
ξξτξτ  

                                  ( ) ( ) ( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Π′′−Π′−Π′−= 4214 mn

m

mn
mnmn IIjnIIG ξ

ξ
ξξτξτ             (2.10) 

                                  ( ) ( ) ( )( )43332
2

1
~~ GGIGIGjnIG mnmn

m

mn Π−Π′+′+= ξτξβ
ξ

ξ  

 
where 
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( ) ( ) ( )

( ) ( ) ( )04,01,3,
0

0

02,03,
2

1,
0

0

ξτξ
ξ

ξ

ξτξβ
ξ

ξ

nsnss
n

s

nsnss
n

s

KHKHHjnK

KHKHHjnK

+′+−=Π′

+′+=Π
 

                    ijjiijF Π′Π+Π′Π−=      (2.11) 

 
with τξ 00 akv=  and τξ mvm ak= . The coefficients ( )4,3,2,1,,, =jsH js  are the elements of a 44×  

matrix, which is a product of m ( m  is a number of layers) matrixes: 
 

  ( ) ( ) ( ) ( ) ( )121 QQQQH mmm ))
L

))) −=       (2.12) 

 
The matrix ( ) ( )miQ i K

)
,2,1, =  is also a 44×  matrix, in which the electrical properties of the material 

of the i-th layer and its geometrical dimensions are included: 
 

( )

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−
−

−

=

224241

12113231

424122

32311211

0

0

qqq
qqqq
qqq

qqqq

Q ii

ii

i αα
αα

)
    (2.13) 

 
where   
 

              2
0

0

1
βε

ε
µ
µα

i

i
i =       (2.14) 

and 
( )i

ii Uaq 3111 χ−−= ,  ( ) ( )( )i
i

i
i

ii

v UaUa
a

nkjq 32112 += −χ
,  ( )i

ii Uaq 2122 χ−= ,    

( )i

i

i

i

nU
a

ajq 1
10

31
−=

µ
µ ,    ( )

( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= − 2

1
2

0
41

0

2
32

ii

i

i

i
i

i
v a

UnUakq
χµ

µ
ε
εβ ,   (2.15)  

( )i

iv

ii U
k

aq 1

2
01

41 µ
χµ−−= ,   ( )i

i

nUjq 1
0

42 µ
µ

= . 

 
In (2.15): 1−ia  and ia  are the outer and inner radii of the i -th layer with the arbitrary dielectric 
permittivity iε  and magnetic permeability iµ  ( )mi K,3,2,1= ; ( )0Re222 >−= iiivi k χµεωχ  is a 
transverse propagation constant. The functions ( )i

jU  ( )4,3,2,1,,2,1 == jmi K  have the following 

form: 
 

( ) ( ) ( ) ( ) ( ) ( ) iiiiiiiniiniiniin
i aadShaKaIaIaKU 1111 −−− ≈−= χχχχχχ  
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( ) ( ) ( ) ( ) ( ) ( ) iiiiiiiniiniiniin
i aadChaKaIaIaKU 1112 −−− ≈′−′= χχχχχχ    (2.16) 

( ) ( ) ( ) ( ) ( ) ( ) iiiiiiiniiniiniin
i aadChaKaIaIaKU 1113 −−− −≈′−′= χχχχχχ  

( ) ( ) ( ) ( ) ( ) ( ) iiiiiiiniiniiniin
i aadShaKaIaIaKU 1114 −−− −≈′′−′′= χχχχχχ  

 
where iii aad −= −1  is the thickness of the i -th layer. 

The above functions (2.16) satisfy the following expression: 
 

( ) ( ) ( ) ( ) ( ) 12
13241

−

−=− iii
iiii aaUUUU χ        (2.17) 

 
An approximate presentation of the functions )( j

iU , given in (2.16), is often used to construct 

asymptotic expressions of the impedance [4, 15,16,19] which is valid for all frequencies where the 
skin depth of the layer is mach smaller as the inner radius of the tube, i.e. for all practically 
important cases. 

 
3. Ultra-relativistic limit 

 
The results, presented in previous Chapter, can be used to investigate the impedances of a 

multi-layer tube and also the external radiated field for an arbitrary number of layers. The results are 
valid for an arbitrary value of γ . Furthermore, an ultra-relativistic approximation, which permits an 
accurate calculation of the impedances and external radiation in the case of large γ (which is 

appropriate enough for such facilities as PETRA III), is presented below: 
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1
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For 1=n : 
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For 1>n : 
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The following expressions are used in (3.1)-(3.3): 
 

0

2
0

2
0 2 accb VBakAakBV ′+′+′=′ ,  

( ) ( ) ( ) ( )
0

2
0

2
0 2 accb VBakAakBV ±±±± ++= ,       (3.4) 

( ) Eca CakV += 2ln 00
τ   

 
with the Euler constant 577216.0=EC , Ω= π1200Z the impedance of free space, and 
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1
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aknnF

AaknFBQ
AaknFBQ
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( ) ( ) ( ) ( ) ( )( )[ ]±+±+± −++= 42;3124;1344;3322;11 hhjhhDetAm

))))
, ( ) ( ) ( )[ ]±+± −= 43;3123;11 hjhDetBm
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  (3.5) 

( ) ( )[ ]++ +=′ 44;2342;21 hjhDetAm

))
, ( )[ ]+=′ 43;21hDetBm

)
. 

 
The coefficients ( ) ( )

mmm ABA ′±± ,,  and mB′  (3.5) can be expressed as combinations of the limiting form 

of the elements of the matrix ( )mH
)

: 
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Thus, the impedances may be presented as a multipole expansion series: 
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where  
( )

( )

mc

n
n

T ak
Zn

Z ||
~

~ =           (3.10) 

The above expressions satisfy the Panofsky-Wenzel theorem [5]: 
 

( ) ( )n
c

n ZkZ ⊥⊥ =∇
r

||      (3.11) 

 
4. Numerical investigations 

 
Using the results, presented in Chapters 2 and 3, the following impedance calculation for 

PETRA III has been made:  
  
4.1 Longitudinal and transverse impedances- modal expansion terms.  

The following graphics have been made for the PETRA III straight section (see Table 2, No 2). 
 

 
 

Fig. 2: Real (left) and imaginary (right) parts of longitudinal impedance multipole distribution ver-
sus frequency. Tube material: stainless steel, inner radius of the tube: 47mm. The wall thickness is 

  2mm. 
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Fig. 3: Real (left) and imaginary (right) parts of transverse impedance multipole distribution versus 

  frequency. Tube material: stainless steel, inner radius of the tube:  47mm.  The wall thickness is 
  2 mm. 
 
The graphs, presented on Fig. 2 and 3, are calculated for the ultra-relativistic limit according to 
formula (3.8) for the longitudinal impedance and according to formulae (3.10) for the transverse 
impedance. For a wall thickness of 2 mm the skin depth is equal to the wall thickness when the 
frequency is equal to kHzf 42~0 . For frequencies 0ff >>  the above results coincide with the 

results, calculated according to formulae, which are generally used for the impedance estimation and 
have been obtained for unbounded tube wall [3]: 
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( ) ( ) 0~~

|| >= nforkbZnZ nn
T  

 
where mab =  is the inner radius of the tube, 0ςκ k=  is a dimensionless wave number, and 

 
( ) 31

0
2

0 2 σς Zb=                         (4.2) 

 
is a characteristic parameter of the tube, with σ  the conductivity of the wall material [4]. 
 

4.2 Longitudinal and transverse impedances – presentation of the modal expansion terms.  
Low-frequency region 

 
The difference arises for the frequencies 0ff ≤ . Figures 4 and 5 show the real and 
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imaginary parts of the longitudinal monopole and transverse dipole impedance ( ( )0
||

~Z  and ( )1~
TZ
v

 in 

(3.8) and (3.10)) in the kHz-frequencies region in comparison with the results, obtained according to 
formulae (4.1). 

 

 
 

Fig. 4: Real and imaginary parts of longitudinal monopole impedance (Exact solution) in the kHz- 
  frequency region in comparison with the results, obtained according to formula (4.1) (Approx- 
  imation). 

 

 
 

Fig. 5: Real and imaginary parts of the transverse dipole impedance (Exact solution) in the kHz- 
    frequenciy region in comparison with the results, obtained according to formulae (4.1) (Approx- 
    imation). 
 
As one can see from Figure 5, the transverse impedance, obtained by general formulae (4.1),(4.2), 
diverges at 0=ω , while the same one, obtained by the exact formula has a finite value at zero 
frequency. This value is equal to ( )( ) bZjZ n

T πω 20 0−==  and does not depend on material, or 

thickness of the layers and the multipole number. 
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4.3 NEG coating 
 
 If the inner wall of the tube, which has been investigated in sections 4.1 and 4.2, is coated 
with NEG material ( )1161031.0 −−Ω⋅= mNEGσ  with a thickness of 1 µm, the frequency that 
corresponds to the skin depth equal to cover thickness is in order of GHz820~0f . For this case, as 
it can be seen from Fig. 6, the impact of the NEG-coating is visible for frequencies GHzf 105 −≥ . 

 

 
Fig. 6: Real and imaginary parts of the transverse dipole impedance for a stainless steel tube with 

   an inner radius  of 47 mm (wall thickness 2 mm) with an inner NEG coating, which is 1 µm and 
   0.5 µm  thick. The impedance of a stainless steel (SS) tube without coating is also shown, 

   calculated according to the formulae (3.8) and (3.10) (points) and formula (4.1) (solid curve).  
   The solid curve coincides with the dotted curve. 
 

4.4 Frequency-dependent conductivity 
 
 Taking into account the frequency dependence of the conductivity of the metal, the 
conductivity can be presented as: 
 

( ) ( ) 11 −−= ωτσωσ jst     (4.3) 

 
where stσ  is the static conductivity and τ  is a relaxation time. A comparison of the longitudinal 

impedance of the stainless steel tube with a frequency dependent (AC) and a frequency independent 
(DC) conductivity is presented in Fig. 7. The relaxation time is taken to be equal to 

sec102.3 14−⋅=τ , which corresponds to the relaxation time of iron at a temperature K77=T . The 

transverse dipole impedance for the same tube is presented in Figure 8.  
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Fig. 7: Longitudinal monopole impedance of a stainless steel tube (inner radius 47 mm, wall 

thickness 2 mm) for DC and AC conductivities. 
 

 
Fig. 8: Transverse dipole impedance of a stainless steel tube (inner radius 47 mm, wall thickness 

 2 mm) for DC and AC conductivities. 
 

 The results, given in Figure 7, may be compared with the similar curves for a longitudinal 
monopole impedance with an AC conductivity, presented in [4], where the dimensionless parameter 

0ςτ c⋅=Γ  is equal to 0.4. In our case (Fig. 7, 8) the same parameter is equal to 0.048. For a copper 

tube with the same inner radius the value of Γ  will be noticeably larger: 07.1=Γ  at KT 77=  and 
14.0=Γ  for KT 273= . 

 
4.5 Transverse loss factor (kick factor) 

 
 The transverse loss factor for a beam with a RMS longitudinal size σ  can be determined as 
an integral in frequency domain in the following way [5]: 
 

( ) ( ) ( ) ( )[ ] ( )∫∫
∞∞

∞−

==
0

,Im1,
2
1 σωω

π
σωω

π
σκ hZdzhZdz TTT    (4.4) 

 
where for a Gaussian beam: 
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( ) [ ]222exp, ch σωσω −= .        (4.5) 

 
For the dipole mode ( )1=n  and 0=ϕ , using (3.9) and (4.4), it may be written: 

 

( ) ( ) ( ) ( )[ ] ( )∫
∞

==
0

1 ,~Im1~ σωωω
π

σκσκ hZd
ar T

ms

T
T       (4.6) 

 
where ( )σκT

~  is a loss factor per unit offset and usually it is called kick factor. For practical 

calculations often the long-range approximation is used [24]: 
 

( ) ( )41
22

~ 0
2132 Γ=

σσπ
σκ Z

a
c

zm
T       (4.7) 

 
As it was shown in [25], the above expression (4.7) is a main term of the series expansion of 

the integral (4.4) in powers of the parameter zσς 0  with ( )n
TZ~  expressed by formulae (4.1). For the 

PETRA III vacuum chamber of the standard straight section (see Table 1, No2) and a bunch length 
of mm12=zσ  the calculation for both cases gives the same result: ( ) 2

T mpCV0.05431=σκ . 

Above formulae do not take into account the finite thickness of tube wall. For the tube with a finite 
wall thickness the formulae (3.2) should be used. For a single layer ( )1=m  stainless steel tube with 
a wall thickness of mm2  (see Tab. 2, No2) one obtains: ( ) 2

T mpCV0.05439=σκ . The difference 
is less than 0.2%. For the same tube with NEG-coating (with a coating thickness of µm1 ) the value 
of  the kick factor is about 12% larger: ( ) 2

T mpCV0.06073=σκ . In Fig. 9 the dependence of the 

kick factor on thickness of the wall is shown for the single layer tube and the NEG coated tube as 
well. 

It follows from Fig. 9 that the kick factor for both cases is almost constant in a wide range 
down to a wall thickness of 0.01mm. In this region the kick factor practically coincides with the 
long-range approach and is independent from the wall thickness. In Fig. 10 the comparison of kick 
factor with the long- range approach is shown in more detail.  
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Fig.9: Kick factor versus tube wall thickness. Solid curve (1): single-layer stainless-steel tube with a 

radius of 47mm; dashed curve (2): the same tube with an inner NEG coating with a thickness of 
1µm. The long-range approach is also shown (3). 

 
 

 
 

Fig.10: Single-layer tube kick factor versus wall thickness (solid curve) and long range approach 
   (dotted). 
 
The small difference between the long-range approximation and the exact curve is independent from 
the tube wall thickness and is caused by the low-frequency part of the impedance (see Fig. 5). The 
next figure (Fig.11) shows the small, damped oscillations of the kick factor, caused by the NEG 
coating. The kick factor for the thick wall is independent from the wall thickness and the value is 
close to that of a NEG-coated tube with an infinite wall. 
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Fig.11: Kick factor of a NEG coated tube versus wall thickness. 
The tube radius is 47mm and thickness of the coating is 1µm. 

 
Another limiting case is that of a very thin metallic wall. In Fig. 12 the kick factor of a NEG coated 
(thickness: 1 µm) stainless steel tube with a very thin wall is compared with the kick factor of a 
tube, which is completely made from NEG material with a wall thickness of 1 µm.    
                                                                                                                                                    

 
Fig.12: Kick factor of a NEG coated tube versus wall thickness for the case of very thin stainless 
steel wall; tube radius is 47mm, coat thickness is 1µm (dotted curve). The dashed line is the kick 
factor for a tube with walls manufactured from NEG material with a thickness of 1 µm. The long-

range approach of the kick factor (solid line) is also shown. 
 

 The other vacuum chambers from the list of Table 1 have elliptical cross sections (see No 1, 
3 and 4 in Tab. 1). In the present report, these chambers are treated as circular chambers, using the 
smaller parameter of the ellipse as an equivalent circle diameter. In the Fig. 13, 14 and 15 the kick 
parameter is plotted versus tube thickness for the corresponding vacuum chamber cross sections 
(PETRA III standard arc, undulator and wiggler vacuum chambers). From the figures it follows, that 
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the exact value of the kick factor is without NEG coating close to the value calculated with the long-
range approximation formula. Without NEG coating this is true for all four vacuum chambers from 
Tab. 1. If a vacuum chamber is coated with NEG material the difference may be significant, 
especially for a tube with a small inner radius (see Table 4). 
 

 
Fig. 13: PETRA III standard arc (Tab.1, No.1): kick factor versus wall thickness, calculated for a 

circular pipe without NEG coating and with an inner radius of 20 mm (solid); long-range approach 
  (dashed). 

 

 
 

Fig. 14: Undulator vacuum chamber (Tab.1, No.3). Kick factor versus wall thickness, calculated for 
a circular pipe without NEG coating and with an inner radius 3.5 mm (solid); long-range approach 

  (dashed) 
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Fig. 15: Wiggler vacuum chamber (Tab.1, No.4). Kick factor versus wall thickness, calculated for a 

circular pipe with an inner radius of 8.95 mm: without NEG coating (diamond), and with NEG 
coating with a thickness of 0.5 µm (square) and 1 µm (triangle), long-range approach (dashed). The 

kick factor (17.3 V/pC m2) for a tube, manufactured entirely of the NEG material, is also shown 
using the long-range approach (4.7). 

 

kT  (V/pC m2) 

N Form  
Inner 

 dimensions 
Wall  

thickness 
exact, 

without 
coating 

exact,  
coating 

thickness 
0.5µm 

exact,  
coating 

thickness 
1µm 

Long- 
range 

approach

1 Elliptical Al 
r1=40mm, 
r2=20mm 

4mm 0.142916 0.19532 0.24749 0.142693

2 Circular SS R=47mm     2mm 0.05439 0.05760 0.06073 0.05431

3 Elliptical Al 
r1=28.5mm, 
r2=3.5mm 

1mm 26.6556 36.4348 46.1744 26.6249 

4 Elliptical Al 
r1=48mm, 
r2=8.95mm 

2.8mm 1.59461 2.17938 2.76163 1.59229 

Table 4:  Kick factors due to resistive walls for four different types of vacuum chambers. The 
vacuum chambers with elliptic cross sections have been approximated with round chambers. 

 
4.6. Total kick parameter for resistive walls  

 
 The total kick parameter is calculated in the following way: 
 

∑ ⊥⊥ ′=
i

iitotal kk β
β
1     (4.8) 
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where iβ  is the beta function for the corresponding devices ( m5=yβ  for undulator section, 

m15=yβ  for wiggler section and m20=yβ  for the standard arc), β  is the average beta 

function ( m20=β ), ( )mpCVLiii /⊥⊥ =′ κκ , with iL  the length of corresponding device. Below, 

in Table 5 the parameters of PETRA III used for the total kick parameter calculation are given. 
 

Device Material gap/mm kT (V/pC m2) Length (m) k’T (V/pC m) 
Undulator Al 7 26.6556 55 1466.06 
Wiggler Al+NEG 17.9 2.76163 80 220.93 

Arc Al 40 0.142916 1411 201.654 
Table 5: Resistive wall kick factors for PETRA III devices. 

 
Therefore, the total resistive wall kick parameter of the PETRA III devices is equal to 
 

mpCVkk
i

iitotal 7341
=′= ∑ ⊥⊥ β

β
   (4.9) 

 
4.7 Integral gradient of the longitudinal wake 

 
 The longitudinal wake field produces an additional gradient for the synchrotron oscillations. 
Since the field travels with the bunch it causes a bunch lengthening and a shift of the incoherent 
synchrotron frequency, but no change of the coherent synchrotron frequency [26]. A characteristic 
quantity for the longitudinal effects is the integral of the gradient of longitudinal wake potential, 
which is defined in the following way: 
 

( ) ( )( )[ ]∫
∞

−=
0

0
||||

22

Im11 σωω
π

κ ck
c eZkd .    (4.10) 

 
In Table 6 the parameter ( )1||κ  due to the resistive wall is given in the cases of no NEG coating, and 

with NEG coating with a thickness 0.5 µm and 1 µm for the PETRA III vacuum chambers (Table 1, 
No 1-4). 
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k|| (1) (V/pC m2) 

N Form  
Inner 

 dimensions 
Wall  

thickness 
exact, 

without 
coating 

exact,  
coating 

thickness 
0.5µm 

exact,  
coating 

thickness 
1µm 

1 Elliptical Al 
r1=40mm, 
r2=20mm 

4mm 0.049569 0.049727 0.050320 

2 Circular SS R=47mm     2mm 0.104300 0.104525 0.105180 

3 Elliptical Al 
r1=28.5mm, 
r2=3.5mm 

1mm 0.283177 0.284060 0.287424 

4 Elliptical Al 
r1=48mm, 
r2=8.95mm 

2.8mm 0.110757 0.111104 0.1124226

Tab. 6: The longitudinal parameter ( )1||κ  for the PETRA III vacuum chambers (Table 1, No 1-4).  

 
It is shown in Tab. 6, that the presence of the NEG coating is not significant for the calculated 
parameter ( )1||κ . In Table 7 a summary of parameters ( )1||κ  is presented for the PETRA III devices. 

 

Device Material gap/mm k|| (1)(V/pC m2) 
Length 

(m) 
k’|| (1)(V/pC m) 

Undulator Al 7 0.283177 55 15.5747 
Wiggler Al+NEG 17.9 0.1124226 80 8.99381 

Arc Al 40 0.049569 1411 69.9419 
Table 7: The parameters ( )1||κ  due to the resistive wall for the PETRA III vacuum chambers.  

 
The total gradient of longitudinal wake is calculated as a sum over all vacuum chambers: 
 

mpCVkk
i

itotal 5.49)1(')1( |||| == ∑      (4.11) 

As it can be seen from the previous numerical data (see Tabs 4-7), the NEG coating increases the 
kick and loss parameters. In the limit of a very thick coating the parameters tend to values for a pipe, 
which is composed totally from the NEG material (Fig. 16). 
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Fig.16: Kick factor (solid) and integral gradient of the longitudinal wake (dashed) versus cover 
thickness. The long-range approximation is plotted as well. The pipe radius is 8.95 mm, the wall 

material is aluminum, which is coated with NEG material. 
  

4.8 PETRA III resistive impedance budget 
 

 The instability threshold for mode coupling instabilities can be estimated from the tune shifts 
of the lowest order modes in the longitudinal and transverse planes [27]: 
 

( )1
2

,
4 ||

00 k
hV

TRIQQk
eE
TI

Q
rf

B
ss

B =∆=∆ ⊥π
β

β ,   (4.12) 

 
where BI  is the single bunch current, mR 367=  is the mean machine radius, and β  is the average 

beta function. The following tolerable tune shifts are assumed [3]: 
 

5.0,5.0 =
∆

=
∆

s

s

s Q
Q

Q
Qβ     (4.13) 

 
The maximal acceptable values for parameters ⊥k  and ( )1||k  can be obtained from the equations 

(4.12) and (4.13) [27].  Table 8 presents the total longitudinal and transverse impedance budget (in 
terms of ⊥k  and ( )1||k ) for PETRA III (in the case of the single bunch current of 2.5mA) and 

resistive wall contribution to the budget. 
 

PETRA III ( ) ( )mpCVk 1||  ( )mpCVk⊥  

Budget (total) 10900.00 (100%) 4800 (100%) 
Resistive walls 94.5 (0.87%) 734 (15.3%) 
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Table 8: Total impedance budget and resistive wall impedance contribution to the budget for 
PETRA III. 

 
The longitudinal and transverse resistive wall contributions to the total impedance budget are equal 
to 0.87% and 15.3% respectively. 

5. Conclusion 
 
In the present Report the results of theoretical and numerical investigations have been 

presented. The new results, given in the Chapter 3, may be considered as a final solution for the 
multilayer round tube impedance problem.  The exact formulae are obtained for the point-like 
charge coupling impedance for the case of arbitraryγ . The formulae are compact and are convenient 

both for theoretical investigations and numerical calculations. The contribution of the resistive wall 
impedance in terms of the kick factor and the integrated gradient of the longitudinal wake potential 
to the total impedance budget has been estimated. The goal of future investigations will be to obtain 
an improved solution for the impedances of multilayer vacuum chamber with elliptical cross section 
and its application to the PETRA III vacuum chambers with elliptical cross section.  

 
6. Acknowledgment 

 
The authors would like to express thanks to Klaus Balewski, Winfried Decking and Vitali 

Khachatryan for stimulating discussions. This work was partly supported by CRDF Grant ARP2-
3233-YE-04. 
 

7. References 
 

1. private communications: 
DESY vacuum group: Vacuum Chamber Cross Sections,  
S. Calatroni, CERN: resistivity of TiVCr films. 

2. “PETRA III: A low Emittance Synchrotron Radiation Source”, Technical Design Report, 
DESY 2004-035; http://petra3.desy.de/project_description 

3. A.W. Chao, Physics of Collective Beam Instabilities in High Energy Accelerators (Wiley, 
New York, 1993).  

4. K.L.F. Bane and M. Sands, SLAC-PUB-95-7074, December 1995.  
5. B.W.Zotter and S. A. Kheifetz, Impedances and Wakes in High-Energy Particle 

Accelerators, World Scientific, Singapore, 1997.  
6. B. Zotter, Part. Accel. 1, 311 (1970).  
7. B. Zotter, CERN Technical Report No. 69-15, 1969. 



 26

8. A.Burov and V.Lebedev, FERMILAB-Conf-02/100-T, June 2002. 
9. A.M. Al-khateeb, O. Boine-Frankenheim, R. W. Hasse, and I. Hofmann, Phys. Rev. E, 71, 

026501 (2005). 
10. J.D Jackson, SSC-N-110, Jan 1986.  
11. D. Briggs, SSCL-512-REV1, Jun 1992. 
12. E. Keil and B. Zotter, EPAC’98, Stockholm, pp. 963-965, 1998. 
13. A. Piwinski, IEEE Trans.Nucl.Sci. 24, No.3, pp. 1364-1366, 1977. 
14. G.R. Lambertson, LBL-44454, LBNL-44454, Aug 1999. 
15. A. Burov and A. Novokhatski, Preprint 90-28, INP-Novosibirsk, 1990.  
16. R. Nagaoka, EPAC 2004, pp. 2038-2040. 
17. F. Ruggiero, Part. Accel. 50: pp. 83-104, 1995. 
18. M. Ivanyan and V. Tsakanov, Phys. Rev. ST Accel. Beams, 7, 114402 (2004). 
19. M. Ivanyan and A. Tsakanian, Phys. Rev. ST Accel. Beams, 9, 034404 (2006). 
20. T. Perron, L.Farvacque, and E.Plouviez, EPAC 2004, pp. 2053-2055 
21. T.F. Gunzel, Phys. Rev. ST Accel. Beams, 9, 114402 (2006). 
22. T. Weiland and R. Wanzenberg, 1990 Joint US-CERN Accelerator Courses, Hilton Head, So 

Carolina, DESY M 91-06, May 1991. 
23. A. Piwinski, Report No. DESY HERA 92-11, 1992, p. 19. 
24. O. Henry and O. Napoly, Part. Acc. Vol. 25, pp.235-247, 1991. 
25. M. Ivanian and V. Tsakanov, DESY-TESLA-2003-25, Oct 2003. 11pp. Published in 

Nucl.Instrum.Meth.A522: 223-229, 2004. 
26. A. Piwinski, Report No DESY 84-097, Oct 1984. 
27. K. Balewski and R. Wanzenberg, Proceedings of 2005 Patricle Accelerator Conference, 

Knoxwill, Tennessee, USA, pp. 1751-1753, 2005. 


